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Abstract: Hyperspectral images (HSI) contain powerful spectral characterization capabilities and
are widely used especially for classification applications. However, the rich spectrum contained in
HSI also increases the difficulty of extracting useful information, which makes the feature extraction
method significant as it enables effective expression and utilization of the spectrum. Traditional
HSI feature extraction methods design spectral features manually, which is likely to be limited by
the complex spectral information within HSI. Recently, data-driven methods, especially the use
of convolutional neural networks (CNNs), have shown great improvements in performance when
processing image data owing to their powerful automatic feature learning and extraction abilities and
are also widely used for HSI feature extraction and classification. The CNN extracts features based
on the convolution operation. Nevertheless, the local perception of the convolution operation makes
CNN focus on the local spectral features (LSF) and weakens the description of features between
long-distance spectral ranges, which will be referred to as global spectral features (GSF) in this study.
LSF and GSF describe the spectral features from two different perspectives and are both essential
for determining the spectrum. Thus, in this study, a local-global spectral feature (LGSF) extraction
and optimization method is proposed to jointly consider the LSF and GSF for HSI classification. To
increase the relationship between spectra and the possibility to obtain features with more forms, we
first transformed the 1D spectral vector into a 2D spectral image. Based on the spectral image, the
local spectral feature extraction module (LSFEM) and the global spectral feature extraction module
(GSFEM) are proposed to automatically extract the LGSF. The loss function for spectral feature
optimization is proposed to optimize the LGSF and obtain improved class separability inspired by
contrastive learning. We further enhanced the LGSF by introducing spatial relation and designed a
CNN constructed using dilated convolution for classification. The proposed method was evaluated
on four widely used HSI datasets, and the results highlighted its comprehensive utilization of spectral
information as well as its effectiveness in HSI classification.

Keywords: convolutional neural network (CNN); global spectral feature; hyperspectral image
classification (HSIC); local spectral feature

1. Introduction

Hyperspectral images (HSI) generally contain hundreds of subdivided spectral bands
captured at a continuous wavelength [1]. Compared with multispectral images, HSI signifi-
cantly increases the spectral dimension while retaining the spatial dimension. With rich
spectral information, HSI enables the detection, identification, and discrimination of target
materials at a more detailed level [2] and is widely used in geology [3,4], agriculture [5,6],
environmental studies [7,8], quantitative inversion [9,10] and other fields [11]. Due to its
powerful spectral characterization ability, HSI has also served as one of the most significant
data sources in the remote sensing community, especially for some classification or iden-
tification applications, such as Land Use and Land Cover (LULC) mapping [12,13]. This
rich spectral information brings unique advantages to HSI, but it also presents challenges
for image processing. On the one hand, the HSI band number and data dimension have a
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geometric multiple increase compared with those of traditional multispectral images, which
leads to a significant increase in the calculation as well as the curse of dimensionality [14].
The increased data volume also requires more samples to support, and the acquisition of re-
fined labels is difficult [15]. On the other hand, the adjacent bands of remote sensing images
are more strongly correlated to closer bands. The interval between bands in HSI is signifi-
cantly reduced, resulting in strong redundancy and band correlation [16], which increases
the difficulty of mining hidden information from HSI. Therefore, for HSI classification, it is
vital to identify a method that can effectively use the rich spectral information.

Spectral information is typically represented by a spectral curve in an HSI. Thus, a
large number of single curve analysis techniques are proposed to describe the spectral
characteristics, and most of them contain the idea of dimensionality reduction. (1) Some
methods use band selection to pick up the characteristics of the original spectral curve with
a series of standards (e.g., spectral distance [17], spectral divergence [18] and spectral vari-
ance [19]) for subsequent processing. Demir et al. [20] used feature-weighting algorithms
to obtain weights for all bands and selected bands with higher weights for classification.
(2) Feature extraction methods describe and calculate the curve features, such as shape and
variation, by designing a series of indices for classification (e.g., the spectral angle mapper
(SAM)). Chen et al. [21] combined the SAM feature and maximum likelihood classification
(MLC) with the magnitude and shape features for classification. They discovered that
adding SAM could improve accuracy. He et al. [22] proposed a handcrafted feature extrac-
tion method based on multiscale covariance maps. The spectral features were obtained
by computing the covariance matrices of the central pixels at various scales, where the
values were the covariance of the spectral band pairs. They found that using the multiscale
covariance maps as input features could greatly improve the classification accuracy. (3) In
order to suppress the redundant information and highlight the useful information for a bet-
ter description of the spectral curve, spectral transformation methods convert the original
spectral space to another feature space via mathematical transformations. The most typical
spectral transformation method is the principal component analysis (PCA). Jiang et al. [23]
proposed a superpixel-wise PCA (SuperPCA) approach that considers the diversity in
different homogeneous regions and was able to incorporate spatial context information. Al-
though SuperPCA is an unsupervised method, its performance is comparable to supervised
approaches. Fu et al. [24] proposed a PCA and segmented PCA (SPCA)-based multiscale
2-D-singular spectrum analysis (2-D-SSA) fusion method for joint spectral–spatial HSI
feature extraction and classification. The method can extract multiscale spectral–spatial
features and outperform other state-of-the-art feature-extraction methods. However, the
above spectral information utilization methods describe the spectral characteristics based
on manual design, which are generally limited in type and quantity, and it is also difficult
to extract deeper and more representative information [25]. Thus, these methods have
limitations in the face of the complex spectral information in HSI, and they are difficult to
fully use the spectral information to describe the characteristics of the targets. In recent
years, breakthroughs have been made in artificial intelligence. Data-driven deep learning
methods can automatically learn features at different levels of the data for classification
and have achieved remarkable success in the field of computer vision. As a typical deep
learning model, convolutional neuronal network (CNN) has also been widely used to ana-
lyze the spectral curve [26] and has been shown to have the potential to surpass traditional
methods that utilize manually designed features [27,28]. The 1D CNN uses 1D convolution
kernels to extract features on the single spectral curve and combines them through a deep
network structure. Hu et al. [29] built a 1D CNN consisting of five layers with weights for
HSI classification. The experimental results demonstrated the effectiveness of the proposed
method when compared with traditional methods such as SVM.

