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Abstract: Highly accurate near-real-time satellite precipitation estimates (SPEs) are important for
hydrological forecasting and disaster warning. The near-real quantitative precipitation estimates
(REGC) of the recently developed Chinese geostationary meteorological satellite Fengyun 4A (FY4A)
have the advantage of high spatial and temporal resolution, but there are errors and uncertainties
to some extent. In this paper, a self-adaptive ill-posed least squares scheme based on sequential
processing (SISP) is proposed and practiced in mainland China to correct the real-time biases of
REGC hour by hour. Specifically, the scheme adaptively acquires sample data by setting temporal
and spatial windows and constructs an error-correction model based on the ill-posed least squares
method from the perspectives of climate regions, topography, and rainfall intensity. The model adopts
the sequential idea to update satellite precipitation data within time windows on an hour-by-hour
basis and can correct the biases of real-time satellite precipitation data using dynamically changing
parameters, fully taking into account the influence of precipitation spatial and temporal variability.
Only short-term historical data are needed to accurately rate the parameters. The results show that the
SISP algorithm can significantly reduce the biases of the original REGC, in which the values of relative
bias (RB) in mainland China are reduced from 11.2% to 3.3%, and the values of root mean square
error (RMSE) are also reduced by about 17%. The SISP algorithm has a better correction in humid and
semi-humid regions than in arid and semi-arid regions and is effective in reducing the negative biases
of precipitation in each climate region. In terms of rain intensity, the SISP algorithm can improve
the overestimation of satellite precipitation estimates for low rain intensity (0.2–1 mm/h), but the
correction for high rain intensity (>1 mm/h) needs further improvement. The error component
analysis shows that the SISP algorithm can effectively correct the hit bias. This study serves as a
valuable reference for real-time bias correction using short-term accumulated precipitation data.

Keywords: satellite precipitation estimates; FY 4A; bias correction; real-time; mainland China

1. Introduction

Precipitation plays a key role in the global water and energy cycle [1]. Its uneven spatial
and temporal variability can have a large impact on the water cycle [2,3], which is highly
susceptible to natural disasters such as floods, landslides, and droughts [4] and constrains
human productive activities [5]. Therefore, timely and accurate precipitation information
is important for applications such as weather hazards warning, hydrological simulations,
and water resource management [6,7]. Conventional precipitation measurements rely on
ground-based rain gauges and radar [8], which are considered to be the most accurate
means of precipitation observation, where rain gauge data are generally taken as the “true
value of precipitation” [9]. Nevertheless, such methods are easily limited by topography,
resulting in uneven distribution of stations and radars, which makes it difficult to access
precipitation information with high spatial coherence [2,10]. As remote sensing technology

Remote Sens. 2023, 15, 1819. https://doi.org/10.3390/rs15071819 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15071819
https://doi.org/10.3390/rs15071819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3762-5146
https://doi.org/10.3390/rs15071819
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15071819?type=check_update&version=1


Remote Sens. 2023, 15, 1819 2 of 21

grows by leaps and bounds, a new precipitation measurement method based on the
retrieval of satellite remote sensing has come into being [11,12]. This method has become
a complement to conventional rain gauges and radar because it can produce continuous
precipitation information with wide spatial coverage and temporal continuity and is free
from the constraints of topography and vegetation [13,14].

Despite these advantages, real-time pure satellite precipitation estimates (SPEs) contain
large errors and uncertainties, such as IMERG-Early, PERSIANN-CCS, etc. [15,16]. This
is mainly due to the fact that the retrieval information from satellite sensors is indirect in
nature [17] and is vulnerable to sampling errors, sensor limitations, and the estimation
process of the retrieval algorithm [18]. Some other high-accuracy satellite precipitation
products (e.g., IMERG-Final, GSMaP-Gauge) [19,20] have been produced by merging
ground station data or reanalysis precipitation data, but these products cannot support
applications related to the emphasis on quasi-real time due to the long time lag and the
inability to obtain them on time.

Therefore, many researchers [6,21–24] have focused on reducing the source-set biases
of pure SPEs through real-time error-correction algorithms so that the corrected SPEs can
meet the requirements of real-time hydrological applications in terms of both accuracy
and timeliness. In particular, a common approach is to calibrate future real-time satellite
estimates by establishing a statistical relationship between historical gauge measurements
and historical satellite precipitation data [25–31]. Tian et al. [25] revised TMPA-RT and
CMORPH in real time by establishing a statistical relationship between SPEs and station
measurements through a Bayesian algorithm. Deng et al. [26] constructed a nonlinear fitting
method to correct the bias of GSMaP-Gauge based on the relationship between mean error
and precipitation intensity in the Han River basin in China, and the results demonstrated
that the method could significantly reduce the random error. Based on a similarity matrix
using mean bias removal and multiplicative ratio techniques, Choubin et al. [27] corrected
TMPA 3B42 precipitation data on a daily scale by incorporating influence factors (elevation,
periodicity, and precipitation), and the results showed that the proposed method can be
useful to remove the significant portion of the bias for daily TMPA data. Sun et al. [28]
calibrated the IMERG rainfall biases based on the cumulative probability density function
(CDF) and found that the method was the most effective in calibrating rainfall from 0 to
100 mm on the monthly scale. Yang et al. [29] incorporated the quantile mapping method
(QM) and Gaussian weighted interpolation (GW) to revise the biases of SPEs in real time.
Shen et al. [30] proposed an improved CDF method with an adaptive sliding window-based
CDF to adjust the bias, and the results showed that the method has robust performance in
western China. Chen et al. [31] found that the ill-posed least squares (ILS) method based on
the key four elements is better applied in reducing the bias of near-real-time GSMaP-NRT.

