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Abstract: This work presents an algorithm based on a neural network (NN) for cloud detection
to detect clouds and their thermodynamic phase using spectral observations from spaceborne mi-
crowave radiometers. A standalone cloud detection algorithm over the ocean and land has been
developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS)
observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat
Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from
advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS)
microwave instruments. Real observations from the MWS sensor are not currently available as its
launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS
synthetic observations have been produced through radiative transfer calculations with ERA5 real
atmospheric profiles and surface conditions. The developed algorithm has been validated using
spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve
as references for the model development and its validation, observations from AVHRR cloud mask
products provide references for the AMSU-A/MHS model evaluation. The results clearly show the
NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In
terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for
the MWS (AMSU-A/MHS)-simulated dataset, respectively.

Keywords: neural network; microwave; cloud detection; MWS; AMSU-A; MHS

1. Introduction

Satellite observations are very significant information for studying clouds and their
interaction with electromagnetic radiation, as well as for determining cloud properties [1,2].
Although microwaves are less affected by clouds compared to observations in the visible
and infrared range, different types of clouds can affect the measured microwave radia-
tions [3–5]. In fact, microwave observations can penetrate the whole cloud layer and are
sensitive to cloud water and ice contents. Ice clouds are almost transparent below 50 GHz,
except when associated with deep convective clouds, whereas liquid water clouds absorb
very strongly, due to the different dielectric properties of ice hydrometeors and water drops.
In case of cloud contaminated fields of view, radiative transfer simulations need more
information in the input regarding cloud phase, particle size and liquid/ice cloud content.
Despite this, the simulated brightness temperature often differs from the observed one,
due to limitations of the cloud model and nonlinear radiation processes [5–7]. Hence, if
cloud-contaminated observations were assimilated without correction, this would have
a negative impact on the prediction [8–10]. It has been shown [11] that the global mean
temperature in the lower and middle troposphere has a larger warming rate (about 20–30%
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higher) when the cloud-influenced radiations of the advanced microwave sounding unit A
(AMSU-A) are not rejected. Thus, the identification of cloud types plays a fundamental role
both in the assimilation and estimation of geophysical parameters. For this reason, several
methods were developed to detect cloud-affected pixels. The satellite cloud detection
approaches usually rely on threshold tests or on contrast methods with multilevel decision
trees [12–15].

In the last few years, machine learning algorithms based on observed spatial and
spectral patterns have been employed to detect clouds [1,16–19]. In the AVHRR advanced
very high-resolution radiometer pre-processing package (AAPP), a scattering index, defined
by a linear regression model of the AMSU-A (channels 1-2-3-15), is used to detect cloud-
affected pixels [20]. The cloud detection method in the ECMWF AMSU assimilation
model [21–23] is based on a combination of a background contrast check for a window
channel over land and the ocean, and a liquid water path check over the ocean. Data over
land are identified as cloudy for a 50.3 GHz window channel background contrast larger
than 0.7 K. Pixels over the ocean are identified as cloudy for a liquid water path (derived
from window channel observations) higher than 0.2 kg/m2 or for a background contrast of
the 50.3 GHz window channel higher than 3 K. The difference between the observation and
background (or first guess) scattering index has been used to estimate the best thresholds
to filter the dataset. Qin et al. [24] proposed a new land index for cloud detection based on
the overall variability of brightness temperature observations on different MHS channels
in the presence of clouds. A comparison of the spatial distribution of microwave humidity
sounder (MHS) cloud FOVs with clouds detected by GOES confirms a good agreement.
A one-stream cloud detection method based on both the liquid water path (LWP) and
ice water path (IWP) retrieved from the MHS window channels has been described by
Zou et al. [9]. A cloud mask and classification based on AMSU-A/B observations have
been described in [25]. In this algorithm, the visible and infrared data from the Meteosat
second-generation spinning enhanced visible and infrared imager (MSG-SEVIRI) have
been used to train the microwave classifier. By using this algorithm, clear, contaminated
by low, medium and high clouds homogeneous pixels over the ocean and on land can be
identified with a confidence level higher than 80%. Thin clouds have not been considered
because, according to the authors, microwave observations are not sensitive to this type of
cloud. Lindskog et al. [26] used the LWP and the scattering index in order to assimilate
AMSU-A channel 6. In case of a very high LWP or enhanced scattering from large particles,
AMSU-A channel 6 observations are considered contaminated by large hydrometeors. Zhu
et al. [27] included optically thin clouds in the assimilation: a so-called delta-cloud liquid
water (∆CLW) difference term was calculated between the cloud liquid water (CLW) using
observed and simulated brightness temperatures, serving as a predictor in the radiance
bias correction scheme [28]. This DCLW bias correction predictor is removed in the all-sky
approach. Conversely, thick clouds are screened out using the same procedure. A new
index for the detection of clouds has been developed on the basis of the differences in the
response characteristics of different channels to clouds, in particular, five window and
low-peaking channels (channels 1–4 and 15 AMSU-A) [29,30]. Qin et al. [31] retrieved the
LWP and IWP simultaneously from collocated AMSU-A and MHS data. If either the LWP
or IWP is greater than 0.02 g/kg, the corresponding AMSU-A observation is rejected as
cloud-contaminated data.