However, the linearly arranged single spectral curve limited the expression of spectral
relationship because the spectral information cannot be effectively aggregated in this
structure. In order to utilize more information, there are some methods that treat the
spectral information as non-curve data for feature extraction and classification. Some
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methods consider the spectral information as a cube. The 2D CNN methods use 2D
convolution kernels on a 3D HSI cube for feature extraction, mainly for better use of
spatial information. Kussul et al. [30] compared the performances of 1D CNNs and 2D
CNNs for land cover and crop classification. They showed that 2D CNNs outperformed
1D CNNs, although some small objects in the classification maps provided by 2D CNNs
were smoothed and misclassified. Song et al. [31] proposed a deep 2D CNN based on
residual learning and fused the outputs of different hierarchical layers. Their proposed
network can extract deeper features and achieve state-of-the-art performance. The 3D
CNN methods use 3D convolution kernels on a 3D HSI cube for feature extraction to
fuse both spatial and spectral information effectively. Hamida et al. [32] introduced a 3D
CNN for jointly processing spectral and spatial features, as well as establishing low-cost
imaging. They also proposed a set of 3D CNN schemes and evaluated their feasibility.
Li et al. [33] proposed a novel 3D CNN that takes full advantage of both spectral and
spatial features. In addition, there are also some 3D CNNs mixed with other convolutional
kernels to complement their advantages [34,35]. These CNN methods use a convolution
operation to extract spectral features. However, the convolution operation focuses on
extracting the features of adjacent data owing to their local perception characteristics. As a
result, these methods mainly extract the local spectral features (LSF) for classification. The
LSF reflect the local statistical information of the spectrum and describe the relationship
between adjacent bands in a local neighborhood (i.e., the local change rate of the original
curve). The advantage of LSF is that they can effectively express the characteristics of
spectral changes as the wavelength gradually increases and reduces the noise interference.
However, the spectral curve is expressed sequentially in a one-dimensional manner, and
the distance between bands increases linearly with the increase in wavelength, which
leads to the possibility that the distance between effective bands (features) may be large.
Thus, the disadvantage of LSF is that they are limited to processing the long-distance
spectral relationship, resulting in insufficient expression of complete spectral information.
To address this issue, there are some methods that consider the spectral information as an
image. Yuan et al. [36] reshaped the 1D spectral vector into a 2D spectral image. In the 2D
spectral image, the long-distance spectra from the original 1D spectral vector can be aligned
closely or even directly connected, which significantly expands the spectral coverage of the
feature extraction window and is conducive to obtaining more spectral feature patterns.
This method is conducive to constructing another feature, which is opposite to LSF and
describes the relationship between non-adjacent bands in a long-distance span (i.e., the
global shape of the original curve), named global spectral features (GSF). The advantage of
GSF is that they can selectively construct spectral relationships between arbitrary bands
to reflect the characteristics of targets (e.g., the Normalized Difference Water Index uses
the long-distance spectral relationship of the green and near-infrared bands to describe the
characteristics of water). However, it is challenging to identify a suitable band combination
for GSF extraction among a large number of bands in an HSI.

In general, the LSF and GSF describe the spectral information at local and global levels,
respectively, and are the embodiment of the characteristics of the targets in different aspects.
Thus, for the feature extraction method, the LSF and GSF should be fully considered to
effectively express and utilize spectral information. Considering the importance of LSF and
GSF when utilizing spectral information, a local-global spectral feature (LGSF) extraction
and optimization method is proposed in this study to effectively combine both LSF and
GSF for HSI classification. First, we analyzed the limitations of the traditional spectral
feature extraction strategy that uses the 1D spectral vector as input, and to obtain more
diverse spectral features, the 1D spectral vector was transformed into a 2D spectral image
for feature extraction. Second, to extract the LSF, convolution was used as a local feature
descriptor to aggregate adjacent spectral statistical information. Third, to extract the GSF, all
spectral bands were combined in pairs and modeled automatically by the fully connected
layers to introduce the distance-independent GSF upon the LSF, and further fused to
form the LGSF. Fourth, to increase the effectiveness of LGSF in classification, LGSF was
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optimized by maximizing the difference between classes and increasing feature separability.
Fifth, based on the LGSF of each pixel, a dilated convolution-based network with multiple
receptive fields was designed for classification, and the pixel class was obtained. Moreover,
we noticed the importance of spatial information for HSI classification and enhanced the
LGSF with spatial relation to comprehensively utilize spectral and spatial information. To
demonstrate the efficiency of the proposed method, we evaluated it on four widely used
HSI datasets with several comparison methods. The experimental results demonstrated
that the proposed method significantly enhanced the classification accuracy with a more
comprehensive use of spectral features.

The contributions of this study are as follows:

• A hyperspectral image classification method combining the local and global spectral
features is proposed in this paper.

• We transformed the original spectrum from a 1D spectral curve into a 2D spectral im-
age for feature extraction. The spectral reorganization enhances the spectral connection
and is beneficial to obtain more diverse spectral features.

• The image processing and feature extraction methods for the 2D image were used
to analyze the spectral information, which could extract more sufficient and stable
spectral features with higher class separability.

The rest of this article is organized as follows: In Section 2, the proposed method is
introduced in detail. In Section 3, the experiment details are introduced, including the
datasets, modeling parameters and comparison methods. In Section 4, the experiment
results are analyzed and discussed. In Section 5, the content of the article is concluded.

2. Methods
2.1. Overview of the Proposed Method

The HSI contains rich spectral information and has a great potential for classifying
targets. However, the hidden complex spectral features within HSI increase the difficulty of
effectively using them. Although CNN can learn to extract features automatically, its local
perception characteristic limits the extracted features to cover only the local spectral range
(i.e., LSF) and ignores the long-distance global spectral range (i.e., GSF). Thus, in this study,
both the LSF and GSF were extracted, combined, and optimized for HSI classification.

Figure 1 shows an overview of the proposed method. The spectral information of
each pixel in the HSI corresponds to a 1D spectral vector or spectral curve. In this study, to
increase the correlation between spectra, the original 1D spectral vector of each pixel was
transformed into a more compact 2D spectral image for subsequent feature extraction and
classification. Next, the local spectral feature extraction module (LSFEM) was designed
to extract the LSF from the 2D spectral image, and the global spectral feature extraction
module (GSFEM) was designed to extract the GSF from the extracted LSF and to join them
to obtain the LGSF. Moreover, the loss function for spectral feature optimization (SFOL)
was designed to further optimize the effectiveness of the extracted LGSF automatically,
based on the idea of maximizing the separability between classes. Finally, the LGSF of each
pixel was input into a classification network built using dilated convolutions to determine
the category of the corresponding pixel. To improve the robustness of classification, we
also introduced a spatial relation to enhance the LGSF of the pixels to be classified.

The proposed method consists of six parts, and their corresponding sections are as
follows: (1) transformation from a 1D spectral vector into a 2D spectral image (Section 2.2);
(2) extraction of LSF (Section 2.3); (3) extraction of GSF and combination of LGSF (Section 2.4);
(4) optimization of LGSF (Section 2.5); (5) structure of classification network (Section 2.6);
(6) spatial enhancement of the LGSF (Section 2.7).
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Figure 1. The overview of the proposed method.

2.2. Transformation of Spectrum from 1D to 2D

To enhance the spectral connection and obtain more complex and diverse spectral
features, in this study, the spectral information represented by 1D form in HSI was first
converted into 2D. The details of the transformation and feature comparison between 1D
and 2D are as follows.

Traditional spectral feature extraction is generally based on a 1D spectral vector.
However, in such a sequential 1D structure, the distance between bands increases linearly
with the increase in wavelength, which leads to a long distance between the small and
large wavelength bands. Because convolution is a local feature extractor, the long-distance
relationships are difficult to capture based on the 1D structure. To solve this problem, we
transformed the 1D spectral vector of the center pixel in the HSI patch into a 2D spectral
image (shown by the black dotted lines in Figure 2) and used it as the basic spectral input
data for the subsequent feature extraction. In the 2D spectral image, each band can be
adjacent to more bands, which can be seen as the addition of a large number of shortcuts
between long-distance bands in the 1D spectral vector. The green lines in Figure 2 show the
feature extraction of the 1D spectral vector and 2D spectral image using the corresponding
1D and 2D convolution kernels. Theoretically, compared with the 1D combination, there
are more spectral bands and larger spectral coverage in the 2D combination, which makes
it more convenient to obtain complex and diverse spectral features.
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Figure 2. The process of transforming 1D spectral vector into 2D spectral image and the comparison
of features obtained using 1D and 2D convolution kernels.

Notably, the conversion of 1D spectral vector into the 2D spectral image requires
square numbers of bands. If the size of the 1D spectral vector is 1 × b, we first interpolate
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the original 1D spectral vector to modify the band number to a specific square number,
denoted as l2 (l ∈ Z), and then transform it into a 2D spectral image with size l × l.