However, these calibration schemes suffer from different defects: (1) The more the
amount of historical precipitation data (4 to 6 years) used in the above methods, the higher
the accuracy of the calibration parameters for the rate determination [25]. Therefore, it is not
conducive to the effective calibration of biases by these methods when the lack of historical
station data or the shortage of emerging satellite precipitation data makes it challenging
to obtain rich historical data. (2) The original ILS algorithm will apply unique and fixed
parameters to correct future SPEs once the spatial extent and the number of samples in the
training period have been determined. However, as climate warming leads to the increased
spatial and temporal heterogeneity of precipitation and the increased frequency of extreme
precipitation occurrences [32,33], which will change the error characteristics of precipitation
to a certain extent [29], then using only fixed parameters to correct real-time SPEs will bring
large uncertainties.

Therefore, building on the previous analyses, a new real-time correction scheme is
proposed in this paper, which can accurately correct the real-time satellite precipitation
estimates with shorter accumulated historical precipitation data. The new scheme is
composed of a self-adaptive ILS algorithm and adopts the principle of sequential processing
(SISP) to correct hourly satellite precipitation data: Firstly, the time window is set to obtain
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short-term accumulated historical data, and then the spatial window of dynamic search
is set to adjust the window size adaptively according to the location of regional grid,
season, and the characteristics of precipitation. Through this step, valid sample data can be
obtained, and the influence of spatial and temporal heterogeneity of precipitation can be
minimized. Secondly, the valid sample data and the key influencing factors (topography,
climate zone, and rainfall intensity) affecting the precipitation error are incorporated into
the ill-posed least squares algorithm together to build the bias-adjustment model. Finally,
the corrected precipitation estimate is substituted for the original data using sequential
processing to update the time window, improving the quality of the sample data while
improving the accuracy of the correction parameters.

Fengyun 4A (FY4A) is a new generation of geostationary meteorological satellites
developed in China. Its near-real quantitative precipitation estimation products are charac-
terized by high spatial and temporal resolution, which are beneficial to the forecasting and
monitoring of catastrophic weather [34,35], but there are significant errors and uncertainties
in the data [36,37]. With the increasing influence of FY series satellite products, it is neces-
sary to adjust the error of their precipitation estimates to meet the requirements of real-time
hydrological applications. Therefore, in this paper, the Chinese regional quantitative pre-
cipitation estimation (REGC) of FY4A is selected as the study area for hourly revision. The
satellite precipitation data and the ground station data used in this study are described
in Section 2. The hourly revision method is detailed in Section 3. The performance of the
satellite precipitation estimates before and after correction by the algorithm, as well as the
improvement of the algorithm in terms of the error components, are presented in Section 4,
followed by a discussion and conclusions in Sections 5 and 6, respectively.

2. Study Area and Data
2.1. Study Area

In this paper, Mainland China is taken as the study area, which is located in the south-
eastern part of Eurasia and adjacent to the western part of the Pacific Ocean (73.5◦–135◦E,
4◦–53.5◦N). The Chinese continent is a vast area with a complex topography and diverse
climate types. Figure 1a shows the elevation distribution of China, with the terrain being
higher in the west and lower in the east.
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climate regions over Mainland China.

Under the influence of subtropical high pressure in the western Pacific Ocean and
complex topography [38,39], precipitation has obvious spatial and temporal variability, and
annual precipitation shows a gradual decrease from the southeast coast to the northwest
inland areas [40]. Thus, this paper divides the Chinese continent into four climatic regions
based on annual precipitation, as shown in Figure 1b: 1© humid region (average annual pre-
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cipitation > 800 mm) 2© semi-humid region (average annual precipitation of 400–800 mm)
3© semi-arid region (average annual precipitation of 200–400 mm) 4© arid region (average

annual precipitation < 200 mm). In addition, Figure 1b shows the distribution of the rain
gauge stations in each 0.1◦ × 0.1◦ grid.

2.2. Study Data
2.2.1. Ground Reference

The ground reference data in this paper is an hourly precipitation grid data set that was
obtained by fusing more than 30,000 Chinese automatic stations with the Climate Prediction
Center Morphing (CMORPH) at 0.1◦ × 0.1◦ scale, which was developed by the National
Meteorological Information Center (NMIC) of the China Meteorological Administration
and named China Merged Precipitation Analysis (CMPA) [41]. Its distribution in China
is characterized by density in the southeast and sparsity in the west (e.g., Figure 1b). The
CMPA dataset was produced by fusing observed data with CMORPH data using a two-step
fusion method of probability density function (PDF) and optimal interpolation (OI) [42,43].
The accuracy of this dataset is better than its international counterparts, especially for
gridded areas containing automatic weather stations, and it can portray the characteristics
of hourly precipitation over time to the maximum extent [44,45], making it suitable as
ground reference precipitation data for satellite accuracy assessment.

2.2.2. Fengyun 4A

FY4A is the first satellite of the second generation of Chinese geostationary meteoro-
logical satellites in the FY-4 series, and its successful launch represents a new era of a new
generation of Chinese geostationary meteorological satellites [46]. It carries the Advanced
Geostationary Radiation Imager (AGRI), which is an advanced multi-channel scanning
radiometer with different observation modes. AGRI observation modes are determined
by the temporal resolution of the observations, and the observations are made in 15-min
intervals and are positioned and calibrated in the observation gap. There are two scan-
ning modes: the first one is the full disc conventional imaging covering the Asia-Pacific
region. In addition to making a full disk observation every hour from the hour to 15 min
after the hour, AGRI also takes the first 15 min and the last 15 min of the eight hours of
00:00/03:00/06:00/09:00/12:00/15:00/18:00/21:00 (UTC) as the observation starting time
to make a full disk observation, which is three consecutive full disk observations every
three hours. Finally, full disk precipitation estimates (DISK) at 4 km/1 h/3 h/6 h/24 h
are produced. The second mode is regional conventional imaging, covering 3◦–55◦N and
60◦–137◦E. The Chinese regional observation is carried out only at 5 min intervals when
there is no full disk observation, and three Chinese regional cloud maps can be obtained
by continuous observation for 15 min, which finally produces a real-time precipitation
estimate (REGC) at 4 km/5 min.