Methods have been developed to detect microwave subpixel clouds using collocated
moderate resolution imaging spectroradiometer (MODIS) [12] and visible infrared imager
radiometer suit (VIIRS) [32] products with high spatial resolutions. Authors [33] have
shown that the MODIS and VIIRS CM products can be used for subpixel cloud characteri-
zation for AMSU-A and advanced technology microwave sounder (ATMS) [34] radiation
assimilation. Buehler et al. [35] presented a cloud detection algorithm that exploits the chan-
nels around the 183 GHz water vapor band. The method uses a viewing angle-dependent
threshold for the brightness temperature at (183.31 ± 1.00) GHz and a threshold for the
different brightness temperatures between this channel and another channel always in the
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water vapor band around 183 GHz. Both the (183.31 ± 3.00) GHz and (183.31 ± 7.00) GHz
channel as the other channel is studied. The robustness of this method for cloud detec-
tion is evaluated for a mid-latitude winter in a case study. Methods for detecting deep
convective clouds based on optical and microwave data have been investigated. Window
microwave channels can discriminate between deep convective clouds accurately, by means
of differences between three water vapor channels [36]. The three water vapor channels
around the 183 GHz water vapor line of the AMSU-B are also used in [37] to detect trop-
ical deep convective clouds and convective overshooting. Cold cloud effects on satellite
measurements near 183 GHz have been analyzed in [38]. Werner et al. [39] described
the training and validation of an improved aura microwave limb sounder (MLS) cloud
detection scheme employing an artificial NN. This algorithm is derived from collocated
MLS samples and MODIS cloud products and is designed to classify clear and cloudy
conditions for individual MLS profiles.

Recently, deep learning (DL) techniques have been used for many cloud detection
applications [40]. DL-based algorithms can quickly and smoothly learn the relationships
that exist between different objects, avoiding artificially defined thresholds and constraints
to match the spectral model. DL methods are mainly applied in cloud detection algorithms
based on various satellite measurements, such as the Bayesian algorithm [41,42], random
forests [43–45], support vector machine [46], artificial NNs [40,47] and others. Several DL-
based applications were developed such as cloud detection [43], cirrus detection and optical
property retrievals [48,49] and also cloud thermodynamic phase detection for different
local times based on observations from VIIRS onboard Suomi NPP (SNPP) [46].

The main objective of this work is to develop a stand-alone cloud detection algorithm
based on a NN model for a new microwave sounder able to distinguish the different cloud
phases. The knowledge of cloud type, especially phase, is useful when estimating the
microphysical properties of clouds with physical algorithms so that the initial guess can be
better constrained for more accurate solutions. Cloud detection becomes a very complex
problem over a global scale because of the variety of surface emissivity and atmospheric
conditions. Therefore, neural networks are well suited for the solution of this problem
when approaching it globally. The NN model was developed for the microwave sounder
(MWS) instrument using simulated data since observations from this sensor will not be
available until the launch of EPS-SG-A1 in 2024. The model is modular so that it can also
be applied to AMSU-A/MHS to evaluate its performance against real observations from
instruments currently in orbit. The paper is organized as follows: Section 2 first defines
the criteria for collecting the dataset (Section 2.1) and then describes the cloud detection
approach (Section 2.2). Section 3 discusses the results and Section 4 draws the conclusions.

2. Materials and Methods

This section describes the details of the procedure, criteria and data products used
for the training and evaluation of the developed algorithm (Section 2.1), data preparation
(Section 2.2), model performance assessment (Section 2.3), NN configuration used for cloud
detection (Section 2.4) and NN training process (Section 2.5).

2.1. Dataset Used
2.1.1. Satellite Observed Dataset

The MWS instrument is scheduled to be onboard the first satellite of the EPS-SG series—
Metop-SG A1—with a tentative launch date in 2024 [50,51]. MWS has a direct inheritance
from the microwave instruments AMSU-A and MHS onboard EPS and NOAA satellites.
MWS is a cross-track scanning microwave radiometer with 24 channels between 23 GHz
and 230 GHz, with an antenna size of ~35 cm and a variable resolution at nadir from 17 to
40 km (see Table 1). The antenna scan speed is not constant but is accelerated/decelerated
in order to maximize the Earth scene viewing time. The oxygen-band channels provide a
microwave temperature profile and the channels located around the 183 GHz water vapor
line provide a humidity profile. The window channels give information about the total
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water vapor and cloud water column. The MWS channel at 229 GHz provides improved
sensitivity for the detection of cloud ice. The window channels can provide information
about precipitation, sea ice and snow coverage [52].

Table 1. List of MWS channels with information on radiometric noise, polarization and spatial
resolution.