2.3. Local Spectral Feature Extraction Module

LSF is an effective spectral feature that aggregates adjacent spectra and describes the
local variation of the spectral curve. To extract the LSF, the LSFEM was proposed and its
characteristics are presented below.

Considering that the convolution operation is a widely used local feature extractor that
meets the requirements of LSF extraction, in this study, the LSFEM utilizes convolutions to
extract LSF, as shown in Figure 3.
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Figure 3. The architecture of the LSFEM. The input of the LSFEM is the 2D spectral image and the
output of the LSFEM is two LSF groups.

The input of the LSFEM is a 2D spectral image, denoted as I2D. Two groups of 2D
convolution kernels were used to aggregate the local spectra upon I2D and obtain the LSF.
The LSFEM calculation is express in Equation (1):

LSF1 = Conv2[B(Conv1(I2D))]
LSF2 = Conv4[B(Conv3(I2D))]

(1)

where Conv1, Conv2, Conv3, and Conv4 are four convolution groups with N kernels; B is the
batch normalization and ReLU operation; while LSF1 and LSF2 are two groups of LSF with
both sizes of N × l × l. N is a hyperparameter and was set to 4 in this study.

2.4. Global Spectral Feature Extraction Module

GSF is another effective spectral feature that connects bands with spans and describes
the relative shape of the spectral curve. To extract the GSF, the GSFEM was proposed and
its characteristics are presented below.

Considering the characteristics of GSF, which only depend on the spectral values
between bands and are independent of the distance, in the GSFEM, the spectral bands
were scattered and combined in pairs. Due to the relationship complexity between bands,
in the GSFEM, the data-driven method was used to directly and automatically learn the
construction of inter-band features, rather than a manually designed method, as shown
in Figure 4.
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Figure 4. GSFEM architecture. The input to the GSFEM is represented by two LSF groups, while the
output is the LGSF.

The input of the GSFEM is LSF1 and LSF2 and was obtained using the LSFEM, where
each pixel represents an N-D feature of one band. Pixels in LSF1 and LSF2 were combined
to model GSF. If the pixel of row i and column j in LSF1 is Pij, and the pixel of row i′ and
column j′ in LSF2 is P′i ′j′ , the combined spectral feature vector of these two pixels (bands)
would be PP′ii ′jj′ , whose size is 2 × N. PP′ii ′jj′ represents an input into a network with
two fully connected (FC) layers to compute the GSF of the two target bands. By traversing
all combinations of bands in LSF1 and LSF2 and modeling them using the network, a
feature map with a size of l2 × l2 can be obtained. The generation of this map includes the
extraction of LSF and GSF and their fusion, which gives the map the potential to express
local as well as global spectral features. Thus, we refer to it as LGSF. Equation (2) shows
the modeling process of the pixels of rows a and b in LGSF from Pij and P′i ′j′ in LSF1 and
LSF2, where ⊕ is the concatenation operation, FC1 and FC2 are the two FC layers, and R is
the ReLU layer. Equation (3) shows the correspondence between subscript parameters.

PP′ iji′ j′ = Pij ⊕ P′ i′ j′
LGSFab = FC2[R(FC1(PP′ ijxy))]

(2)

a = i× l + j
b = i′ × l + j′

(3)

2.5. The Loss Function for Spectral Feature Optimization

In LSFEM, the LSF is extracted through the convolution operation, whereas in GSFEM,
the GSF is further superimposed on the LSF to obtain the final LGSF that contains both
local and global feature information. Obviously, the quality of LGSF depends on the feature
extraction from the LSFEM and GSFEM, and is controlled by internal learnable parameters.
For classification tasks, an effective feature is supposed to have a high inner-class similarity
but a low inter-class similarity. To move towards this goal, in this study, inspired by info
noise contrastive estimation loss (infoNCE loss) in the contrastive learning domain, we
designed the SFOL to constrain the update direction of parameters in LSFEM and GSFEM.

LGSF was considered as the input of a CNN (introduced in Section 2.6) for classification
with a batch size of B. After a series of convolutions, pooling, and global average pooling
layers, a group of feature vectors (FVs) with a size of B × K was obtained, where K
is the channel number of the last convolution layer. The FVs are high-level abstract
representations of LGSF and are directly input into a classifier (e.g., the FC layer) to
determine the final classification result. Thus, it is necessary to maximize the differences
between the classes of the FVs.
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Next, if m and n are two training samples in one batch, the category consistency as
well as similarity of their FVs were computed. By traversing all sample pairs, a matrix
of category consistency (Mcc) and a matrix of similarity of FVs (Msim) can be obtained as
described by Equations (4) and (5), whose sizes are both B × B.

Mccmn =

{
1 C(m) == C(n)
0 C(n) ! = C(n)

}
(4)

Msimmn = Norm(FVm)⊗ Norm(FVT
n ) (5)

C, Norm, and ⊗ represent the class of samples, normalized operations, and matrix multipli-
cation, respectively.

Sample pairs with the same category were defined as positive samples, while those
with different categories were defined as negative samples. Based on Mcc and Msim, the
similarity between positive samples (SSpos) and negative samples (SSneg) can be computed
using Equations (6) and (7):

SSpos = Msim × (Mcc − I) (6)

SSneg = Msim × (1−Mcc) (7)

where I is the identity matrix used to eliminate the influence of sample pairs composed of
the same sample (diagonal elements).

The SSpos was averaged and concatenated with the SSneg to form a new similarity
vector (SV). In SV, the first element is the average similarity of all positive samples, and
the other elements are the similarities of the negative samples. To increase the similarity
between positive samples and reduce the similarity between negative samples, the value of
the first element of the SV should approach 1, whereas that of the other elements should
approach 0. This is similar to the use of a one-hot code to represent the first class in a
classification task. Therefore, we created a pseudo-classification task, whose input is the SV
divided by a normalized parameter (i.e., the temperature parameter in the infoNCE loss
and was set to 0.07, which is widely used in relevant studies [37]), and label is the one-hot
code of the first class, to auxiliary optimize the parameters with the cross-entropy loss. In
addition, the length of the SV may change significantly because the number of negative
samples is not fixed in a batch. To fix the SV length, the top 20 negative samples with the
highest similarity were selected because the negative samples with higher similarity were
more likely to confuse the classifier and need more attention.

2.6. Dilated Convolution-Based Network

After the processing steps in Sections 2.2–2.5 the spectral vector (spectral curve) of a
single pixel is represented by a 2D LGSF image. This LGSF image was further classified
to obtain the pixel categories. To better utilize the information hidden in the LGSF, a
CNN based on dilated convolution was designed and used for classification, as the dilated
convolution can significantly enlarge the receptive field and extract multiscale image
features [38].

The overall architecture of the CNN is shown in Figure 5, which takes the LGSF as
input and consists of five convolution layers (‘ConvLayer’ in Figure 5), one global average
pooling layer (‘GAP’ in Figure 5), one fully connected layer (‘FC’ in Figure 5), and one
softmax layer (‘Softmax’ in Figure 5). Each ConvLayer contains four dilated convolutions
(‘Dconv’ in Figure 5, the numbers in parentheses represent the dilation rate, kernel size
and output channel, respectively) with various dilation rates and kernel sizes but the same
number of output channels to extract multiscale features. Following batch normalization
and ReLU (‘BN + ReLU’ in Figure 5), these features were concatenated and fused by another
dilated convolution. Max pool (‘Maxpool’ in Figure 5) was used to decrease the feature
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size, whose results are the output of the current ConvLayer as well as the input of the next
ConvLayer. The features after the five ConvLayers as well as the GAP layer were fed into a
FC layer for classification, which contains one linear layer with an input size of 16 and an
output size that is the same as the class number. The cross-entropy loss function was used
for optimization.
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Figure 5. The architecture of the classification network. The input of the network is the LGSF, and
the output of the network is the category of the pixel that generates the LGSF.

