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Abstract: The visibility samples generated by the synthetic aperture interferometric radiometer (SAIR)
under near-field observation conditions contain information about the distance from the target to the
instrument. This requires a precise understanding of the target–instrument distance to guarantee
imaging quality in near-field SAIR applications. In this paper, we introduce a novel distance estimate
approach for near-field SAIR systems, which achieves satisfactory imaging performance in the
absence of prior information on target–instrument distance. First, we reformulate the signal model of
near-field SAIR from the fractional Fourier transform (FRFT) perspective. This formulation ties the
distance that is variable to the visibility function in a straightforward manner, offering an efficient
solution for image reconstruction in near-field SAIR. Subsequently, we present an iterative strategy
for target–instrument distance estimation based on simulated annealing (SA). In each iteration, the
modified average gradient (MAG) of images reconstructed within the FRFT framework is evaluated,
and based on the Metropolis criterion, the estimated target–instrument distance is optimally updated
iteratively. Finally, the validity and effectiveness of the proposed distance estimation method for near-
field SAIR imaging systems are demonstrated through numerical simulation and real experiments.

Keywords: synthetic aperture; near field imaging; distance estimation; passive millimeter wave

1. Introduction

In the field of radio astronomy, the need to observe remote targets in space led to
the development of the synthetic aperture interferometric radiometer (SAIR) [1]. After
receiving a radiation signal from a target, the space domain sampling function of the target
can be employed by interferometry [2]. Image inversion methods are utilized to retrieve the
target’s brightness temperature information [3,4]. The SAIR has been under development
for many years and has found widespread use in a variety of domains, including remote
sensing [5,6], RFI localization [7,8], and target detection [9]. As a result of the improvements
to the hardware performance of the system, the circumstances in which the SAIR system can
be used are no longer restricted to imaging of far-field targets. In addition, the theoretical
research associated with the imaging of near-field targets also has advanced [10,11].

The commonly used near-field imaging method is primarily derived from the far-field
Fourier transform method. In order to obtain the equivalent far-field visibility function, this
method modifies the near-field visibility function by adding a correction phase term [12,13].
It can also be directly solved numerically by using the G matrix method. The G matrix
comprises all the imperfect factors, so the challenge of obtaining the target brightness
temperature T is reduced to the solution of the Moore–Penrose pseudoinverse of the G
matrix [14]. In addition to drawing on the conventional SAIR far-field imaging method,
some researchers have utilized some prior information to reconstruct the target brightness
temperature for special application scenarios in the near field. Researchers have also
devised a number of special array arrangement structures to fit the characteristics of
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near-field imaging and produce better imaging results [15]. However, none of these
methods have addressed the essential features of signal transmission for near-field imaging
applications.

Although the near-field imaging method can be derived from the far-field imaging
method, there are certain distinctions in the visibility function. The phase difference be-
tween channels is the most important information in the far-field visibility function [16].
This can be understood as the direction of arrival (DOA) estimation in array signal pro-
cessing [17]. Under near-field conditions, the visibility function of the system contains not
only the antenna spacing information but also the target’s distance information, and the
current inverse imaging methods handle the distance information as an a priori known
condition [18].

If the target–instrument distance is unknown when imaging near-field targets, then
current imaging methods are essentially unable to recover the target’s brightness temper-
ature information. For the localization of near-field targets in other scientific disciplines,
spherical arrays were employed to receive and process spherical wave signals [19], and
more sophisticated signal processing algorithms were developed [20]. There is no corre-
sponding algorithm for near-field imaging distance estimation in the field of SAIR.

The current state of near-field SAIR imaging research can be summarized by the
fact that the existing distance estimation methods are either not applicable to the model
framework of SAIR or have a complicated computational process, and none of them can be
directly utilized for near-field SAIR imaging.