The precipitation estimate of REGC is selected for this paper due to its higher tem-
poral frequency, wider temporal coverage within the hourly scale, and higher real-time
availability than DISK. REGC is a pure satellite precipitation product, which has been
downloadable from the official website since 12 March 2018 (http://satellite.nsmc.org.cn/
portalsite/default.aspx, accessed on 15 July 2022).

3. Methodology
3.1. Data Pre-Processing

The ground reference data set is at 0.1◦/1 h scale, while REGC is at 4 km/5 min scale,
so it is unified to the resolution of 0.1◦/1 h in this paper. For the temporal scale, the 5 min
files of multiple times within 1 h were averaged to obtain the “1 h average precipitation”
product, which was described in Zhong et al. [47].

http://satellite.nsmc.org.cn/portalsite/default.aspx
http://satellite.nsmc.org.cn/portalsite/default.aspx
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3.2. Bias-Adjusting Procedure

In this paper, a correction scheme of self-adaptive ILS based on sequential process
(SISP) is proposed, which can cope with the increasingly complex spatial and temporal
variability of precipitation by setting a spatial and temporal window to dynamically acquire
training sample data and performing precipitation bias correction on a time-by-time and
grid-by-grid basis. Taking the t-th hour precipitation data S(t) of the original REGC in a
region as an example, the revised SISP model is constructed grid by grid, and then the
revised real-time satellite precipitation data are named SISP − RT(t). The flow chart is
shown in Figure 2. The detailed steps are as follows.
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(1) Self-adaptive selection of sample data

• Determining the temporal window

Take n hours (excluding the current hour) backward from the current hour t as the
time window, which means n historical satellite precipitation data (S) and n historical
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ground station data (G) are selected as training sample files, respectively. These files are
composed as in Figure 3.

S =
{

S(t−1), S(t−2), . . . , S(t−j), . . . , S(t−n)

}
(1)

G =
{

G(t−1), G(t−2), . . . , G(t−j), . . . , G(t−n)

}
(2)
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The data in S and G in Equations (1) and (2) are required to coincide with each other
in time order. If S(t−j) or G(t−j) is not available, both the satellite and ground precipitation
data at that time are discarded. Then, continue to select historical data backward, and
finally, the number of training samples of both S and G should be ensured to be S.

Since satellite precipitation errors are feature by monthly and daily variations [43],
the size of the time window needs to be determined according to the time scale of the
precipitation data, and the month (or season) to which the data belongs. The precipitation
data used in this paper is at an hourly scale in summer, so 120 h backward from the current
hour is taken as the time window.

• Determining the spatial window

Since the spatial resolution of both REGC and CMPA is uniformly 0.1◦ × 0.1◦, and
the spatial variability scale of precipitation is around the order of 100 km (approximately
1◦ × 1◦) [48], the initial size of 1◦ × 1◦ is chosen as the search range in this paper to be closer
to the range of precipitation occurrence. In other words, a spatial window of 9 × 9 grids
is set up with the grid i as the center, and it is required that at least one station exists
within this spatial window to be used as the valid window to ensure the availability of
ground reference stations. In addition, the precipitation intensity of satellite precipitation
and ground precipitation in the window is required to be greater than the threshold of
0.1 mm/h to be used as an effective training sample, which is consistent with the threshold
suggested in most studies for determining the occurrence/absence of rainfall [49]. This
is due to the higher probability of zero precipitation occurrence on the hourly scale and
the fact that satellite precipitation and ground precipitation data are prone to large errors
in light precipitation events [43]. Moreover, considering the differences in precipitation
characteristics within different climatic regions, it is necessary to make requirements for
the number of precipitation samples within each climatic region: the number of samples
in the humid region > the semi-humid region > the semi-arid region > the arid region.
Finally, using the self-adaptive sliding window method proposed by Shen et al. [30], if the
amount of sample data from satellite and ground stations within the spatial window does
not reach the required quantities within the climatic zones, the window is expanded to
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11 × 11, 13 × 13 . . . until the window has sample data that satisfy the quantity condition
for input error revision model. The specific diagram is shown in Figure 4.
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The training samples obtained through the spatial window are represented as a matrix,
where each row in the matrix represents an hour and each column represents a station
within the spatial window. S_w(i) is used to denote the historical satellite precipitation
data within the spatial window centered on grid i, and G_w(i) is used to denote the
historical ground station precipitation data within the spatial window centered on grid i.
The equation is shown below:

S_w(i) =
[
S1 . . . Sk

]
=

S11 . . . S1k
...

. . .
...

Sm1 . . . Smk

 (3)

G_w(i) =
[
G1 . . . Gk

]
=

G11 . . . G1k
...

. . .
...

Gm1 . . . Gmk

 (4)

where k in Equations (3) and (4) represents the number of stations in the spatial window,
which is numerically less than or equal to the size of the spatial window. The m represents
the number of historical precipitation data files, which is numerically less than or equal to
the size of the temporal window.

To facilitate the subsequent calculation of parameters, these two matrices need to be
reshaped from the form of [m, k] into the form of [m ∗ k, 1].

S_w(i) = [S11, . . . , Sm1, S12, . . . , S1k , . . . , Smk ]
T (5)

G_w(i) = [G11 , . . . , Gm1, G12 , . . . , G1k , . . . , Gmk ]
T (6)

(2) Constructing the error-correction model

The retrieval error (E) can be calculated by satellite rainfall rate (S) minus the corre-
sponding ground observations (G). The equation is shown below:

E = S − G (7)

Previous studies found that error retrieval (E) is closely related to the topographic [50],
precipitation intensity [51], and climate regions [49]. Based on the above studies, the sample
series of satellite precipitation data (S_w(i)) and gauge data (G_w(i)) already acquired
in the above steps are trained to build an error-correction model that fully considers each
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influencing factor. The error-correction model (E(t)(i)) for the satellite precipitation estimate
(S(t)(i)) in grid i at time t is as follows:

E(t)(i) = a(i) ∗ S_w(i) + b(i) ∗ DEM_w(i) + c(i) (8)

where a(i), b(i), c(i) represent the parameters of Et(i) on grid i built based on the training
samples. DEM_w(i) = [DEM1, . . . , DEMmk ] denotes the elevation of the grid in the
spatial window corresponding to the sample data. Further equation substitution is needed
to understand as well as to solve for the parameters.