Channel Frequency
(GHz)

Noise
Equivalent (K) Polarization Resolution at

Nadir (km)

1 23.8 0.25 QV 40
2 31.4 0.35 QV 40
3 50.3 0.50 QV 20
4 52.8 0.35 QV 20
5 53.246 ± 0.008 0.40 QH 20
6 53.596 ± 0.115 0.40 QH 20
7 53.948 ± 0.081 0.40 QH 20
8 54.4 0.35 QH 20
9 54.94 0.35 QV 20
10 55.5 0.40 QH 20
11 57.290344 0.40 QH 20
12 57.290344 ± 0.217 0.55 QH 20
13 57.290344 ± 0.3222 ± 0.048 0.60 QH 20
14 57.290344 ± 0.3222 ± 0.022 0.90 QH 20
15 57.290344 ± 0.3222 ± 0.010 1.20 QH 20
16 57.290344 ± 0.3222 ± 0.0045 2.00 QH 20
17 89.0 0.25 QV 17
18 164.0–167.0 0.50 QV 17
19 183.311 ± 7.0 0.40 QV 17
20 183.311 ± 4.5 0.40 QV 17
21 183.311 ± 3.0 0.60 QV 17
22 183.311 ± 1.8 0.60 QV 17
23 183.311 ± 1.0 0.75 QV 17
24 229.0 0.70 QV 17

AMSU-A [53] and MHS [54] are onboard the NOAA series and MetOp European
meteorological satellites, and both are the cross-track microwave radiometers. AMSU-A
scans the Earth scene within ±48.7◦ with 30 FOVs, while MHS scans the Earth scene within
±49.44◦ with 90 FOVs (see Table 2). The FOV size increases with the scan angle, at nadir
the spatial resolution is 48 km for the AMSU-A and 16 km for the MHS. The AMSU-A
provides a microwave radiometer measuring scene radiances in 15 frequency channels
(23–90 GHz). Channels near the 50 GHz oxygen absorption bands carry information for
atmospheric temperature sounding, while window channels provide information on water
vapor, surface temperature, clouds and emissivity. The MHS channels around the 183 GHz
band have been designed for the humidity profile retrievals. AMSU-A channels 1 and 2 are
used for the retrieval of the liquid water path over the sea and the MHS channels 1 and 2
are used for the ice water path physical retrieval over both land and sea [53,55].

The advanced very high-resolution radiometer 3 (AVHRR/3) onboard MetOp-B/C
is a cross-track scanner. It has six channels between the visible and infrared regions.
The MetOp-B/C AVHRR cloud cover layers (CCL) data are generated by the clouds
from the AVHRR extended processing system [56] and are delivered at two different
resolutions: FRAC/HRPT (1 km) and GHRR (4 km). The data are distributed through the
comprehensive large array data stewardship system (CLASS) in NetCDF-4 format.
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Table 2. As in Table 1 but for AMSU-A and MHS channels.

Channel Frequency
(GHz)

Noise
Equivalent (K) Polarization Resolution

at Nadir (km)

AMSU-A
1 23.8 0.30 QV 48
2 31.4 0.30 QV 48
3 50.3 0.40 QV 48
4 52.8 0.25 QV 48
5 53.596 ± 0.115 0.25 QH 48
6 54.4 0.25 QH 48
7 54.94 0.25 QV 48
8 55.5 0.25 QH 48
9 57.290 0.25 QH 48
10 57.290 ± 0.217 0.40 QH 48
11 57.290 ± 0.3222 ± 0.048 0.40 QH 48
12 57.290 ± 0.3222 ± 0.022 0.60 QH 48
13 57.290 ± 0.3222 ± 0.010 0.80 QH 48
14 57.290 ± 0.3222 ± 0.0045 1.20 QH 48
15 89.0 0.50 QV 48

MHS
1 89.0 0.22 QV 16
2 157.0 0.34 QV 16
3 183.311 ± 1.00 0.51 QH 16
4 183.311 ± 3.00 0.40 QH 16
5 190.311 0.46 QV 16

2.1.2. Satellite Synthetic Dataset

MWS measurements will not be available until the launch of EPS-SG-A1 in 2024.
Hence, in this work, MWS synthetic observations are simulated using the RTTOV-
SCATT [57,58] radiative transfer code. The atmospheric profiles and surface data re-
quired as inputs to the radiative transfer model are provided by ERA5 [59] on a regular
0.125◦ × 0.125◦ spatial grid over the entire globe. Four days have been selected (1 January,
1 April, 1 July and 1 October 2019) at the four synoptic hours (00, 06, 12, 18) in order to
describe the diurnal and seasonal cycle on a global scale. The atmospheric profiles here
consist of temperature, water vapor, cloud liquid content, cloud ice content, cloud fraction
and rain and snow water contents. The surface data consist of the skin temperature, the
wind component and the 2 m temperature and humidity. Land emissivity is from the
TELSEM2 [60] atlas while ocean emissivity is from the FASTEM model [61] integrated
in the RTTOV. The scattering calculation in the clouds is based on the delta-Eddington
approximation and tables of hydrometeor optical properties (rain, snow, cloud liquid water
and cloud ice) are pre-calculated for the required frequencies and temperatures. The optical
properties are archived in sensor-specific coefficient files, including the MWS, AMSU and
MHS and the observation data used in this work. Cloud water and rain hydrometeors
are represented by Mie spheres and ice clouds are represented by Mie spheres and ARTS
“ice habits” [62] in our simulation. The all-sky brightness temperature is calculated as the
combination of independent clear and cloudy columns weighted by an effective cloud
fraction. The effective cloud fraction is calculated through a hydrometeor-weighted average
across the vertical profile of the input cloud fraction [63]. Although microwave scattering
calculations are simplified, RTTOV-SCATT gives much more negligible errors than all other
uncertainties involved and is therefore suitable for operational use [64]. The radiometric
noise requirements available through the WMO observing systems capability analysis
and review (OSCAR) tool (https://space.oscar.wmo.int/, accessed on 18 February 2023)
has been used for all the channels. Simulated observations for the channel suites of the
MWS and AMSU-A/MHS have been produced. Bias correction was applied to match
the synthetic simulated values with the observations. Simulated and measured data in
clear sky conditions were compared and resulting biases, (attributed to uncertainty in the