In this paper, we propose a novel method for estimating the near-field target–instrument
distance of a SAIR system. First, the near-field SAIR signal model is reconstructed to demon-
strate the significance of the target–instrument distance. Additionally, the relationship
between the visibility function and the target–instrument distance is analyzed, and a rea-
sonably simple decoupling expression is provided. The simulated annealing algorithm
is used to iteratively solve the expression to obtain the exact target–instrument distance.
The modified average gradient (MAG) is introduced as the iterative optimization objective,
and the outcomes of each iteration are assessed to ultimately arrive at the precise target–
instrument distance. Finally, a series of numerical simulations and real experiments that
were conducted to verify the validity as well as the effectiveness of the distance estimation
algorithm are described.

The rest of this paper is organized as follows: In Section 2, the basic near-field SAIR
signal model is described. Section 3 describes the proposed distance estimation method
for near-field SAIR. Section 4 verifies the method through numerical simulation and real
experiments. Finally, Section 5 summarizes the results and provides the study conclusions.

2. Near-Field SAIR Signal Model

The characteristics of the target radiation signal under far- and near-field conditions
are shown in Figure 1. As illustrated in the figure, the wavefront of the target radiation
signal arriving at the system array port surface is equated to a planar wavefront in the
far-field condition, while it remains a spherical wavefront in the near-field condition. This
difference results in the unsuitability of far-field imaging methods for near-field imaging.

Rayleigh distances [21] in the near and far field of the SAIR imaging system are given
as [22]

R =
2D2

sys

λ
(1)

The correlation function between the output signals of any two radiometer channels i
and j in the SAIR system can be expressed completely as [23]

〈
b0i(t)b∗0j(t)

〉
=

2K
√

DiDj
√

BiBj

√
GiGj

4π

∫∫
4π
(TB − Tr)Fni F

∗
nj

r̃ij

(
∆r
c

)
ejk∆RdΩ (2)

where
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• K is the Boltzmann constant;
• Di and Dj are the antenna directivities of each radiometer receiver channel;
• Bi and Bj are the equivalent noise bandwidth of the receiver channel;
• Gi and Gj are the gain of the receiver channel;
• TB is the brightness temperature of the target scene;
• Tr is the equivalent noise temperature of the receiver channel;
• Fni and Fnj are the normalized antenna radiation pattern of each radiometer receiver

channel;
• rij is the fringe washing function between the ith and jth receiver that accounts for

spatial decorrelation effects;
• ∆R is the distance difference between the target to the two channels;
• k is the radiometric signal wave number.

Assuming that all channels have the same antenna characteristics and channel char-
acteristics, the correlation function can be expressed in a simplified manner, as follows:

V(P1, P2) = C1

∫∫
TB exp(jk∆R)dΩ (3)

where P1 and P2 represent the positions of the two channel.

……

……

……

Source


Near-field imaging system Far-field imaging system

Figure 1. The target radiation signal wavefront schematic.

To further expand the description, a right-angle coordinate system containing the
SAIR and the target is established, as shown in Figure 2, where the coordinates of the target
source S can be expressed as (x0, y0, z0), and the coordinates of the positions of the two
antennas in the imaging system are P1(x1, y1, z1) and P2(x2, y2, z2).

The distance difference between the target and the two antennas can be obtained as

∆R = R2 − R1 =
d2

2 − d2
1

2R
−
[
(x2 − x1)

x
R
+ (y2 − y1)

y
R

]
(4)

The distance d from the unit antenna to the origin in the far-field SAIR imaging system
is smaller than the system array equivalent aperture D, whereas the distance between the
target and the system R is much larger than D, so the first term in the far-field imaging can
be ignored.

Under near-field conditions, only the central region of the field of view imaged by the
SAIR satisfies the paraxial approximation, which is the angle between the direction of the
target radiation signal, and the direction of propagation can be slight to negligible. The
radiation signal from the target far from the center of the field of view does not meet the



Remote Sens. 2023, 15, 1795 4 of 18

paraxial approximation when it reaches the antenna, resulting in a system error in the final
imaging results. This near-field effect can be regarded as a spreading of the original image,
which seriously affects the SAIR.