2.7. Enhancement of LGSF with Spatial Relation

In the above sections, we introduced the process of extracting the LGSF and us-
ing a CNN to obtain the classification results. However, this pattern is applicable only
when the input is the spectral vector of a single pixel. Considering the noise interference
in HSI, introducing spatial constraints on the LGSF has a significant positive effect on
improving robustness.

To enhance the LGSF at the spatial level, we defined a spatial window in the HSI, and
the LGSF of each pixel in the spatial window was combined. Suppose that the size of the
HSI patch in the spatial window is H ×W × N, where H and W are the height and width
of the spatial window, respectively, and N is the band number of the HSI. The LGSF for
each pixel in the HSI patch was extracted to a size of N × N × HW. We used a simple
and effective fusion method, namely averaging, to directly combine and fuse the LGSF
and obtain the spatially enhanced LGSF with a size of N × N × 1, as shown in Figure 6.
The spatially enhanced LGSF was used as an input feature of the network introduced in
Section 2.6 for classification, the result of which represents the class of the center pixel in
the HSI patch.
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3. Experiments

To verify the effectiveness of our proposed method and ensure its universality, we
compared it with a series of classical and advanced HSI classification methods using four
standard and widely used HSI datasets. Section 3.1 introduces the details of the four HSI
datasets, as well as the preparation of the training and test samples. Section 3.2 introduces
the training and modeling details as well as the experimental environment. Section 3.3
presents the comparison methods and evaluation metrics.

3.1. Datasets

1. Houston 2013

The Houston 2013 dataset was provided by the IEEE Geoscience and Remote Sensing
Society (GRSS). The HSI was acquired by the NSF-funded Center for Airborne Laser
Mapping (NCALM) over the University of Houston campus and the neighboring urban
area, which consists of 144 spectral bands from 380 to 1050 nm with a spatial resolution
of 2.5 m and an image size of 349 × 1905. It also contains a total of 15,029 ground truth
samples with 15 classes and a pre-defined training and test sample division strategy (details
are listed in Table 1), which was also used in this study.

Table 1. The number of training and test samples used in the Houston 2013 dataset.

Class No. Class Name Training Samples Test Samples

1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water Soil 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

2. Houston 2018

The Houston 2018 dataset was provided by the 2018 IEEE GRSS Data Fusion Contest
and acquired by the National Center for Airborne Laser Mapping over the University of
Houston campus and its neighborhood. The HSI covers a 380–1050 nm spectral wavelength
range with 48 bands at a 1 m ground sampling distance of size 1202 × 4172. The ground
truth samples contained 20 classes and had a higher spatial resolution but smaller spatial
extent, with an image size of 1202 × 4768. Thus, the spatial extent and resolution of the HSI
and the ground truth sample image were unified using clipping and resampling, resulting
in an image size of 601 × 2384 and a total sample number of 504,712. In this study, we
randomly selected 100 samples from each class for training and the rest were used for
testing (details are listed in Table 2).

3. Pavia University

The Pavia University dataset was acquired using the Reflective Optics System Imaging
Spectrometer sensor over Pavia University, Northern Italy. The HSI has a size of 610 × 340,
with 103 bands, a spectral wavelength range of 430–860 nm, and a spatial resolution of
1.3 m. The dataset contained 20 classes, with a total number of 42,776 ground truth samples.
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In this study, we randomly selected 100 samples from each class for training and the rest
were used rest for testing (details are listed in Table 3).

Table 2. The number of training and test samples used in the Houston 2018 dataset.

Class No. Class Name Training Samples Test Samples

1 Healthy grass 100 9699
2 Stressed grass 100 32,402
3 Artificial turf 100 584
4 Evergreen trees 100 13,488
5 Deciduous trees 100 4948
6 Bare earth 100 4416
7 Water 100 166
8 Residential buildings 100 39,662
9 Non-res. buildings 100 223,584
10 Roads 100 45,710
11 Sidewalks 100 33,902
12 Crosswalks 100 1416
13 Major thoroughfares 100 46,258
14 Highways 100 9749
15 Railways 100 6837
16 Paved parking lots 100 11,375
17 Unpaved parking lots 100 49
18 Cars 100 6478
19 Trains 100 5265
20 Stadium seats 100 6724

Total 2000 502,712

Table 3. The number of training and test samples used in the Pavia University dataset.

Class No. Class Name Training Samples Test Samples

1 Asphalt 100 6531
2 Meadows 100 18,549
3 Gravel 100 1999
4 Trees 100 2964
5 Painted metal sheets 100 1245
6 Bare Soil 100 4929
7 Bitumen 100 1230
8 Self-Blocking Bricks 100 3582
9 Shadows 100 847

Total 900 41,876

4. Salinas Valley

The Salinas Valley dataset was collected using the AVIRIS sensor over Salinas Valley,
CA, USA. The image has a size of 512 × 217 pixels, with 204 bands, a spectral wavelength
range of 360–2500 nm, and a spatial resolution of 3.7 m. The dataset contained 16 classes
with a total number of 54,129 ground truth samples. In this study, we randomly selected
100 samples from each class for training and the rest were used for testing (details are listed
in Table 4).

Table 4. The number of training and test samples used in the Salinas Valley dataset.

Class No. Class Name Training Samples Test Samples

1 Brocoli_green_weeds_1 100 1909
2 Brocoli_green_weeds_2 100 3626
3 Fallow 100 1876
4 Fallow_rough_plow 100 1294



Remote Sens. 2023, 15, 1803 12 of 25

Table 4. Cont.

Class No. Class Name Training Samples Test Samples

5 Fallow_smooth 100 2578
6 Stubble 100 3859
7 Celery 100 3479
8 Grapes_untrained 100 11,171
9 Soil_vinyard_develop 100 6103
10 Corn_senesced_green_weeds 100 3178
11 Lettuce_romaine_4wk 100 968
12 Lettuce_romaine_5wk 100 1827
13 Lettuce_romaine_6wk 100 816
14 Lettuce_romaine_7wk 100 970
15 Vinyard_untrained 100 7168
16 Vinyard_vertical_trellis 100 1707

Total 1600 52,529

3.2. Method Modeling

All deep learning methods were trained with the following hyperparameters: a batch
size of 32, a learning rate of 0.001 with a decay rate of 0.8 every 20 epochs; an optimizer of
stochastic gradient descent (SGD) with a momentum of 0.9, weight decay of 0.0001, and a
total training epoch of 500. All models were trained using HSI patches with a spatial size
of 11 × 11.

All experiments in this study were implemented using Pytorch [39] on a single com-
puter, and the environment was as follows: Windows operating system, Intel (R) Core (TM)
i9-10900 K, 64 GB RAM, and GPU of NVIDIA GeForce RTX 3090 with 24 GB GPU memory.

3.3. Method Comparison

To verify the effectiveness of our proposed method, we compared it with classical
and state-of-the-art HSI classification methods based on machine learning and deep learn-
ing. These methods focus on using different features in the HSI, the details of which are
described as follows.