https://space.oscar.wmo.int/
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radiative transfer model, the surface emissivities, etc.), were removed from the synthetic
datasets following the approaches of Harris and Kelly [65] for the AMSU-A and MHS [5].
The same correction will undergo the MWS when the measured data will be available. For
example, Figures 1 and 2 show the spectral and spatial variability of simulated observations
for 1 October 2019.
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2.2. Data Preparation

The whole dataset has been partitioned into three different subsets: (1) training, (2) test
and (3) validation datasets. Training and test datasets are used to learn and assess the
performance of the NN model. The validation dataset, consisting of unseen data, is used
for a final evaluation of the NN performances with respect to new input data. Precisely,
we divided the entire data set as follows: 70% for training, 20% for testing and 10% for
validation. The dataset was preliminarily filtered to consider ocean and land surface
backgrounds separately. The separation shall facilitate the classification as the surface
contribution is large at some microwave channels. The ocean/land classification of the
pixel was made based on the percentage of ocean or land contained. The ERA5 data have
been used as reference truth for both training and validation of the NN. As mentioned, four
representative days (1 January, 1 April, 1 July and 1 October 2019), each at four synoptic
hours (00, 06, 12, 18), have been used.
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Successively, the reference truth datasets have been processed to create a categorical
labels vector that contains only the three classes to predict, e.g., clear, ice and liquid. An
undetermined class has also been created for pixels that do not fall into any of the three
classes defined above. Furthermore, a balanced dataset has been extracted and used as an
input layer for the NN to obtain approximately the same sample number for each class and
avoid potential issues with an unbalanced dataset. This pre-processing screening selects
nearly 2 million (1,846,569) samples of both the MWS and AMSU-A/MHS data, which are
then divided into train, test and validation subsets.

2.3. Evaluation Metrics

The following metrics are used in the performance evaluation of the NN based on
a review of the scientific literature on cloud detection and machine learning [66]. In the
following equations below, TP, TN, FP and FN denote true positive, true negative, false
positive and false negative, respectively.

• The overall accuracy is calculated as the sum of the hits (correct classification) from
each of the classes divided by the sum of the total points for the classification.

overall accuracy =
TP + TN

TP + TN + FP + FN
(1)

• The precision is the ratio of true positives to all positives predicted by the model. The
more false positives the model predicts, the lower the precision.

precision =
TP

TP + FP
(2)

• The recall is the ratio of true positives to all positives in the data set. It measures the
ability of the model to detect positive samples.

recall =
TP

TP + FN
(3)
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• The F1 score is a single metric that combines precision and recall. The higher the F1
score, the better the performance of the model.

F1 score =
2

1
recall +

1
precision

(4)

• The Fβ score is the weighted harmonic mean of precision and recall and reaches its
optimal (worst) value at 1 (0).

Fβ score =
(

1 + β2
) precision× recall
(β2 × precision) + recall

(5)

• The area under the receiver operating characteristic curve (AUC-ROC) is a perfor-
mance measurement for the classification problems. ROC is a probability curve and
AUC represents the degree or measure of separability [67]. It provides a measure of
the model skill to distinguish different classes. The higher the AUC, the better the
model predicts 0 and 1 classes correctly. It is defined as the ratio of TPR against FPR

TPR =
TP

TP + FN
, FPR = 1− TN

TN + FP
(6)

where TPR (FPR) is the true (false) positive rate.

• The Jaccard index is a measure of similarity between two sets and is related to recall
and precision.

Jaccard index =
TP

TP + FN + FP
(7)

• The Matthews correlation coefficient [68] is regarded as a balanced correlation coeffi-
cient that returns a value between −1 and +1, where +1 represents a perfect prediction,
0 an average random prediction and −1 an inverse prediction

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(8)

2.4. Neural Network Configuration

The main framework used in this work for designing and testing the NN models is
Keras 2.9.0 (https://keras.io/), a powerful Python-based library that contains numerous
implementations commonly used in NN building blocks, such as layers, targets, activation
functions and optimizers.

The NN model is based on a multiclass classification problem with k classes, where
k = 3, i.e., clear-sky, ice and liquid phases. For the NN, we assume that the training data
are represented by n features and label couples {(xi, Yi)}n

i=1 where xi ∈ Rd are the features
(i.e., satellite observations) and Yi ∈ {1, 2, . . . , k} are the labels which represent one of the k
classes (i.e., clear, liquid cloud, ice cloud). In addition, it will be convenient to represent the
labels as one-hot encoded vectors yi ∈ Rk characterizing one of the k classes with one-hot
encoding, e.g., yi = eYi .