The presence of the near-field error term leads to aberrations in the imaging results
of the inversion of the brightness temperature of the target, producing an out-of-focus
effect that requires correction of the near-field visibility function to obtain the correct
correlation function or the FRFT imaging method to build a mathematical model containing
spherical waves. However, from another point of view, the near-field error term, although
leading to the deterioration of the imaging results, also increases the amount of information,
especially the distance information between the target and the array system, which is also
a characteristic of near-field imaging.

We demonstrated that the signal model of the near-field SAIR can be reformulated
from the fractional Fourier transform, with the following basic equation [18]:

V(u, v) =[
1

2π

√
1− j cot α

√
1− j cot β]−1·

e−jπu2( λR
2 tan α−π sin α)e−jπv2

(
λR

2 tan β−π sin β
)

X(u, v)
(5)

where α, β denotes the rotation angle of the fractional Fourier transform, X(u, v) is the
result of the 2D fractional Fourier transform of TB, Kp1,p2(x, y, u, v) is the transformation
kernel of the 2D fractional Fourier transform, and (u, v) is the baseline and equal to the
difference between the antenna positions over the x–y plane normalized to the wavelength.

This formula effectively achieves image reconstruction for near-field SAIR, and the
distance variable is simply connected to the visibility function.

x

z

P2(x2,y2,z2)

P1(x1,y1,z1)
TB(x0,y0,z0)

R2

R1

yy

x

z

R

Figure 2. Schematic of near-field target radiation signal transmission.

3. Proposed Distance Estimation Method for Near-Field SAIR

This section focuses on the distance estimation method for near-field SAIR. Given
a specific imaging distance Rs, the visibility function received by the SAIR system is
expressed as Vs. If the distance between the target and the system changes at this time,
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i.e., the distance is now Rs + ∆r, the system receives the visibility function Vs′ , and the
expressions of the visibility function for the two distance conditions are:

Vs(P1, P2; Rs) =Cs exp(j
k

Rs

d2
2 − d2

1
2

)·∫∫
TB(x, y, z) exp[j

k
Rs

(∆xx + ∆yy)]dxdy

Vs′(P1, P2; Rs + ∆r) =Cs exp(j
k

Rs + ∆r
d2

2 − d2
1

2
)·∫∫

TB(x, y, z) exp[j
k

Rs + ∆r
(∆xx + ∆yy)]dxdy

(6)

3.1. Basic Concepts of Distance Estimation Method

Using the mapping relationship between the visibility function and the target–instrument
distance in the near-field SAIR, and combining the transformation relationship between
the target’s bright temperature and the near-field visibility function, the target–instrument
distance estimation method applicable to the near-field SAIR system is derived.

First, in the z = 0 plane, the Fourier transform of the visibility function Vs is

HV( fX , fY; 0) =
∫∫

V(u, v; 0) exp[−j2π( fXu + fYv)]du dv (7)

where HV denotes the high-level visibility function. Considering the propagation direction
~k of the radiation signal and defining its directional angle as (α, β, γ), this radiation signal
can be expressed as

p(x, y, z; t) = exp[j(~k ·~r− 2πνt)] (8)

where~r = xx̂ + yŷ + zẑ is the position vector (the symbol ˆ denotes the unit vector), and
~k = 2π

λ (αx̂ + βŷ + γẑ). Therefore, in the plane where z is a constant, the radiation signal
amplitude can be expressed as

P(x, y, z) = exp(j~k ·~r) = exp[j
2π

λ
(αx + βy)] exp(j

2π

λ
γz) (9)

The complex exponential function exp[−j2π( fXu + fYv)] can be regarded as a plane
wave in the plane of z = 0; then, the corresponding propagation direction can be ex-
pressed as

α = λ fX

β = λ fY

γ =

√
1− (λ fX)

2 − (λ fY)
2

(10)

In the Fourier decomposition of the visibility function V, the corresponding spatial
frequency is ( fX , fY), and the corresponding complex amplitude is HV( fX , fY; 0)d fX d fY,
which leads to