Firstly, substitute Equation (7) into Equation (8).

G_w(i) = (1 − a(i)) ∗ S_w(i)− b(i) ∗ DEM_w(i)− c(i) (9)

Then, Equation (9) is simplified as follows.

G_w(i) = A(i) ∗ X(i) (10)

where A = [S_w(i), DEM_w(i), I], X(i) = [1 − a(i),−b(i),−c(i)].
Finally, the parameters contained in X(i) are solved by the ill-posed least squares

method, which can avoid the ill-posed problems of the parameter matrix leading to un-
reliable results compared to the least squares method [52]. The expression is as follows.

X̃(i) =
(

A (i)T ∗ A (i) + α ∗ I
)−1

∗ A (i) ∗ G_w (i) (11)

where α is the ridge parameter, which is calculated by the L-curve method; I is the unit ma-
trix, and the introduction of αI can mitigate the ill-posed degree of the matrix A (i)T ∗ A (i)
and obtain a more reasonable parameter estimate.

(3) Revising in real time

The original satellite rainfall rate on grid i at time t (S(t)(i)) are revised using the
three parameters X̃(i) solved in Equation (11) to produce the corrected satellite rainfall
rate S̃(t)(i).

S̃(t)(i) = (1 − a(i)) ∗ S(t)(i)− b(i) ∗ DEM(i)− c(i) (12)

Using the moving window method, we continuously update i, update the target grid
row by row (column by column), repeat steps (1) to (3) until all satellite precipitation in the
region is corrected, and obtain the corrected satellite precipitation data (S̃(t)) time t in the
region, named SISP − RT(t) according to the correction scheme.

(4) Sequence-oriented processing method

Add SISP − RT(t) to the time window, and then update the satellite precipitation data
series. The n hourly historical precipitation data rate parameters from the hour t + 1 (ex-
cluding the hour t+ 1) backward are selected, and then the satellite precipitation data S(t+1)
at the hour t + 1 are corrected starting from step (1). Eventually, after continuous iterative
updates, the time window is made up of calibrated and accessible satellite precipitation
data and historical ground site data, and they are used to rate the parameters.

3.3. Statistical Indices in Evaluation

In this paper, three commonly used indices were chosen to assess the performance
of the original and the corrected satellite precipitation products: correlation coefficient
(CC), root mean squared error (RMSE), normalized root mean squared error (NRMSE), and
relative bias (RB) [40,49]. Among them, CC was used to characterize the degree of linear
correlation between satellite precipitation data and ground reference data. RMSE was used
not only to represent the average error size between satellite precipitation data and ground
precipitation data but also to describe the degree of dispersion between them. NRMSE
was mainly used to study and compare the accuracy of satellite remote sensing inversion
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precipitation intensity at different precipitation intensities or different time scales, which
can avoid the problem that RMSE increases with the increase in precipitation intensity or
time accumulation. RB could reflect the degree of systematic deviation of satellite data. The
equations of specific evaluation indexes are shown in Table 1.

Table 1. The list of the evaluation metrics 1.

Statistic Indices Equation Suitable Value

CC CC =
∑n

i=1(Gi−G)(Si−S)√
∑n

i=1(Gi−G)
2×
√

∑n
i=1(Si−S)

2 1

RMSE RMSE =
√

1
n × ∑n

i=1(Si − Gi)
2 0

RB RB = ∑n
i=1(Si−Gi)
∑n

i=1 Gi
× 100% 0

Hit bias Hit bias = ∑n
i=1(SH−GH)

∑n
i=1 Gi

× 100% 0

Miss bias Miss bias = ∑n
i=1(SM−GM)

∑n
i=1 Gi

× 100% 0

False bias False bias = ∑n
i=1(SF−GF)

∑n
i=1 Gi

× 100% 0

1 Notation: n refers to the total number of samples, Gi refers to ground data, Si refers to satellite data, G refers to
ground precipitation average, S refers to satellite precipitation average, H refers to the number of precipitation
detected by both satellite and ground stations, M refers to the number of precipitation detected by ground stations
but not by satellite, and F refers to the number of precipitation detected by satellite but not by ground stations.

Although RB can reflect the systematic bias of multi-satellite remote sensing precipi-
tation reversals, the fact that the index is an average of multiple bias components makes
the analysis of a single RB error index one-sided in the assessment of error characteristics.
Therefore, in order to comprehensively analyze the differences in error components of the
satellite precipitation products before and after the revision, this paper adopts the error
decomposition method proposed by Tian et al. [53]. The total bias is decomposed into
hit bias, miss bias, and false bias. Additionally, the threshold of 0.1 mm/h is selected for
determining the presence or absence of rainfall. The corresponding error decomposition
equation is shown in Table 1.

4. Results

In this section, the paper analyzed the performance of the SISP algorithm from the
perspectives of hourly average precipitation, statistical indicators at the spatial and tem-
poral scales, and precipitation intensity, respectively. In addition, we decomposed the
bias to further explore the contributions and problems of the algorithm in correcting each
error component.

4.1. Comparison of Hourly Average Precipitation for Different Products

Figure 5 shows the spatial distribution of the hourly average precipitation of CMPA,
REGC, and SISP-RT from June to August 2019. With the spatial distribution map of CMPA
as a reference, REGC has significantly higher precipitation than CMPA in the southeastern,
northeastern, and western regions in mainland China, and lower precipitation than CMPA
in the southwestern and localized regions of the study area. Compared with REGC, SISP-
RT has lower hourly mean precipitation in the humid and semi-humid regions, and the
amount is closer to CMPA. In the southwestern part of the study area, the spatial pattern of
hourly average precipitation of SISP-RT is more similar to that of CMPA, which means that
the SISP method can effectively alleviate the errors caused by topography. However, in
the western and northeastern regions, both REGC and SISP-RT have higher hourly mean
rainfall than CMPA, and the bias-correction algorithm does not address the overestimation
of rainfall in this region by the original satellite precipitation estimates.
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Figure 5. Spatial distribution of mean hourly precipitation for CMPA, REGC, and SISP-RT (June to
August 2019).