The X = [x1x2 . . . xn] ∈ Rd×n and Y = [y1y2 . . . yn] ∈ Rk×n matrices denote the fea-
tures and their labels aggregated into a matrix. In our analysis, we focus on training a non-
linear classifier. The bias vector that we use bi ∈ Rk×d and weight W = [ω1ω2 . . . ωm]

T ∈
Rk×d represent the biases and weights of this non-linear model. The correlation between
the overall input/output of the classifier is a function that maps an input vector x ∈ Rd

into an output of size k via x 7→W× x + b ∈ Rk , where a training procedure is used to
train, respectively, weights W ∈ Rk×d and biases b ∈ Rk×d [69].

https://keras.io/
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A schematic drawing for a typical three-layer fully connected network is given in
Figure 3. Figure 4 shows a generic i-th artificial neuron, showing the processing at a single
given node of the NN.
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Each single neuron model consists of a processing element with synaptic input con-
nections and three distinct outputs. The function f is usually referred to as the activation
function, which usually performs a nonlinear operation. Depending on the layer, different
activation functions can be used in the same NN.

The function ReLU (2.9.0) [70] is used here to activate the NN units for input and
hidden layers: the function returns 0 if it receives a negative input, but for any positive
value it returns that value. It can thus be written as follows:

ReLU(x) = max(0, x) (9)

The success of ReLU (2.9.0) can be attributed to its simple implementation, which
in turn reduces the computation time of the NN model [71]. While the SoftMax (2.9.0)
activation function was applied to the output layer as follows:

so f tmax(zi) =
ezi

∑n
j zj

(10)

where all the zi values are the elements of the input vector and can take any real value,
whereas n is the number of classes in the multi-class classifier. The denominator is the
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normalization term that ensures that the sum of all output values of the function is 1, thus
ensuring a valid probability distribution. The input vector is converted to a probability
vector by the softmax function, where the probabilities of the individual output values are
proportional to the relative size of the individual values in the same vector.

Cross entropy was chosen as the loss function of the model, whereas the adaptive
moment estimation (Adam) was selected as the optimizer of the model in training [71]:

Loss = −
n

∑
i=1

yi × log ŷi (11)

where ŷi is the i-th scalar value in the model output, yi is the corresponding target value
and n is the number of scalar values in the model output.

To minimize the prediction results and label errors, the Adam optimizer and back-
propagation were used to dynamically adjust the model parameters. Adam optimiza-
tion is a stochastic gradient descent method based on adaptive optimization of first- and
second-order moments. The optimization method is computationally efficient, requires
little memory, is invariant to diagonal scaling of gradients and is well suited for large
data/parameter problems [72]. For each parameter ω j

ν
j
t = β1 × νt−1 − (1− β1)× gt (12)

sj
t = β2 × st−1 − (1− β2)× g2

t (13)

∆ω
j
t = −η

νt√
st + ε

× gt (14)

ω
j
t+1 = ω

j
t + ∆ω

j
t (15)

where η is the initial learning rate, gt is the gradient at time t along ωt, νt is the exponential
average of gradients along ωt, st is the exponential average of squares of gradients along
ωt and β1, β2 are the hyperparameters.

2.5. Neural Network Model Training Process

The NN model is defined as a multi-classification problem (clear, ice, liquid). The input
layer of the NN model trained with the AMSU-A/MHS dataset is composed of 20 input
units over an ocean test (15 AMSU-A and 5 MHS channels sequence) and 40 input units
over a land test (15 AMSU-A and 5 MHS channels sequence and 20 emissivity values for
each channel), while the NN model trained with the MWS dataset is composed of 24 input
units over an ocean test (24 MWS channels sequence) and 48 input units over a land test
(24 MWS channels sequence and 24 emissivity values for each channel).

In addition to the input layer, the NN has three hidden layers consisting of 100, 50
and 50 neurons, respectively, selected for the NN. The number of hidden layers and of
associated neurons was set empirically initially. Then, the Keras Tuner framework was
used for fine-tuning: after setting the problem to be solved, the Keras Tuner returns the
ideal set of hyperparameters for a NN in terms of hidden layers, hidden units, activation
function, optimizer, etc.

The ReLU activation function (Equation (13)) is used to activate the network units
and the binary classification cross entropy (Equation (14)) is chosen as the loss function.
The corresponding reference truth labels were derived from ERA5 profiles and used for
training the network. The categorical labels of the reference dataset were converted to a
one-hot vector [73].

The label of a specific value yi is a vector v where every component of v is zero except for
the i-th component, which has a value of 1. For example, assuming we have some random
variable y that takes values from the set S = {clear, ice, liquid}, let y1 = clear, y2 = ice
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and y3 = liquid, then a one-hot encoding for y would be: (1,0,0), (0,1,0) and (0,0,1). Since
the one-hot encoding of the categorical variable levels only depends on the number of
levels, one-hot encoding represents one of the techniques for categorizing variables to use
in neural networks.