HV(
α

λ
,

β

λ
; 0) =

∫∫
V(u, v, 0) exp[−j2π(

α

λ
u +

β

λ
v)]du dv (11)

HV
(

α
λ , β

λ ; z
)

is the Fourier transform of the visibility function V(u, v; z), that is,

HV(
α

λ
,

β

λ
; z) =

∫∫
V(u, v, z) exp[−j2π(

α

λ
u +

β

λ
v)]du dv (12)

Then, the visibility function V(u, v; z) can be written as

V(u, v, z) =
∫∫

HV(
α

λ
,

β

λ
; z) exp[j2π(

α

λ
u +

β

λ
v)]d

α

λ
d

β

λ
(13)
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By the nature of the visibility function [23], it is known that HV needs to satisfy

d2

dz2 HV(
α

λ
,

β

λ
; z) + (

2π

λ
)2[1− α2 − β2]HV(

α

λ
,

β

λ
; z) = 0 (14)

The solution of (14) can be expressed as

HV(
α

λ
,

β

λ
; z) = HV(

α

λ
,

β

λ
; 0) exp(j

2π

λ

√
1− α2 − β2z) (15)

Inverting the above equation and bringing in (7) yields

V(u, v; z) =
∫∫ ∫∫

V(u, v; 0) exp[−j2π( fXu + fYv)]·

exp(jk
√

1− α2 − β2z) exp[j2π( fXu + fYv)]dudvd fXd fY

(16)

The above equation shows that under near-field conditions, the visibility functions at
different distances can be related by Equation (16).

According to the derivation of the formula in the previous section, the near-field
visibility function at different distances can be obtained by changing the spacing between
the target and the SAIR array. Using the above formula, the initial target’s distance can be
derived by taking into account the near-field visibility function at different distances and
the corresponding spacing.

3.2. Iterative Distance Estimation Method

The method described above can obtain the target–instrument distance, but it requires
manual adjustment of the parameters to obtain the near-field imaging results using step-
by-step attempts and does not guarantee the optimal imaging quality in the final results.
Therefore, an optimization algorithm was designed to combine the near-field imaging
distance analysis with the rotation parameters α, β in the fractional-order Fourier trans-
form. This allows for the acquisition of the near-field imaging results with an unknown
target–instrument distance by adjusting the rotation parameters. The imaging quality
is evaluated and constraints are given for further adjustment until the optimal imaging
result is achieved. The imaging distance under these conditions is considered the real
target–instrument distance.

A corresponding mathematical model was developed to investigate the influence
of the target–instrument distance on the quality of the final imaging results under the
premise that the target scene and the target–instrument distance are unknown and that
the visibility function and the array arrangement of the near-field SAIR imaging system
and the corresponding system parameters are known. In the process of using the near-
field fractional-order imaging method, the inversion of the near-field visibility function
is performed at different target–instrument distances to obtain the imaging results. The
quality of the image at each target–instrument distance is evaluated to obtain the optimal
imaging result.

In simulation scenarios where the original image information is known, the root mean
square error (RMSE) can be well employed to assess the imaging quality. However, under
most real conditions, the brightness temperature distribution of the original image is not
available. Therefore, it is impossible to compare the brightness temperature of the near-
field imaging image with the brightness temperature distribution of the original image to
obtain the root mean square error of the imaging results. The reference-free inverse image
evaluation index is needed to break away from the dependence on the ideal reference image.

Near-field imaging results are characterized by blurring and image spreading due to
the spherical wave of the target radiation signal; thus, high-resolution and clear images can
be used as the basis for evaluating imaging results. In the absence of the original image, the
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average gradient [24] can be employed as a criterion for assessment because it is a measure
of the image’s clarity. The definition of average gradient (AG) is

AG(TB) =
1

(M− 1)(N − 1)
·

M−1

∑
i=1

N−1

∑
j=1

√
[(TB(i + 1, j)− TB(i, j))2 + (TB(i, j + 1)− TB(i, j))2]

2

(17)

where TB denotes the image brightness temperature; M, N denotes the number of pixels
in the horizontal and vertical directions of the image, respectively. The larger the average
gradient calculated according to the above equation, the greater the image detail and the
higher the sharpness.