SVM [40]: The Support Vector Machine (SVM) is one of the most important machine
learning methods widely used for classification. An SVM was implemented using the
Python library of Sklearn. We used the ‘linear’ kernel function and the default values for
the other parameters. This is a typical method that directly uses the original spectral curve
for classification without feature extraction.

1D CNN [29]: Hu et al., performed pioneering work on HSI classification based on
CNN. The proposed 1D CNN contains a 1D convolution layer, max pooling layer, and
two-layer FC. The kernel number of the convolution layer was 20. This is a typical method
used for extracting LSF for classification.

R2D [36]: Yuan et al., reshaped each pixel of the HSI from 1D into 2D to increase
the spectral coverage of convolution and obtain more diverse features. The reshaped 2D
images were used as input for classification using the same classification network proposed
in this study. This method can be regarded as extracting and using an optimized LSF
for classification.

2D CNN [41]: This 2D CNN contains three convolution groups and a two-layer FC.
Each convolution group contains two convolution layers and one max-pooling layer. The
kernel numbers of the six convolution layers were 32, 32, 64, 64, 128, and 128, the node
numbers of the FC were 1024 and the class number. The input HSI was masked by a
spectral attention module that can be obtained using global convolution with a nonlinear
activation function. This is a typical method that focuses on spatial rather than spectral
features for classification.

3D CNN [32]: Hamida et al., proposed and evaluated a set of 3D CNNs, which were
widely used in subsequent studies. The 3D CNN contains four 3D convolutions layers,
two 3D max pooling layers, and a one-layer FC. The kernel numbers of the 3D convolution
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layers were 20, 35, 35, and 35, respectively. This is a typical method that uses both spatial
features and LSF for classification.

MCM [22]: He et al., constructed multiscale HSI cubes by increasing the size of the
spatial windows of the center pixel. A covariance map was generated for each scale to
represent the information of the central pixel, and the covariance maps obtained by various
scales were used to generate multiscale covariance maps (MCM). MCMs were further used
for classification using the same classification network proposed in this study. This is a
typical method that uses spatial features and manually designed GSF for classification.

LGSF: The local-global spectral feature proposed in this study, which fully considers
the LSF, GSF, and spatial features in the HSI. Moreover, the extraction and generation of
LSF and GSF are both automatic and data-driven.

The following common metrics were used to evaluate the performance of the methods:
producer’s accuracy (for each class, PA), overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (KC). Moreover, considering that the small number of training samples
and the random initialization of parameters may introduce uncertain effects and cause the
classification accuracy to fluctuate, each method was evaluated three times, and the mean
accuracy was considered the final accuracy score.

4. Results and Discussion

Each method listed above was trained and modeled until convergence, and the PA,
OA, AA, and KC were used to measure their accuracies. The PA describes the accuracy of
each class, and a higher PA indicates a more accurate result for the corresponding class.
The OA describes the accuracy of all pixels, and a higher OA indicates that more pixels are
classified correctly. However, OA can be affected by classes in large numbers. AA is the
average PA of each class, and a higher AA indicates a better accuracy in all classes. KC is a
comprehensive evaluation index, and a higher KC indicates not only a higher accuracy but
also less misclassification of each class.

Tables 5–8 report the PA, OA, AA, and KC of all methods on the Houston 2013,
Houston 2018, Pavia University, and Salinas Valley datasets, respectively. The highest
accuracies are highlighted in bold. Overall, our proposed LGSF outperforms all comparison
methods and has the highest OA, AA, and KC on the four datasets. The SVM has the lowest
accuracy among the comparison methods. By combining the results of these methods
with their characteristics, we observed that sufficiently describing the spectral features
leads to a higher accuracy. Moreover, the comparison results show that introducing spatial
information can promote the classification accuracy greatly. However, we also discovered
that the spatial and spectral features are suitable for different classes, which means that
spatial and spectral features should be selectively used according to class characteristics.

Table 5. Classification results of different methods on the Houston 2013 dataset. (shown in %).

Class Name SVM 1-D CNN R2D 2-D CNN 3-D CNN MCM LGSF

Healthy grass 93.20 95.78 98.50 98.19 98.06 96.46 99.46
Stressed grass 99.09 98.08 98.53 98.31 94.01 48.58 98.03
Synthetic grass 21.78 68.08 97.53 28.13 45.35 94.57 58.57

Trees 98.13 80.04 98.76 98.63 98.47 67.88 87.45
Soil 85.73 92.91 91.88 97.56 95.42 99.03 99.74

Water Soil 100.00 14.28 22.98 46.50 45.96 86.10 65.58
Residential 52.40 62.99 65.37 89.09 73.85 40.35 80.11
Commercial 94.19 69.21 79.69 79.62 64.27 72.19 94.25

Road 44.98 70.25 83.66 93.51 79.72 88.92 85.86
Highway 58.95 66.28 87.56 74.04 70.17 73.22 85.81
Railway 45.31 59.11 81.43 75.00 60.97 26.42 86.15

Parking Lot 1 8.53 71.25 90.06 77.71 68.59 77.95 92.15
Parking Lot 2 19.27 18.76 41.62 77.86 44.89 67.47 82.15
Tennis Court 50.10 56.42 88.43 90.71 85.76 87.40 98.68

Running Track 99.36 98.17 99.93 92.86 97.74 88.12 93.52

OA 59.21 69.65 80.89 80.26 72.49 53.72 85.30
AA 64.73 68.11 81.73 81.18 74.88 74.31 87.17
KC 56.06 67.31 79.38 78.66 70.27 49.59 84.09
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Table 6. Classification results of different methods on the Houston 2018 dataset. (shown in %).

Class No. SVM 1-D CNN R2D 2-D CNN 3-D CNN MCM LGSF

Healthy grass 51.92 62.87 79.18 69.86 68.03 71.81 65.40
Stressed grass 60.44 69.80 89.56 91.68 86.17 92.37 91.58
Artificial turf 2.31 2.12 84.44 77.50 63.99 96.77 96.05

Evergreen trees 75.44 73.89 77.24 82.35 86.34 81.07 75.17
Deciduous trees 10.98 11.52 32.56 26.73 20.34 28.74 32.90

Bare earth 7.91 8.70 59.95 43.68 39.62 85.79 89.81
Water 100.00 7.42 25.90 20.92 12.54 39.97 46.41

Residential buildings 44.21 46.63 65.13 65.52 63.79 64.59 75.19
Non-res. buildings 98.31 98.75 96.55 96.90 95.96 97.29 98.04

Roads 27.29 18.64 52.58 59.05 44.62 56.71 59.36
Sidewalks 36.47 30.00 47.61 51.01 47.64 50.45 43.56

Crosswalks 1.58 1.89 4.78 5.14 4.15 6.47 6.67
Major thoroughfares 38.94 28.01 61.35 65.96 58.51 70.09 78.40

Highways 13.08 15.50 38.55 54.25 39.80 50.56 61.75
Railways 13.97 14.28 84.14 65.40 68.21 88.67 95.80

Paved parking lots 9.92 10.16 69.43 55.51 42.51 72.08 82.19
Unpaved parking lots 0.09 0.29 8.99 2.59 3.35 6.54 16.65

Cars 11.45 9.95 27.09 34.11 32.85 36.39 64.46
Trains 17.64 10.17 24.24 59.69 48.05 60.27 76.21

Stadium seats 35.89 24.42 50.28 57.32 55.88 55.51 49.23

OA 24.05 31.94 66.98 69.89 63.79 72.75 76.09
AA 32.89 27.25 53.98 54.26 49.12 60.61 65.24
KC 21.22 26.69 60.30 63.60 56.79 66.55 70.41

Table 7. Classification results of different methods on the Pavia University dataset. (shown in %).