The Adam optimizer (Equations (9)–(12)) and backpropagation were used to minimize
the prediction results and label errors, dynamically adjusting the model parameters with an
initial learning rate of 0.001. In order to prevent any overfitting, the dropout layer parameter
was set to 0.2, which means that 20% of the model parameters were reduced during the
network training phase randomly. These components are followed by a fully connected
output layer with a SoftMax (Equation (15)) activation function, which represents the final
classification. Figure 5 shows the stability of performance and the trends of accuracy and
loss function against the epochs.
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Validation accuracy and loss are metrics used to evaluate the performance of a deep
learning model on the validation set. The validation set is a subset of data used to evaluate
the goodness of the model. For training accuracy, identical pixels are used both for training
and testing, whereas for the validation accuracy the trained model identifies independent
pixels that were not used in training. The model accuracy and loss along the training
epochs are shown in Figure 5. The accuracy of the results shows that the model ranks the
data with good accuracy, but also that the model can be further improved, e.g., by transfer
learning from pre-trained models or by increasing the number of pixels within each of the
classes. The peak training accuracy was 89.7% (89.2%) for training and 87.7% (86.1%) for
validation, in the ocean (land) case, respectively. These models were saved and utilized
for testing. Since the model was built from scratch, accuracy can be improved by using
transfer learning from pre-trained models or by expanding the number of pixels in each of
the classes. Independent NNs were trained and validated for different satellite scan angles
from the first to the last (5◦ step).
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3. Results and Discussion

In this section, we describe the results of the NN model for cloud detection from
spectral microwave observations. The performance of the cloud detection algorithm was
evaluated through statistical indexes as well as visual images of the pixel classifications.
For the sake of clarity, this section is divided into the following: Section 3.1 illustrates
the performance of the NN model from the MWS synthetic dataset and AMSU-A/MHS
synthetic dataset, whereas Section 3.2 reports the validation of cloud detection retrievals
from the AMSU-A/MHS measured dataset.

3.1. Evaluation with MWS and AMSU-A/MHS Synthetic Datasets

The performance of cloud detection using the proposed NN model has been evaluated
through the metric indicators described in Section 2.3. Tables 3 and 4 report the computed
statistical indicators for MWS and AMSU-A/MHS, respectively, divided into ocean and
land backgrounds. The precision index, i.e., the number of pixels that are relevant out of
the total pixels the NN model retrieved (perfect value is 1.00), lies in the range of 0.83–0.95
and 0.85–0.91 over the ocean, for MWS and AMSU-A/MHS, respectively, whereas over
land within 0.84–0.89 and 0.81–0.91. The recall index, the number of pixels that the NN
model correctly identified as relevant out of the total relevant pixels (perfect value is
1.00), is between 0.79 and 0.96 for MWS, between 0.82 and 0.93 for AMSU-A/MHS over
the ocean, while between 0.78 and 0.94 and between 0.82 and 0.87 over land for the
MWS and AMSU-A/MHS, respectively. The F1 score, which summarizes the predictive
performance of a model by combining two otherwise competing measures, precision and
recall, ranges from 0.81 to 0.96 for MWS and from 0.83 to 0.90 for AMSU-A/MHS over
the ocean, while between 0.81 and 0.91 and between 0.82 and 0.89 over land for the MWS
and AMSU-A/MHS, respectively. Both the recall and F1 scores can range from 0 to 1, with
1 representing perfect classification and 0 representing a model that cannot classify any
observations into the correct class. The values obtained for the F1 score indicate that our
model is well-suited for classification.

Table 3. Evaluation metrics of the cloud detection neural network model when using a synthetic
dataset for MWS sensors trained and validated with ERA5 profiles. The total count of pixels N is in
parentheses.

Ocean (N: 184,657) Land (N: 134,382)

Jaccard index 77.84% 76.96%
MCC 81.39% 80.56%

F-beta score 87.18% 86.82%
Accuracy 92% 87%

Classes Clear
(35,549)

Ice
(15,466)

Liquid
(133,642)

Clear
(49,250)

Ice
(34,438)

Liquid
(50,694)

Precision 0.83 0.86 0.95 0.84 0.89 0.88
Recall 0.79 0.84 0.96 0.78 0.88 0.94

F1 score 0.81 0.85 0.96 0.81 0.89 0.91
ROC (AUC) 0.88 0.91 0.92 0.85 0.91 0.94

Figures 6 and 7 show the predictive performance of both NN models for the MWS
and AMSU-A/MHS, respectively, on the three classes (values are normalized over each
column). A confusion matrix is a very popular measure used when solving classification
problems [74]. The diagonal elements represent pixels that have been correctly classified.
Thus, a perfect classifier has a confusion matrix with high values for the diagonal elements
and zero values for the rest of the elements. The number of cases correctly predicted by
our NN model is never below 80% and it is often higher than 90%. This may also be seen
in Figures 8 and 9, which show the probability distribution functions of the NN model
for three scene types as determined by combinations of two-class clouds with different
thermodynamic phases (e.g., ice over liquid). The probability distributions show strong
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peaks near 0 or 1, indicating the good performance of the NN model in distinguishing the
three different thermodynamic phases included in the training and validation process.

Table 4. As in Table 3 but using synthetic dataset for AMSU-A and MHS sensors.