Figure 6 displays a time-series plot of the mean biases of REGC and SISP-RT relative to
CMPA hourly precipitation during the summer months. It is observed that the mean biases
of the original REGC have a large variation with time (blue curve) and are dominated
by underestimation of rainfall in June and August, while significantly overestimating
rainfall in July, when precipitation is more concentrated. In contrast, there is a significant
reduction in the mean biases of the corrected SISP-RT (red curve), especially in July, when
the overestimation is reduced by more than 50%. As the time series increases, the SISP
method corrects the biases better in July and August than in June, which is mainly attributed
to the sequential processing in the SISP approach. During the hourly correction process,
the satellite precipitation data within the time window are updated to the corrected data,
which makes the accuracy of the model parameters also increase gradually.
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4.2. Spatio-Temporal Performance Comparison of REGC and SISP-RT

To explore the spatial effects of the SISP method, we mapped the spatial distribution
of the RB, RMSE, and CC of REGC and SISP-RT on the seasonal scale (summer JJA: June (J),
July (J), and August (A)) (Figure 7). It is obvious that the SISP method remarkably improves
the overestimation or underestimation of precipitation in the humid and semi-humid
regions of the original REGC in the spatial distribution of RB. For example, the algorithm
reduces the RB of REGC from above 100% to less than 20% in the southern part of the
humid region, as well as correcting the RB below −60% near the humid and semi-humid
region divide to between −20% and 20%. However, the algorithm did not improve the
overestimation of precipitation in the western part of the study area. In addition, the
values of RMSE of SISP-RT are also significantly lower compared to that of REGC, and
the improvement is more distinct in the southeastern part of the humid region where
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precipitation intensity is higher and in the northeastern part of the semi-humid region.
Both REGC and SISP-RT show a gradual decrease in RMSE values from the southeastern
coast to the northwestern region, which also indicates that RMSE is related to the intensity
of precipitation. In terms of CC, the spatial pattern of CC for both uncorrected and corrected
precipitation products is very similar in mainland China, and the values in the humid
region are significantly higher than those in other climatic regions. The SISP algorithm
is more effective in enhancing CC values less than 0.3, such as improving CC (less than
0.2) in the central part of the study area to about 0.2–0.3, but for CC (0.4–0.6) in the humid
region, the improvement is not significant. Overall, the new correction algorithm exhibits a
remarkable effect in reducing the RB and RMSE of SPEs, mainly in the central part of the
humid and semi-humid regions.
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REGC and SISP-RT against the CMPA over Mainland China.

Table 2 summarizes the performance of the three statistical indicators before and after
the correction on the seasonal scale in mainland China and within each climate region.
First of all, from the perspective of mainland China, the RB is decreased from 11.2% to
3.34%, the RMSE is also decreased by about 17%, and the CC is improved from 0.3 to 0.35.
Secondly, from the perspective of each climate region, the SISP method effectively reduces
the RMSE within each climate region, indicating that the method is beneficial for improving
the accuracy of satellite precipitation estimation. Nevertheless, the improvement degree
of the SISP method for RB and CC is affected by different climate regions, and the overall
correction effect is better in humid and semi-humid regions than in semi-arid and arid
regions, which is consistent with the performance of the spatial distribution map. For
example, in the humid region, SISP-RT sees an over 52% decrease in RB, and its RMSE
and CC are also better enhanced, while the indicators are not effectively improved in both
the arid and semi-arid regions, and even the RB (28.05%) in the semi-arid region is raised
to 36.65%.
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Table 2. The summary of the three evaluation indices (RMSE, RB, and CC) for the REGC and SISP-RT
for the summers.

Study Area
RMSE (mm/h) RB (%) CC

REGC SISP-RT REGC SISP-RT REGC SISP-RT

Mainland China 1.64 1.36 11.2 3.34 0.3 0.35
Humid region 1.84 1.49 17.68 8.15 0.32 0.38

Semi-humid region 1.27 1.14 −12.33 0.57 0.22 0.26
Semi-arid region 0.86 0.73 28.05 36.65 0.16 0.17

Arid region 0.68 0.58 223.22 211.03 0.1 0.11

However, this does not mean that the SISP algorithm is completely unable to reduce
the biases in the arid and semi-arid regions. By showing the distribution of RB in the
semi-arid and arid regions separately (Figure 8), it can be noticed that the SISP algorithm is
very effective in reducing the negative bias in the semi-arid region, specifically, reducing
the RB below −40% of the original data in region A (Figure 8a) to −20% to 20% (Figure 8b).
However, it largely fails to improve the overestimation of precipitation in the arid and semi-
arid regions (region B), and this indicates that the higher SISP-RT biases in the semi-arid
region are caused by the fact that local positive RBs and negative RBs cannot cancel each
other out. In general, the SISP algorithm is limited by the precipitation discrepancy within
the climate regions, as evidenced by the fact that it can effectively decrease the negative
biases in each climate region and improve the evaluation metrics of satellite precipitation
estimates in the humid and semi-humid regions, while it cannot effectively reduce the
positive biases in the arid and semi-arid regions and significantly improve the CC.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

Table 2. The summary of the three evaluation indices (RMSE, RB, and CC) for the REGC and SISP-
RT for the summers. 