Considering that the imaging results of the SAIR system are noise-related, the metrics
should be adjusted to include the overall noise level of the image. The definition of the
modified average gradient (MAG) when image quality assessment is

MAG(TB) =
AG(TB)

∆N(TB)
(18)

where ∆N(TB) is the variance of the inversion image. The MAG value can be calculated to
compare and judge the accuracy of the estimated estimation.

According to the previous analysis, it is known that the closer the actual distance, the
better the quality of the image. Therefore, an optimization algorithm can be employed
to determine the target–instrument distance. In this study, the simulated annealing algo-
rithm [25] was chosen to solve the actual imaging distance of the target due to its ability
to find the global optimal solution with a higher probability. The optimization parame-
ters used for assessing the image quality in the algorithm are thoroughly analyzed in the
following subsection.

The steps for solving the target–instrument distance using the simulated annealing
algorithm can be written as

1. Initialize at an initial annealing temperature T0 and generating a random initial
solution x0 as the initial solution and calculating the corresponding objective function
E(x0). The initial solution x0 represents the initial target–instrument distance R0, and
the corresponding objective function E(x0) is the reciprocal of MAG.

2. Set the cooling rate tk for this temperature.
3. Apply a random perturbation to the current target–instrument distance xt to generate

a new solution xt+1 in the current domain and calculate the corresponding objective
function E(xt+1).

∆E = E(xt+1)− E(xt) (19)

4. According to the Metropolis criterion, the distance x(t+1) can be received as the current
solution or does not need to be calculated according to the following probabilities.

P{Accept x(t+1)} =
{

exp
[
−∆E

tk

]
, ∆E > 0

1 , ∆E ≤ 0
(20)

5. Repeat steps 2, 3, and 4 above until the equilibrium at the current temperature
is reached.

6. Lower the temperature and repeat the iterative process.
7. Determine if the temperature reaches the termination temperature; if yes, then termi-

nate the algorithm; otherwise, return to step 2.

The flowchart of the simulated annealing algorithm for the target–instrument distance
estimation optimization problem is shown in Figure 3.
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In the iterative process, the target–instrument distance R is the solution x. The selection
of the cooling scheme is a crucial step in the simulated annealing algorithm, and based on
the near-field imaging distance characteristics, we propose using an exponential approach
for cooling.

tk = βk · T0 (21)

where T0 is the initial temperature of the algorithm, and the parameter β denotes the
annealing factor, which generally has a β < 1.

Start

Generate the initial 
estimated distance R0 ,


  calculate  E(R0)

Set annealing
parameters

Apply perturbation
ΔR ,generate
E(R0+ΔR) 

Is the new value better than

 the current optimal value?

Accept new
solution

Accept new
solution according
to Metropolis rules

Is the iteration 

count reached?

Lower the
temperature,


reset the iteration

  Whether to end the 

annealing process? End

Y N

Y

N

YN Obtain optimal
estimated distances

Rop

Figure 3. The flowchart of the simulated annealing algorithm for the optimization problem of the
target–instrument distance estimation.

As the iteration temperature tk cools in the target–instrument distance optimization
problem based on the simulated annealing algorithm, the inverse image quality gradually
improves. When the iteration temperature tk reaches the algorithm’s minimum temperature
Tend, the micromovement of the target–instrument distance can no longer improve the
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quality of the inverse image, and the global optimal solution is reached. The optimal
estimated target–instrument distance is also obtained.

4. Experimental Analysis

In this section, the performance of the proposed method is verified by numerical
simulations and real experiments.