Ocean (N: 184,657) Land (N: 134,382)

Jaccard index 78.24% 74.19%
MCC 81.42% 77.45%

F-beta score 87.71% 85.11%
Accuracy 88% 85%

Classes Clear
(35,549)

Ice
(15,466)

Liquid
(133,642)

Clear
(49,250)

Ice
(34,438)

Liquid
(50,694)

Precision 0.85 0.91 0.87 0.81 0.84 0.91
Recall 0.82 0.88 0.93 0.82 0.86 0.87

F1 score 0.83 0.89 0.90 0.82 0.85 0.89
ROC (AUC) 0.87 0.92 0.93 0.86 0.90 0.91
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3.2. Detection Performance Using Observed Dataset

To evaluate the NN model performances in a real context, we used a combined observa-
tion dataset from the AMSU-A and MHS onboard MetOP-C. The considered datasets were
downloaded from the EUMETSAT Earth observation portal in NetCDF format (Table 5). It
consists of observations from the 15 AMSU-A channels and the 5 MHS channels during
five full orbits.

Table 5. AMSU-A/MHS orbit and start datetime used for validation.

Orbit Number Start Datetime

19375 1 August 2022 18:58:23
18066 1 May 2022 15:40:19
18935 1 July 2022 19:40:19
17634 1 April 2022 05:58:23
19370 1 August 2022 10:37:19
18926 1 July 2022 04:31:24
19369 1 August 2022 08:55:19
17638 1 April 2022 12:43:19

The distance between the AMSU-A and MHS footprints is negligible, being two
sensors on the same platform. Each AMSU-A FOV is associated with nine MHS FOVs; the
central one is concentric to the co-located AMSU-A FOV.

As a reference for the NN cloud classification, the AVHRR cloud mask has been
considered. The spatial and temporal distances between AMSU-A/MHS and AVHRR/3
are negligible as the AVHRR/3 is placed onto the same spacecraft onboard MetOp-C. The
cloud mask AVHRR is derived from clouds from the AVHRR extended (CLAVR-x). CLAVR-
x developed at NOAA/NESDIS and UW/CIMSS generates cloud products in real time by
using AVHRR data. Each AVHRR pixel has been classified into one of the following three
classes: clear, liquid and ice. Collocation between AMSU-A and AVHRR uses an algorithm
developed for atmospheric infrared sounder (AIRS) and moderate resolution imaging
spectroradiometer (MODIS) data on NASA’s Aqua satellite [75] and is an extension of the
algorithms described in Li et al. [76]. This algorithm finds the closest AVHRR observation
to the center of the AMSU-A footprint and performs an outward search to find all the
AVHRR pixels falling within the AMSU-A footprint. Subsequently, for each AMSU-A pixel,
the percentage of AVHRR pixels relative to the four classes contained within the AMSU-A
pixel is calculated. According to the percentage of clear, liquid or ice, the AMSU-A FOVS
is considered clear or affected by liquid or ice clouds. An AMSU-A pixel is labeled clear
only if more than 85% of the related AVHRR classes are clear (different thresholds were
tested and this number was found to be a good compromise). Similarly, an AMSU pixel is
labeled liquid (ice) cloud only if more than 85% of the related AVHRR classes are classified
as affected by liquid (ice) clouds. For land pixels, the channel emissivity values have been
estimated using the TELSEM2 interpolator. The interpolator allows obtaining a reasonable
emissivity for each location over the globe and for every month of the year. It should
be noted that these emissivity values differ from the ones used in the simulations; while
extracted from the same atlas, they refer to different data, zenith angle and geographical
coordinates. Moreover, as already mentioned above (Section 2.1.2), bias correction between
simulated and observed brightness radiances has been removed.
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Figure 10 reports the confusion matrix, and Table 6 shows all the calculated indices.
The diagonal confusion matrix values over the ocean are between 64.30% and 88.10%, and
over land between 57.39% and 71.87%. The recall indices are between 0.65 and 0.94 for
the ocean, and between 0.49 and 0.74 for land. The F1 score is between 0.64 and 0.76 over
the ocean, and between 0.59 and 0.70 for land. Overall, Figure 10 and Table 6 indicate
good performances for the NN classification. Of course, the NN classifier cannot compete
with the AVHRR CLAVR-X algorithm, for several reasons, including coarser horizontal
resolution and lower sensitivity to cloud particles with respect to visible and infrared
observations.
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Figure 10. Confusion matrices for clear, ice and liquid predictions by NN models over the ocean
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the number of pixels correctly classified for each of the classes, while the darker boxes represent
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Table 6. Evaluation metrics of the cloud detection neural network trained with a simulated dataset
for AMSU-A/MHS sensors and validated with AVHRR.