Study Area 
RMSE (mm/h) RB (%) CC 

REGC SISP-RT REGC SISP-RT REGC SISP-RT 
Mainland China 1.64 1.36 11.2 3.34 0.3 0.35 
Humid region 1.84 1.49 17.68 8.15 0.32 0.38 

Semi-humid region 1.27 1.14 −12.33 0.57 0.22 0.26 
Semi-arid region 0.86 0.73 28.05 36.65 0.16 0.17 

Arid region 0.68 0.58 223.22 211.03 0.1 0.11 

However, this does not mean that the SISP algorithm is completely unable to reduce 
the biases in the arid and semi-arid regions. By showing the distribution of RB in the semi-
arid and arid regions separately (Figure 8), it can be noticed that the SISP algorithm is very 
effective in reducing the negative bias in the semi-arid region, specifically, reducing the 
RB below −40% of the original data in region A (Figure 8a) to −20% to 20% (Figure 8b). 
However, it largely fails to improve the overestimation of precipitation in the arid and 
semi-arid regions (region B), and this indicates that the higher SISP-RT biases in the semi-
arid region are caused by the fact that local positive RBs and negative RBs cannot cancel 
each other out. In general, the SISP algorithm is limited by the precipitation discrepancy 
within the climate regions, as evidenced by the fact that it can effectively decrease the 
negative biases in each climate region and improve the evaluation metrics of satellite pre-
cipitation estimates in the humid and semi-humid regions, while it cannot effectively re-
duce the positive biases in the arid and semi-arid regions and significantly improve the 
CC. 

 
Figure 8. Spatial patterns of RB for the REGC and SISP-RT in the semi-arid and arid regions. 

Figure 9 presents the time series of RB, RMSE, and CC for REGC and SISP-RT during 
the whole study period, in an effort to explore the temporal performance of the correction 
algorithm. To smooth the time series, a moving average window of 120 h was used for the 
time series [54]. As can be seen from the blue curve in Figure 9, the RB and RMSE of REGC 
show a clear monthly variation pattern, with REGC having high positive biases (generally 
greater than 50%) in July and predominantly negative biases in June and August. After 
correction, the amplitudes of the curves of the various indexes of SISP-RT are remarkably 
narrowed, as shown in the red curve that the RB curve is closer to the 0 axis in June and 
August, the RMSE curve is fluctuating around the value line of 1.5 mm/h, and the CC 
curve is higher than the original REGC. Overall, SISP-RT has a relatively lower RB and 
more stable RMSE and CC in the time series compared with REGC. 
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Figure 9 presents the time series of RB, RMSE, and CC for REGC and SISP-RT during
the whole study period, in an effort to explore the temporal performance of the correction
algorithm. To smooth the time series, a moving average window of 120 h was used for the
time series [54]. As can be seen from the blue curve in Figure 9, the RB and RMSE of REGC
show a clear monthly variation pattern, with REGC having high positive biases (generally
greater than 50%) in July and predominantly negative biases in June and August. After
correction, the amplitudes of the curves of the various indexes of SISP-RT are remarkably
narrowed, as shown in the red curve that the RB curve is closer to the 0 axis in June and
August, the RMSE curve is fluctuating around the value line of 1.5 mm/h, and the CC
curve is higher than the original REGC. Overall, SISP-RT has a relatively lower RB and
more stable RMSE and CC in the time series compared with REGC.
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Figure 9. Time series of RB (a), RMSE (b), and CC (c) of the REGC and SISP-RT against the CMPA in
Jun–Aug 2019. All lines are obtained from 120 h moving averages of the original time series.

4.3. Performance of REGC and SISP-RT under Different Precipitation Intensities

To investigate the effect of the correction scheme on the precipitation, NRMSE and RB
were used in this paper to analyze the performance of the SPEs before and after the revision
at each precipitation intensity, where the thresholds [55] for classifying precipitation events
on the hourly scale are 0.2 mm/h, 0.4 mm/h, 0.6 mm/h, 1 mm/h, 2 mm/h, and 5 mm/h.
Figure 10 gives the results of the NRMSE and RB for the REGC and SISP-RT at different
precipitation intensities.
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Figure 10a shows that the SISP-RT has lower values of NRMSE than REGC at all
precipitation intensities, and this difference is more apparent in the range of 0.2–0.4 mm/h
and 0.4–0.6 mm/h. However, the NRMSE values of REGC and SISP-RT are very close
when the precipitation intensity is over 5 mm/h, indicating that the SISP algorithm mainly
improves the accuracy of REGC at low and medium rainfall intensity, while the accuracy of
REGC for high rainfall intensity events is largely not affected. Observing the RB at different
rainfall intensities (Figure 10b), it can be found that REGC suffers from an overestimation
of rainfall intensity below 1 mm/h and an underestimation of rainfall intensity in the
range of 1–5 mm/h, and the biases gradually increase with increasing rainfall intensity.
The changing trend of SISP-RT’s RB is similar to that of REGC, but SISP-RT has a lower
overestimation of rainfall intensity in the range of 0.2–1 mm/h than REGC and has the
lowest RB at 0.6–1 mm/h. It is noteworthy that SISP-RT shows a greater negative bias
compared to REGC in the rainfall intensity over 1 mm/h. The above results suggest that
the SISP-RT algorithm can improve the overestimation of satellite precipitation estimates
for low rainfall intensities (0.2–1 mm/h) but is not yet capable in terms of correction for
high rainfall intensities (>1 mm/h), which may be related to the over-correction of the
algorithm for rainfall at high rainfall intensities [31].
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4.4. Error Component Analysis