4.1. One-Dimensional Imaging

The first simulation array is a homogeneous one-dimensional line array consisting of
25 channels for simulated experimental imaging of a point target at a distance of 1 m. The
schematic diagram of the target and the one-dimensional line array are shown in Figure 4.

 
 X

Y

Z

R

ARRAY PLANE

TARGET

Figure 4. Schematic diagram of the target and the one-dimensional line array.

An imaging system with one-dimensional linear array structure was used to simulate
imaging experiments on targets at unknown distances using the distance estimation method
proposed in this paper. The iteration curve of the algorithm is shown in Figure 5. Based
on multiple experimental experiences and final results, we found that setting the iteration
process to around 20 times could achieve a relatively accurate estimation of distance,
and further increasing the iteration time did not significantly improve the estimation
accuracy. Each curve in Figure 5 represents a different iteration process with a different
initial estimation value. From the convergence results of all the curves, it can be seen
that an accurate estimation distance could be obtained regardless of the initial estimation
distance, which was very close to the true target–instrument distance. The red curve with
rectangular marker in Figure 5 represents the iteration curve with an initial value of 1 m,
and it can be seen that the optimal function value of this curve is the initial value.
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Figure 5. Iterative process of the 1D target imaging distance estimation based on simulated anneal-
ing algorithm.

Figure 6 shows the imaging results during one of the iteration processes, corresponding
to the blue curve with circular marker in Figure 5. The optimal estimated distance obtained
at the end of this iteration process was 1.086 m. All images were normalized to make them
more straightforward to contrast the imaging results. Three imaging results during the
iteration processes are provided in Table 1. It was discovered that the imaging outcomes
and MAG both steadily improved when the estimated distance was close to the actual
target–instrument distance. The result confirms the viability of the method used in this
study to estimate the distance.
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Figure 6. The one-dimensional line array imaging results. (a) Inversion results 1; (b) inversion
results 2; (c) inversion results 3.

Table 1. MAG of near-field imaging results at different estimated distances of one-dimensional
line array.

Result MAG FuncValue Estimated Distance
(m)

1 0.0107 93.46 0.500
2 0.0178 56.13 0.818
3 0.0308 32.43 1.086
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The optimal estimated distance obtained from each iteration in Figure 5 were plotted
in a table, as shown in Table 2. It can be seen from the table that the final estimated distances
obtained from each iteration were very close to the actual target distance of 1 m, regardless
of the initial distance set for the iteration, which also demonstrates the effectiveness of the
proposed near-field imaging distance estimation method proposed in this paper.

Table 2. The optimal estimated distance of near-field imaging results from different initial estimated
distances of one-dimensional line array.

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

1 0 1.0472 6 0.5 1.0860
2 0.1 1.0317 7 0.6 1.0500
3 0.2 1.0639 8 0.7 0.9716
4 0.3 1.0173 9 1 1.0000
5 0.4 1.0215 10 1.5 1.0566

From Table 2, it can be concluded that regardless of how the initial value of the
estimation method is set, a relatively accurate estimate of the target–instrument distance
can be obtained after 20 iterations. The mean square error (MSE) was used to evaluate the
error of the distance estimation method, and the specific calculation formula is as follows:

MSE =
1
N ∑[(Rest_i − Rreal)

2] (22)

where N is the number of estimated distances, Rest_i is the ith optimal estimated distance,
and Rreal is the real target–instrument distance. The MSE of this near-field target–instrument
distance estimation method under the one-dimensional array condition could be calculated
as 0.0022.

4.2. Two-Dimensional Imaging

After the analysis of the 1D array imaging system, research and simulation of the 2D
imaging system were further carried out. This simulation-based experimental system array
layout is shown in Figure 7, which we used to avoid the influence of system sparsity. The
array element spacing was 0.5λ for a rectangular full array with a total of 25× 25 = 625
array elements. The distance between the set scene and the array was 1 m.