Class No. SVM 1-D CNN R2D 2-D CNN 3-D CNN MCM LGSF

Asphalt 96.40 93.38 96.92 98.78 97.60 99.25 99.67
Meadows 89.94 86.68 96.88 99.20 95.66 99.78 99.81

Gravel 39.36 36.98 69.44 82.97 81.25 94.75 98.44
Trees 53.33 50.82 90.28 98.54 98.83 97.63 96.69

Painted metal sheets 98.41 98.33 99.52 99.28 100.00 99.92 99.36
Bare Soil 37.03 38.28 79.46 97.00 72.41 99.37 99.59
Bitumen 34.88 39.72 70.72 76.57 77.48 87.24 95.71

Self-Blocking Bricks 66.54 71.42 81.83 91.35 87.67 90.39 96.18
Shadows 99.88 98.32 99.65 99.49 99.88 99.72 96.10

OA 64.86 65.96 90.38 96.43 91.02 97.97 98.94
AA 68.42 68.21 87.19 93.69 90.09 96.45 97.95
KC 57.01 57.81 87.29 95.25 88.13 97.29 98.59

Table 8. Classification results of different methods on the Salinas Valley dataset. (shown in %).

Class No. SVM 1-D CNN R2D 2-D CNN 3-D CNN MCM LGSF

Brocoli_green_weeds_1 91.99 97.71 100.00 100.00 100.00 99.96 100.00
Brocoli_green_weeds_2 99.10 99.51 99.88 100.00 99.78 99.80 99.93

Fallow 84.64 93.60 99.24 99.52 97.48 99.12 99.95
Fallow_rough_plow 97.70 98.51 98.37 99.64 100.00 98.24 98.91

Fallow_smooth 97.69 98.63 98.98 99.94 99.15 99.38 99.74
Stubble 100.00 100.00 99.92 99.97 99.17 99.97 99.95
Celery 95.76 96.94 99.86 99.87 99.92 99.26 99.88

Grapes_untrained 71.33 78.15 85.54 90.89 90.75 95.57 97.49
Soil_vinyard_develop 96.66 96.58 98.85 99.95 99.85 99.81 99.95

Corn_senesced_green_weeds 84.56 85.12 94.54 98.19 91.94 95.76 98.35
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Table 8. Cont.

Class No. SVM 1-D CNN R2D 2-D CNN 3-D CNN MCM LGSF

Lettuce_romaine_4wk 83.41 76.77 98.16 98.26 97.61 99.42 99.76
Lettuce_romaine_5wk 97.15 96.17 97.19 99.98 99.78 99.29 100.00
Lettuce_romaine_6wk 92.69 93.55 98.40 100.00 99.84 98.55 99.88
Lettuce_romaine_7wk 94.43 93.45 91.98 99.86 97.44 98.90 99.79

Vinyard_untrained 60.86 66.22 71.12 79.61 82.77 88.47 92.44
Vinyard_vertical_trellis 98.21 93.40 95.79 99.71 99.49 99.47 100.00

OA 85.44 87.88 91.77 94.95 94.81 96.88 98.23
AA 90.39 91.52 95.49 97.84 97.18 98.19 99.13
KC 83.74 86.48 90.83 94.37 94.21 96.52 98.03

4.1. Comparison of Different Datasets

For the Houston 2013 dataset, the OA, AA, and KC of our LGSF were 85.30%, 87.17%,
and 84.09%, respectively (Table 5). Compared with all baselines, LGSF showed great
advantages in terms of overall statistical metrics. There were seven classes in which
LGSF surpassed the other methods. Most classes in this dataset achieved 80% accuracy
using LGSF, except for synthetic grass and water soil. The highest accuracy of these
two classes was obtained using R2D and SVM, which are both methods based only on
spectral information. Houston 2013 is a city dataset whose classes cover a wide range, and
the spectral properties of classes vary greatly. Thus, this dataset was suitable for testing the
applicability of these methods. Classification methods have poor applicability when they
show high accuracy on a few classes, but low accuracy on other classes, such as SVM. Our
LGSF surpassed the other methods on seven classes and has the highest AA, which reveals
its effectiveness.

For the Houston 2018 dataset, the OA, AA, and KC of our LGSF were 76.09%, 65.24%,
and 70.41%, respectively (Table 6), which were the highest among the evaluated methods.
There were 12 classes in which LGSF surpassed the other methods, which was also the
highest among all methods. In the Houston 2018 dataset, the accuracy fluctuated greatly
among different methods, with a 50% difference between the highest and lowest accuracy,
and there was one class in which each method had an accuracy of less than 10%. The
reason may be that this dataset is relatively complex owing to its numerous classes and
small band number, which is insufficient spectral information for distinguishing targets.
The superiority of our method on such datasets verifies the effectiveness of the proposed
method for spectral utilization.

For the Pavia University dataset, the OA, AA, and KC of our LGSF were 98.94%,
97.95%, and 98.59%, respectively (Table 7), which were the highest among the evaluated
methods. There were six classes in which LGSF surpassed the other methods and the
accuracies of the remaining classes were very close to the highest accuracy. The LGSF
accuracy on each class was greater than 95%, which shows great advantages compared with
other methods. The accuracy for this dataset was much higher than that for the Houston
2013 and Houston 2018 datasets, which are under the city scenario. The reason may be that
the spatial coverage and category numbers of this dataset are both smaller than those of
the above two datasets.

For the Salinas Valley dataset, the OA, AA, and KC of our LGSF were 98.23%, 99.13%,
and 98.03%, respectively (Table 8). In this dataset, a few classes achieved 100% accuracy
using various methods. LGSF had the best accuracy for nine classes, and the accuracies
of most class were close to 99%. This may be because this dataset is a vegetation dataset,
which is relatively simple compared to the above three datasets under the complex city
scenario. Moreover, sufficient spectral information in this dataset (containing most bands
among the four datasets) is also helpful for classification.
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4.2. Comparison of Different Methods

Comparing the performances of methods that only use spectral information (i.e., SVM,
1D CNN, and R2D), we saw that the accuracy increases significantly with the refinement
of the design of spectral features (SVM with no LSF, 1D CNN with LSF, and R2D with
optimized LSF) on all datasets, which emphasizes the importance of LSF as well as the
effectiveness of transforming the 1D spectral vector into a 2D spectral image.

Comparing the performances of methods that contain spatial information (i.e., 2D
CNN, 3D CNN, MCM, and LGSF), it is surprising that 2D CNN has a better accuracy
than 3D CNN on all datasets, which implies that simply combining spatial and spectral
information using 3D convolution may not be optimal. We noticed that the difference in
network structure (e.g., layer number and feature number) can also lead to this situation;
however, it also means that 3D CNN requires a more refined design than 2D CNN.

Comparing the performance of methods with and without spatial information, we
observed that there is considerable salt and pepper noise in the classification results of meth-
ods with no spatial information (Figure 7c–e, Figure 8c–e, Figures 9c–e and 10c–e), whereas
the classification results of methods with spatial information (Figure 7f–i, Figure 8f–i,
Figures 9f–i and 10f–i) are smoother. This demonstrates that introducing spatial infor-
mation can improve robustness.
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(a) Three-band composite image of the Houston 2013 HSI. (b) The ground truth of Houston 2013 HSI.
The classification results of (c) SVM, (d) 1D CNN, (e) R2D, (f) 2D CNN, (g) 3D CNN, (h) MCM, and
(i) LGSF.