In this section, the error decomposition (the specific description is placed in Section 3.3)
was used to comprehensively analyze and compare the errors before and after the correction
of satellite precipitation products as well as the accuracy characteristics, which also helps
to further clarify the contributions and problems of the SISP algorithm in the correction of
each error component. Figure 11 shows the spatial distribution of the three types of error
components: hit bias (column 1), miss bias (column 2), and false bias (column 3)) for REGC
and SISP-RT in mainland China. For the hit bias, REGC mainly shows positive hit biases
in the humid region, while negative hit biases are dominant in other regions. The SISP
method mainly reduces positive hit biases of original REGC (from >60% to about 20%) and
narrows the area coverage of negative hit biases (below 20%), so that hit biases of SISP-RT
in mainland China are mainly concentrated in the range of −20~20%. For the miss bias
and the false bias, the SISP algorithm is limited in revising them, so the spatial patterns of
the two sets of satellite precipitation products are very similar. The miss bias is caused by
the insensitivity of satellites to short-term and light precipitation, so the values gradually
increase from southeast to northwest, which are just opposite to the distribution trend of
precipitation. The higher false biases are mainly distributed in the northwest zones, which
is the main reason why the satellite precipitation products are seriously overestimated in
the total bias (Figure 7, the first column).
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Overall, the SISP algorithm can effectively reduce hit biases in real-time revised data
and is more useful in correcting higher positive hit biases, but the algorithm basically
cannot improve miss biases and false biases of REGC. On the one hand, this is because
the hit bias is considered a valid bias that can be reduced by site correction and climate
correction [53]. On the other hand, the miss bias is caused by the insensitivity of the satellite
to short-term and light precipitation, so the value gradually increases from southeast to
northwest, which is the opposite of the precipitation distribution. Similar to the miss bias,
the false bias is due to the bias caused by precipitation detected by the satellite but not
detected by the ground station and is also related to the threshold value, so the algorithm
can only reduce but not eliminate the false bias.
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5. Discussions
5.1. Different Training Data Lengths for the SISP Approach and the Threshold Selection

In this section, time series of different lengths are used as time windows to construct
the error calibration model and summarize the error statistical indicators of the corrected
SISP-RT products in mainland China and each climate zone (Table 3, Figure 12), so as to
discuss the influence of lengths of training data on the robustness of the SISP method. Time
windows are mainly divided into two categories: continuous time series and interval time
series. The former is to choose the first n consecutive hours (abbreviated as n h-c) forward
from the uncorrected hour t as a time window, such as 60 h-c, 120 h-c, 180 h-c, 240 h-c. The
latter adopts the “interval” of 120 h (abbreviated as 120 h-i) proposed by Yu et al. [43] as the
time window, which is composed of 120 h by taking 20 days from the current date forward
and 6 times per day from the current moment forward.

Table 3. Metrics of hourly SISP-RT against CMPA at gauged pixels in Mainland China under the
different lengths of the training period.

Mainland China RMSE (mm/h) RB (%) CC

REGC 1.64 11.2 0.3
60 h-c 1.45 3.19 0.32
120 h-c 1.36 3.34 0.35
180 h-c 1.36 3.45 0.35
240 h-c 1.36 3.59 0.34
120 h-i 1.57 18.25 0.34
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Analyzed from the perspective of mainland China (Table 3), the SISP algorithm con-
structed based on continuous time series is more advantageous in reducing the bias com-
pared with the interval corrected series, where the biases of the original data were reduced
by 68–72%; in contrast, the satellite precipitation estimates corrected with 120 h-i training
data have higher biases in Mainland China. Meanwhile, we found that either too short or
too long a training period affects the accuracy of the algorithm, and the overall performance
showed that the sensitivity of RMSE and CC to time length decreases and RB tends to
increase with the increase in training period time. Similarly, the correction effect of SISP
in each climate region was also related to the duration of the training period (Figure 12).
Precipitation products corrected by the 60 h-c (green curve) and 120 h-i (light blue curve)
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training lengths have substantially poorer accuracy than those corrected by other training
lengths, especially with greater instability in RB, and are more likely to lead to apparent
overestimation or underestimation of precipitation in humid and semi-humid regions. This
may be explained mainly from two aspects: on the one hand, because a shorter training
period (60 h-c) would lead to too little amount of valid sample data available, the sample
data to meet the threshold requirements must be acquired by continuously expanding the
spatial window, which would easily lead to overfitting of the correction algorithm and
affect the algorithm accuracy. On the other hand, the longer training period (e.g., 120 h-i)
consists of a time window spanning 20 days, and the greater frequency of changes in
the hourly-scale sample data makes the error characteristics of the sample data weakly
correlated with the current precipitation data, which likewise affects the accuracy of the
SISP method.

In investigating the influence of different lengths of training periods on the error
calibration model above, thresholds were set for the number of samples within each climate
region whether to perform the calibration model or not (Table 4). Different thresholds are
beneficial to reduce the time complexity of the algorithm while giving full consideration
to the influence of the SISP algorithm in reducing the spatial and temporal heterogeneity
of precipitation, where the threshold for the humid region is 50% of the length of the time
window and that of the other climate regions is in decreasing order. The rainfall within
each climate region is varied and the distribution of stations is not uniform (Figure 1b). The
number of stations in the humid region is dense and the rainfall is large, so the correction
model in the humid region can easily collect a sufficient number of sample data by only the
initial spatial search window (9 × 9), while the stations in the western arid and semi-arid
regions are sparse and the rainfall is small, thus the spatial window needs to be continuously
expanded to obtain the same number of sample data. However, the number of effective
samples in the arid or semi-arid regions on the hourly scale is extremely small, which
easily leads to an infinite expansion of the spatial window, and the time complexity of the
algorithm increases subsequently. Therefore, it is necessary to set thresholds according
to the density of stations within the climate region and the magnitude of rainfall, in an
effort to avoid reducing the temporal efficiency of the algorithm resulting from the infinite
expansion of the spatial window, and also to ensure the correlation of valid samples within
the spatial region.

Table 4. Thresholds of different training lengths for each climate region.

Climate Regions 60 h-c 120 h-c 180 h-c 240 h-c 120 h-i

Humid region 30 60 90 120 60
Semi-humid region 20 50 60 70 50

Semi-arid region 10 30 40 45 30
Arid region 5 20 30 35 20

5.2. Strengths and Limitations of the Method

In a study of bias correction based on statistical relationships between station data and
satellite precipitation data, Tian et al. [25] pointed out that consistent error characteristics in
satellite precipitation estimates are a prerequisite for correction, and inconsistency in errors
between the training and correction periods can easily lead to overcorrection. For example,
in this paper, Table 2 shows that REGC overestimates precipitation throughout the summer
(RB = 112%) in mainland China, but as seen in the time-series plot of RB (Figure 9a), REGC
suffers overestimation of precipitation in July, while it mainly presents underestimation in
June and August, indicating that the error characteristics of satellite precipitation estimates
are inconsistent within each summer month.