X

Y

Z

R

ARRAY PLANE

TARGET PLANE

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic diagram of the target and the two-dimensional array.
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Using the target–instrument distance estimation method based on the simulated
annealing algorithm, the objective function was set as the reciprocal of MAG, and the
objective function convergence curves were obtained as shown in Figure 8 by reasonably
setting the initial temperature, the cooling rate, and the end condition in the simulated
annealing algorithm. Again, within 20 iterations, each curve provided accurate distance
estimates. The iteration curve with an initial value of 1 m is represented by the red curve
with a rectangular-marker in Figure 8, and it can be noticed that the optimal function value
of this curve is the initial value.

0 5 10 15 20 25

Iteration

0

20

40

60

F
u

n
c

ti
o

n
 V

a
lu

e

Figure 8. Iterative process of the 2D target imaging distance estimation based on simulated anneal-
ing algorithm.

Figure 9 shows three imaging results during one of the iteration processes, correspond-
ing to the blue curve with a circular marker in Figure 8. The estimated distance obtained
at the end of this iteration process was 1.012 m, which is basically the same as the actual
distance. This result verifies the effectiveness of the target–instrument distance prediction
method based on the simulated annealing algorithm. The three imaging results during the
iteration processes are shown in Table 3. It was discovered that both the imaging results and
the calculated data steadily improved when the estimated distance was close to the actual
target–instrument distance. This result confirms the viability of the distance estimation
method used in this study.

As already mentioned, if the real bright temperature of the target is known, the
RMSE can be used to evaluate the imaging results. The RMSE of the inverse image at
different estimated distances in Figure 9 was calculated. From Table 3, it can be seen that
as the distance was iterated and approximated to the real value, the RMSE of the final
imaging results reached 0.1299, and the image quality was close to the ideal result, which
demonstrates that MAG can be used as a metric to evaluate distance estimation when the
real image is unknown.
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Figure 9. The two-dimensional array near-field imaging results. (a) Original extended source scene;
(b) inversion results 1; (c) inversion results 2; (d) inversion results 3.

Table 3. MAG and RMSE of near-field imaging results at different estimated distances of two-
dimensional array.

Result MAG RMSE FuncValue Estimated
Distance (m)

1 0.0215 0.6078 46.51 0.200
2 0.0734 0.3604 13.62 0.488
3 0.1794 0.1299 5.574 1.012

The optimal estimated distance that was derived with each iteration in Figure 8 is
displayed in Table 4. The validity of the near-field imaging distance estimation method
suggested in this paper is further demonstrated by the table, which shows that the fi-
nal estimated distances acquired from each iteration were extremely close to the real
target distance.

Table 4. The optimal estimated distance of near-field imaging results from different initial estimated
distances of two-dimensional line array.

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

1 0 1.0441 6 0.5 1.0120
2 0.1 1.0324 7 0.6 1.0134
3 0.2 0.9675 8 0.7 0.9529
4 0.3 1.0236 9 1 1.0000
5 0.4 1.0540 10 1.5 1.0365
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The MSE of this near-field target–instrument distance estimation method under the
two-dimensional array condition was calculated as 0.0011. It was not unusual that this
result differed from that of the 1D array imaging system, as there were variations in the
array layout structure, different target types, etc.

4.3. Real Measurement Imaging Experiment

A high-performance system was constructed to further confirm the viability of the
distance estimate approach for real applications. As shown in Figure 10, the near-field
radiometer experimental system consisted of a 24 antenna array, RF channels, and a
subsequent high-speed digital processing center. The center frequency was 94 GHz, and the
bandwidth was 400 MHz. The distance between the real extended source and the near-field
SAIR imaging system was set at 2 m.

The analysis for the real near-field imaging system was similar to that described in
the previous section, the objective function was set as the reciprocal of MAG, and the
objective function convergence curve was obtained as shown in Figure 11 by reasonably
setting the initial temperature, the cooling rate, and the end condition in the simulated
annealing algorithm.

The blue circular marked curve in Figure 11 was chosen to demonstrate the effective-
ness of the estimated method. The optimal estimated distance obtained in this iteration
process was 1.9488 m, which was very close to the true value. The three imaging results in
Figure 12 represent the three results of this iteration process.