Comparing the performance of the LGSF with other methods, we observed that the
MCM and LGSF exhibited the top two accuracies on almost all datasets. The common point
between them is the use of GSF, highlighting its importance. LGSF surpasses MCM on all
datasets, and MCM has an abnormal drop in the Houston 2013 dataset, which may be due
to the lack of LSF or the limitation of manually designed GSF in MCM. It can be concluded
that with the combination of LSF, GSF, and spatial information, our LGSF can obtain better
accuracy of HSI classification. Moreover, in the Houston 2013 dataset, there was a large
dark area caused by clouds (marked with a red box, where most classes were related to
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urban scenes). The spectral information of ground objects is strongly changed in this area,
and most methods misclassified this area into classes that appear dark in the image, such as
water (Figure 7d,e) or synthetic grass (Figure 7c,f,g). However, LGSF (Figure 7i) classified
this area into residential and parking lots, which are close to the original classes (all belong
to the urban scene). This may be because the GSF in LSGF describes the relative shape
of the spectral curve, which shows a certain similarity between the urban classes. This
also means that LGSF has a better spectrum understanding ability. A similar situation also
appears in the stadium seat class (marked with a red box) in the Houston 2018 dataset.
Most comparison methods misclassified these pixels into classes with similar artificial
materials, such as cars and trains (Figure 8c,e–g), or even water (Figure 8d,h), because of
the existence of shadows. Our LGSF (Figure 8i) retained a good classification ability and
classified this area with high accuracy.
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(a) Three-band composite image of the Houston 2018 HSI. (b) The ground truth of Houston 2018 HSI.
The classification results of (c) SVM, (d) 1D CNN, (e) R2D, (f) 2D CNN, (g) 3D CNN, (h) MCM, and
(i) LGSF.

4.3. Comparison of Different Land Use Classes

The above datasets can be roughly divided into four common land use classes: artificial
targets, vegetation, water, and bare soil.

For the artificial targets, most road classes (e.g., road and highway in Houston 2013,
and roads, sidewalks, crosswalks, and highways in Houston 2018) are associated with
higher accuracy when using methods that contain spatial information (e.g., 2D CNN) than
those methods that rely only on spectral information (e.g., SVM, 1D CNN, and R2D). This
may be due to the strong spectral similarities of these artificial roads, while their spatial
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texture features are more distinguishable than the spectral features. Thus, for road classes,
the use of spatial features is more beneficial than spectral features. The same principles
apply to residential classes whose spectral information can be messy and whose spatial
information is more representative. However, for other artificial targets made of unique
materials (e.g., the railway in Houston 2013 and Houston 2018), spectral-based methods
have better classification capabilities than spatial-based methods.
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Figure 9. The classification results obtained using different methods on the Pavia University dataset.
(a) Three-band composite image of the Pavia University HSI. (b) The ground truth of Pavia University
HSI. The classification results of (c) SVM, (d) 1D CNN, (e) R2D, (f) 2D CNN, (g) 3D CNN, (h) MCM,
and (i) LGSF.

For vegetation, mainly in the Salinas Valley and Pavia University datasets, we discov-
ered that the difference in accuracy between methods is much smaller than that of other
classes, which indicates that the classification accuracy of vegetation will not be too poor
using any of the methods to classify the vegetation. However, under the demands of refined
vegetation classification, it is still important to design appropriate spectral features to reflect
the characteristics of different vegetation types. For example, the Lettuce_romaine_wk
series in the Salinas Valley dataset has an accuracy of over 90% for most methods. However,
methods that use LSF or GSF have more stable and accurate results.

For water, SVM obtained the highest accuracy in Houston 2013 (e.g., water soil) and
Houston 2018 (e.g., water). However, the OA, AA, and KC of SVM were the lowest for
both datasets. This is an interesting phenomenon, and it indicates that the water class
has completely different characteristics from those of the other classes. MCM and LGSF
obtained the second highest accuracy for the water class in Houston 2013 and Houston 2018,
respectively, both of which contain GSF. Considering that SVM uses the original spectral
curve and the GSF is a description of the overall shape of the spectral curve, we believe
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that more global spectral information (complete spectral information or GSF) should be
used to classify water, rather than the local spectral information.
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Figure 10. The classification results obtained using different methods on the Salinas Valley dataset.
(a) Three-band composite image of the Salinas Valley HSI. (b) The ground truth of Salinas Valley HSI.
The classification results of (c) SVM, (d) 1D CNN, (e) R2D, (f) 2D CNN, (g) 3D CNN, (h) MCM, and
(i) LGSF.

For bare soil (the soil in the Houston 2013, the bare earth in the Houston 2018, and
bare soil in the Pavia University dataset), MCM and LGSF obtained the best results. In
particular, the accuracy of MCM was the lowest in the Houston 2013 dataset; however, its
accuracy for soil was over 99%. Both MCM and LGSF contain GSF, which means that GSF
is a necessary feature for identifying bare land. Moreover, we also noticed that introducing
spatial information is helpful for improving the accuracy of bare soil, as the accuracies of
2D CNN and 3D CNN were higher than those of SVM, 1D CNN, and R2D. This may be
because the heterogeneity of bare soil is relatively high, and there are numerous pixels
belonging to other classes in the bare soil, such as grass, which confuse classifiers. The
above analysis shows that the classification of bare soil should rely on spatial information
as well as GSF.
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4.4. Comparison of Ablation Experiments

To further demonstrate the effectiveness and contribution of each component in this
paper, a series of ablation experiments were conducted, details shown in Table 9. The
AE_LGSF contained the complete components of this paper. Based on AE_LGSF, the
AE_2D removed the 2D transformation and used the original 1D spectral vector; the
AE_LSF removed the LSFEM; the AE_GSF removed the GSFEM; the AE_SFOL removed
the SFOL and used only cross-entropy loss for classification; the AE_DCBN used the
traditional convolution-based network instead of the dilated convolution-based network
(DCBN) for classification with same number of feature maps in each layer; the AE_SPAT
removed the spatial enhancement. By comparing each ablation experiment that removed
a specific component with the AE_LGSF, the contribution of the removed component to
the classification results can be verified. The results of these ablation experiments on four
datasets are shown in Tables 10–13. It can be seen from the tables, when any component
is removed, that the classification accuracy decreases to a certain extent. In the following,
we discuss the results from three perspectives (data input, feature extraction and feature
classification), which cover the entire process of HSI classification.

Table 9. The design of ablation experiments.

Trans_2D LSFEM GSFEM SFOL DCBN Spatial Enhance

AE_LGSF
√ √ √ √ √ √

AE_2D ×
√ √ √ √ √

AE_LSF
√

×
√ √ √ √

AE_GSF
√ √

×
√ √ √

AE_SFOL
√ √ √

×
√ √

AE_DCBN
√ √ √ √

×
√

AE_SPAT
√ √ √ √ √

×

Table 10. Classification results of ablation experiments on the Houston 2013 dataset. (shown in %).

AE_2D AE_LSF AE_GSF AE_SFOL AE_DCBN AE_SPAT AE_LGSF

OA 85.06 83.41 82.81 84.67 82.82 80.95 85.30
AA 83.37 87.13 84.72 87.00 83.21 82.88 87.17
KC 83.87 81.99 81.34 83.41 81.40 79.36 84.09

Table 11. Classification results of ablation experiments on the Houston 2018 dataset. (shown in %).