Most of the existing correction methods use fixed parameters to correct the bias on the
seasonal scale, which easily causes uncertainty. The SISP algorithm proposed in this paper
makes the acquired training samples vary with the location of the target grid by setting
a spatial window for the dynamic search of the target grid. Thus, it can ensure that the
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precipitation data at different times and different grid locations have matching correction
parameters, further minimizing the impact of error inconsistency on bias correction. At
the same time, the error characteristics of REGC are different in each climate region in
summer; for instance, REGC tends to underestimate precipitation in semi-humid regions
and overestimate precipitation in other climate regions (Table 2). The SISP algorithm also
takes this into account. The new method sets a threshold for the number of samples for
each climate region and adaptively adjusts the size of the spatial window so that it can rate
the parameters at the spatial scale of climate regions and reduce the effect of spatial and
temporal heterogeneity of precipitation. The spatio-temporal performance of the satellite
precipitation products before and after calibration also proves that the SISP method can
indeed effectively reduce the bias but is susceptible to the influence of climate regions. SISP
has the best calibration effect in the humid region, while it can only improve the negative
bias and can hardly reduce the positive bias in the arid and semi-arid regions. This is
mainly due to the sparse sites and light rainfall in arid and semi-arid regions, which leads
to a spatial window continuously expanding the search range to obtain sufficient sample
data, resulting in increased spatial dissimilarity and reduced correlation between sample
data, which tends to affect the performance of the revised algorithm. In addition, based on
sequential processing, SISP updates the original data with new corrected data to train and
obtains new information for correction, which can improve the accuracy of the parameters.
The time-series plot of hourly average precipitation deviations in Figure 6 shows that the
effectiveness of the SISP algorithm in revising the deviations increases with increasing
time series.

In general, the SISP algorithm can have the advantage of reducing the bias, but at
present, it only improves and does not completely eliminate the bias. The correction
effect of SISP on satellite precipitation estimates varies in different regions, months, and
at various precipitation intensities. Therefore, in order to better exploit the advantages of
this correction algorithm, a suitable spatial and temporal window needs to be selected by
practice to avoid shorter or longer correction sequences to reduce the effectiveness of the
algorithm for bias correction.

5.3. Application Prospects

Mainland China is susceptible to warm and humid southwest monsoon airflow, result-
ing in precipitation events occurring mainly in summer when precipitation is abundant and
differs significantly between inland and coastal areas. Therefore, only summer is chosen as
the study time in this paper. Since the spatial and temporal window of SISP is adaptive
and can be automatically resized not only according to the spatio-temporal variability
of precipitation within the climate region but can also be also modified according to the
seasonal characteristics of precipitation, the model can be applied to the error adjustment
of satellite precipitation for the other three seasons according to specific needs.

Last but not least, this paper only practices the applicability of the SISP algorithm at
the spatial scale of mainland China and four climatic zones; however, many watersheds
in summer are very likely to be flooded caused by abundant and uneven precipitation.
Therefore, the advantages of high spatial and temporal resolution (5 min/4 km) of REGC
data and the potential of the SISP algorithm to correct bias on a time-by-time basis can be
combined in the future to further divide the study area into finer watershed scales, which
is very important for runoff simulation and flood warning studies in various watersheds in
China and even in other countries and regions in the world.

Finally, the error-correction scheme is effective based on the consistency of the errors
in short-term accumulated precipitation data over a certain spatial range. In the future,
it can be applied to the error correction of other satellite precipitation estimates at hourly
scales by modifying the threshold value as well as the training period.
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6. Conclusions

In this paper, we proposed and practiced a self-adaptive ill-posed least squares bias-
correction method based on sequential processing to hour-by-hour correct satellite precipi-
tation estimates, which considers the relationship between climate region, precipitation
intensity, topography, and precipitation errors from the perspective of reducing the effect
of spatial and temporal variability of precipitation for bias correction. Firstly, based on
the idea of sequential processing, the corrected data are updated hour by hour instead
of the original data to obtain the dynamically changing short time-series time window,
and secondly, by setting the dynamic search window, the sample data within the spatial
window changes with the change of the target grid position, and finally the satellite precip-
itation data can be corrected hour by the hour based on the dynamic parameters. The main
conclusions are as follows:

(1) In the analysis of the hourly average precipitation of precipitation products, the hourly
average precipitation of REGC is higher than that of CMPA in most areas of mainland
China, while the quantitative values of SISP-RT are more similar to those of CMPA,
indicating the advantage of the SISP method in correcting rainfall. In the time-series
plot of the hourly mean bias, it is found that the SISP method corrects the biases
significantly better in the middle and later stages of the time series than in the initial
stage, which may be related to the addition of the corrected satellite precipitation data
to the training sample to improve the accuracy of the correction parameters.

(2) In the spatial analysis, the SISP algorithm can effectively reduce the error of the
original REGC in mainland China and mainly fix the biases of the original REGC in
the central regions of the humid and semi-humid regions. Compared with REGC, the
RB of SISP-RT is reduced by 52% in the humid region, but further improvement is
needed in reducing the bias in the arid and semi-arid regions. In the temporal analysis,
the RB and RMSE of REGC show a clear pattern of monthly variation, and the variation
of RB and RMSE curves of SISP-RT is obviously decreased after correction.

(3) In terms of precipitation intensity, the original REGC exhibits overestimation for low
rain intensity (0.2–1 mm/h) and underestimation for high rain intensity (>1 mm/h).
The SISP algorithm remarkably improves the overestimation of low rain intensity
from the original data but tends to overcorrect for rainfall rates above 1 mm/h leading
to more severe underestimation.

(4) The contribution and problems of the SISP algorithm in correcting each error compo-
nent were further clarified by error decomposition. The SISP algorithm can effectively
reduce hit biases in the real-time corrected data and has a better effect on the higher
positive hit biases (from more than 80% to about 20%). However, limited by the fact
that the precipitation in some regions is outside the effective correction range of miss
biases and false biases, the algorithm basically cannot improve the miss bias and the
false bias of the original satellite precipitation products.
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