Ocean (N: 9333) Land (N: 4135)

Jaccard index 56.64% 46.54%
MCC 60% 46.84%

F-beta score 74.2% 68%
Accuracy 72% 67%

Classes Clear
(2729)

Ice
(2658)

Liquid
(3946)

Clear
(1267)

Ice
(1710)

Liquid
(1138)

Precision 0.64 0.77 0.84 0.75 0.71 0.52
Recall 0.94 0.55 0.81 0.49 0.69 0.74

F1 score 0.76 0.64 0.73 0.59 0.70 0.61
ROC (AUC) 0.83 0.74 0.79 0.71 0.75 0.74

The trained NN model outputs were compared against the cloud phase product
from CLAVR-x system, which was used as a reference image. Among all the products
generated by CLAVR-x, there are also the cloud mask and phase classification for NOAA
and EUMETSAT AVHRR sensors. Figures 11 and 12 show some examples of the predicted
pixels by the NN model. As shown, clear-sky and cloud phases are predicted accurately
over both ocean and land surfaces.
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land background. (c) Pseudo-color image of the reference scene (date: 1 August 2022 08:55:19 orbit 
n. 19369). (d) Cloud detection result of this scene. (Und. stands for undetermined). 

Although the proposed NN model can achieve high accuracy in detecting clouds un-
der different surface conditions (ocean and land), there are still some cases where it cannot 
correctly detect clouds, e.g., in regions with bright surfaces or when there is snow at high 
altitude/ice cover. The performances of the NN model are also closely related to the train-
ing samples. However, the model could lead to pixel misclassification if there are not 
enough training samples with a balanced number of pixels from the three classes (clear-
sky, ice and liquid). 

Figure 11. (Top): example for ocean background. (a) Pseudo-color image of the reference scene (date:
1 August 2022 18:58:23 orbit n. 19375. (b) Cloud detection result of this scene. (Bottom): example for
land background. (c) Pseudo-color image of the reference scene (date: 1 August 2022 08:55:19 orbit n.
19369). (d) Cloud detection result of this scene. (Und. stands for undetermined).

Although the proposed NN model can achieve high accuracy in detecting clouds
under different surface conditions (ocean and land), there are still some cases where it
cannot correctly detect clouds, e.g., in regions with bright surfaces or when there is snow at
high altitude/ice cover. The performances of the NN model are also closely related to the
training samples. However, the model could lead to pixel misclassification if there are not
enough training samples with a balanced number of pixels from the three classes (clear-sky,
ice and liquid).
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Figure 12. (Top): example for ocean background. (a) Pseudo-color image of the reference scene (date:
1 July 2022 19:40:19 orbit n. 18935.) (b) Cloud detection result of this scene. (Bottom): example for
land background. (c) Pseudo-color image of the reference scene (date: 1 July 2022 04:31:24 orbit n.
18926). (d) Cloud detection result of this scene. (Und. stands for undetermined).

4. Conclusions

This study presents a NN model for cloud detection from satellite passive microwave
observations. The proposed NN model detects clear, ice and liquid thermodynamic phases
in a multiclass classification problem using microwave brightness temperature spectral
observations over both ocean and land surface backgrounds. Over land background,
emissivity values from the TELSEM2 atlas interpolator have been added as an input to the
NN. The proposed NN model is designed for the MWS instrument, scheduled for launch
in 2024 onboard MetOp-SG A1 as the direct successor of AMSU-A and MHS instruments,
currently flying onboard EPS and NOAA satellites. A synthetic dataset of simulated
MWS and AMSU-A/MHS observations has been built by processing ERA5 data with
radiative transfer code RTTOV-SCAT. The synthetic dataset has been divided into three
subsets for training, test and validation. Two independent NN models have been built, one
exploiting MWS data and one AMSU-A/MHS data. Validation of the NN model exploiting
AMSU-A/MHS has also been possible using real AMSU-A and MHS observations, against
reference cloud products from AVHRR visible and infrared observations (CLAVR-x). The
results clearly show that the proposed NN algorithm has good performances to detect clear,
ice and liquid labels with respect to the reference. In terms of overall accuracy, the NN
model has obtained 92% (87%) on the ocean (land) for the MWS dataset, while 88% (85%)
on the ocean (land) for the AMSU-A/MHS simulated dataset.

In the performance evaluation, the statistical scores from Tables 3, 4 and 6 were also
compared against results from the works mentioned in the introduction section of this
paper, yielding similar or sometimes even better performances. For instance, Aires et al. [25]
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retrieved clear sky and clouds over the ocean and land at more than an 80% confidence
level, using a neural network classification method applied to homogeneous cloud pixels.
Wu et al. [29] retrieved a probability of detection of the cloud fields around 84%. The
number of cases correctly predicted by our NN model is never below 80% and it is often
higher than 90% even under non-homogeneous pixels. Furthermore, our model, in addition
to distinguishing between different cloud phases, works with all types of clouds and for
non-homogeneous pixels. Therefore, the technique developed in this work can represent a
valid tool for cloud detection and classification.

The encouraging results obtained with the measured dataset seem to confirm that
training retrieval algorithms with simulated data are a viable option for the development of
environmental products in the early deployment of future instruments, whose observations
are not available at the time of development.

We plan to further improve our label dataset to make the model more accurate to
address irregular and unbalanced sample distributions. At the same time, we noted that
significant differences in seasonality and surface type also impact the classification ability
of the NN model. For future developments, we plan to extend our NN model to other
microwave sensors aboard the next-generation satellites of the EPS-SG (EUMETSAT Polar
System Second-Generation) system as the Micro-Wave Imager (MWI) and the Ice Cloud
Imager (ICI).
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