AE_2D AE_LSF AE_GSF AE_SFOL AE_DCBN AE_SPAT AE_LGSF

OA 75.82 75.55 74.53 74.83 75.11 67.80 76.09
AA 61.62 62.02 61.86 65.09 62.55 55.71 65.24
KC 70.20 69.87 68.65 69.03 69.07 61.01 70.41

Table 12. Classification results of ablation experiments on the Pavia University dataset. (shown in %).

AE_2D AE_LSF AE_GSF AE_SFOL AE_DCBN AE_SPAT AE_LGSF

OA 98.58 98.16 98.44 98.77 98.59 89.91 98.94
AA 97.61 96.84 97.38 97.93 97.98 87.06 97.95
KC 98.11 97.54 97.92 98.36 98.12 86.64 98.59

Table 13. Classification results of ablation experiments on the Salinas Valley dataset. (shown in %).

AE_2D AE_LSF AE_GSF AE_SFOL AE_DCBN AE_SPAT AE_LGSF

OA 98.05 97.97 97.24 97.79 97.24 91.83 98.23
AA 98.97 98.76 98.76 98.86 98.76 95.26 99.13
KC 97.83 97.74 96.92 97.53 96.92 90.90 98.03
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For the data input part, the directly related experiment is the AE_SPAT. There is a large
decrease in accuracy of AE_SPAT, which indicates the importance of spatial enhancement.
The reason is that the extraction of spectral features is the statistical induction based on
stable spectral patterns. However, the ubiquitous noise information in HSI makes the
spectral value of a single pixel fluctuate within a certain range, resulting in a lack of
stable characterization. Therefore, by introducing the spatial constraints and establishing
a relationship between the spectra of surrounding pixels and central pixels, the effect of
noise can be reduced and the statistical nature of the spectrum can be enhanced, thereby
extracting more stable features and improving classification accuracy. Thus, it is important
to using the spatial information to enhance and stabilize spectral information before feature
extraction in HSI classification.

For the feature extraction part, the directly related experiments are the AE_2D, AE_LSF,
AE_GSF and AE_SFOL. (1) The decrease of AE_2D reveals the positive effect of 2D trans-
formation on spectral feature extraction, which can be explained in two perspectives. From
a row perspective, in the 2D spectral image, the LSF that extracted by 1D convolution
are still preserved in the 2D receptive field. Moreover, the relationship between LSF in
different rows can be further mined and combined, which means that the 2D pattern can
obtain more diverse spectral features without losing the LSF obtained by 1D pattern. From
a column perspective, in the 2D spectral image, the band combinations of columns are
regular, and express another LSF (i.e., LSF of uniformly spaced K bands, where K is the
width of 2D image). This is similar with the idea of dilated convolution that enlarge the
receptive fields with the dilated rate. In this way, the 2D pattern is conducive to capturing
a wider range of LSF, and produces more diverse spectral features. (2) Comparing with the
AE_LSF and AE_GSF (using the GSF and LSF for classification respectively), the AE_LSF
outperformances the AE_GSF in three datasets, which indicates that the GSF may have
a greater impact on classification than LSF. Therefore, when using CNN for HSI classi-
fication, it is necessary to jump out of the local receptive field of convolutional kernels
and effectively design long-distance or distance-independent global features. (3) The de-
crease of AE_SFOL demonstrates the contribution of SFOL, which guides the network to
automatically optimize LGSF for better category separability.

For the feature classification part, the directly related experiment is the AE_DCBN.
The decrease of AE_DCBN indicates that based on good features, it is also important to use
a good classifier for analysis and classification.

4.5. The Analysis and Discussion of Local and Global Characteristics of LGSF

Figure 11 shows the Pavia University dataset as an example of the extracted LGSF
with the original spectral curve of each class. In LGSF maps, the pixels in each row and
column represent the relationship between the spectra of the corresponding bands. For
example, the pixel in rows 1 and columns 2 represents the relationship between bands 1
and 2. The redder areas indicate high values and can be roughly considered as activated
areas, which contain more important features.

Analyzing the LGSF maps from a local perspective, we found that a larger local
variation in the spectral curve causes a higher activation value. In Figure 11, the asphalt
and gravel classes (Figure 11a,c) show activation in the LGSF maps where the corresponding
reflectivity in the spectral curves fluctuate, while the shadow class (Figure 11i) activates the
LGSF map on the left side of the spectral curve, where the reflectivity tends to decrease.
This indicates that the local rapidly changing spectra in the spectral curve are more capable
of representing the characteristics of the targets. This is consistent with the experience
because the rapid change in a certain local part is generally caused by the unique nature
of the targets. For example, for vegetation, the most typical feature is the rapid change in
reflectivity between the red and near-infrared bands, which is also the basis of normalized
difference vegetation index (NDVI). Bitumen is an interesting class (Figure 11g), whose
reflectivity is generally flat, with only a slight jitter at the front and end of the curve. Even
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so, our method can effectively extract spectral features to represent the characteristics of
the spectral curve.
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Analyzing the LGSF maps from a global perspective, we found that the larger global
variation in the spectral curve has a higher activation value, which is most obvious in the
painted metal sheet class (Figure 11e). The spectral range of pixels with large activation
values (on the left of the LGSF maps) corresponds to the reflection peak on the spectral
curve. The spectra of the reflection peaks are greatly activated when combined with all other
spectra, except for their adjacent spectra, because their values are similar to the surrounding
spectra and differ greatly from others. The same phenomenon can also be observed in the
meadows, trees, and bare soil classes (Figure 11b,d,f). The self-blocking bricks (Figure 11h)
are a special class, whose reflectivity gradually increases with an increase in wavelength,
which means that the farther the distance of the wavelength, the greater the difference
in reflectivity. Therefore, in the LGSF maps, the activation value of the spectra with the
farthest distance (the front and last bands) is the largest (the activation area on the top
right), and the value gradually decreases with the decrease in spectral distance (the value
gradually decreases from top to bottom and from right to left).

5. Conclusions

HSI contains rich spectral information and is widely used in a series of classification
applications. However, the rich spectrum contained in HSI increases the difficulty of
extracting useful hidden information for classification. The spectral features are considered
to represent useful information in the spectrum as well as the basis of HSI classification.
In this study, we summarize spectral features into two categories: LSF and GSF. The LSF
describes the statistical information of the local and adjacent areas of the spectral curve,
whereas the GSF describes the relative relationship between the long-distance and non-
adjacent areas of the spectral curve. We demonstrated the importance of LSF and GSF when
dealing with HSI and proposed a LGSF extraction and optimization method to extract
and combine both. We first transformed the 1D spectral vector into 2D spectral images to
increase the adjacency opportunities between spectra as well as increase the possibility of
obtaining features with more forms. Next, the LSF was extracted using LSFEM, and the
GSF was extracted using GSFEM upon the LSF to form the LGSF. The LGSF was optimized
using the SFOL to maximize the class separability and was further enhanced with a spatial
relation. A dilated convolution-based network was designed to obtain multiscale image
features of LGSF and was used for HSI classification. We evaluated our method on four
HSI datasets and compared it with several other methods that focus on various features for
HSI classification. The experimental results showed that the proposed method achieved the
highest accuracy compared with other methods that use single or incomplete LSF and GSF,
which demonstrates that spectral information can be more effectively described after the
extraction, combination, and optimization processes of local and global spectral features
proposed in this article. Moreover, it also reveals that effective, full, and comprehensive
use of spectral information can improve the classification accuracy of HSI and is of great
significance to HSI application.
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