SystemTarget

(a)

Figure 10. Cont.
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Figure 10. The pictures of real imaging experiments. (a) Experimental scenario; (b) photograph of
real extended source; (c) photograph of SAIR system; (d) hexagonal antenna array structure.
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Figure 11. Iterative process of target imaging distance estimation based on simulated annealing algorithm.

The MAG and corresponding estimated distances for this iteration process can be
found in Table 5. From the graphical results and the iterative process, it can be revealed
that the distance estimation algorithm proposed in this paper can satisfactorily estimate
the target–instrument distance of the real imaging system and thus obtain accurate imag-
ing results.
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Figure 12. The near-field imaging results of real measurement imaging experiment. (a) Result 1;
(b) result 2; (c) result 3.

Table 5. MAG of near-field imaging results for different estimated distances in real measurement
imaging experiment.

Result MAG FuncValue Estimated Distance
(m)

1 0.0587 17.03 0.8000
2 0.1436 6.964 1.6770
3 0.2378 4.205 1.9488

Finally, the initial estimated distance values and the optimal estimated distances for all
iterative processes in Figure 11 are likewise given in Table 6. Further calculations yielded
an MSE of 0.0083 for the near-field target–instrument distance estimation algorithm applied
to this real imaging system.

Table 6. The optimal estimated distance of near-field imaging results for different initial estimated
distances with a real imaging system.

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

Iteration
Curve

Initial
Estimated

Distance (m)

Optimal
Estimated

Distance (m)

1 0 2.0429 6 1 2.0891
2 0.2 2.0156 7 1.2 2.0655
3 0.4 1.9557 8 1.5 2.1091
4 0.6 2.1159 9 2 2.0000
5 0.8 1.9488 10 3 1.9852

Although there are no other comparable methods for estimating near-field target–
instrument distance at present, we used a far-field imaging method (synthetic aperture
radiometry) to directly image near-field targets, as shown in Figure 13. The MAG of
this result was 0.1069. It was observed that target–instrument distance is crucial for
synthetic aperture radiometer near-field imaging, and our method can accurately estimate
the distance and obtain high-quality imaging results.
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Figure 13. The imaging result generated by far-field imaging algorithm.

5. Conclusions

In this study, the information contained in the visibility function under far-field con-
ditions as well as near-field conditions was first investigated, and it was found that the
distance information of the target can be recovered from the near-field visibility function.
To this end, we developed a novel near-field target–instrument distance estimation method
that can iteratively derive the distance between the target and the system when the target–
instrument distance is unknown. The simulated annealing algorithm was employed in the
iteration of distance estimation, and the MAG parameter was also proposed as the optimiza-
tion objective in order to effectively evaluate the iterative process. The optimal solution for
the target–instrument distance was finally obtained iteratively with the Metropolis criterion.
Then high-quality imaging results of the target were obtained by the fractional Fourier
method. Numerical simulation and real experiments were carried out to demonstrate the
validity and effectiveness of the proposed distance estimation method for near-field SAIR
imaging systems. Moreover, several experiments were performed by varying the initial
estimated distance, and the MSE of the distance estimation method was calculated for
different array structures. Our results indicated that a relatively accurate estimated distance
could be obtained in about 20 iterations, which required no more than 30 s based on the
capabilities of the existing PC. Therefore, we think that this distance estimation method has
good prospects for future applications.

In future research, the accuracy and speed of the distance estimation method will be
further improved. It is possible to incorporate prior scene information into the iterative
process to reduce the number of iterations and quickly obtain the target–instrument dis-
tance. Additionally, we will separately investigate the relationship between the distance
accuracy and the system array arrangement, as well as other performance parameters, in
subsequent research. Overall, we think that the proposed distance estimation method has
great potential for practical applications in near-field SAIR imaging systems, and we will
continue to explore ways to optimize its performance.
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