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Abstract: Soil moisture (SM) and land surface temperature (LST) are entangled, and the retrieval
of one of them requires a priori specification of the other one. Due to insufficient observational
information, retrieval of LST and SM from passive microwave remote sensing data is often ill-posed,
and the retrieval accuracy needs to be improved. In this study, a novel fully-coupled paradigm is
developed to robustly retrieve SM and LST from passive microwave data, which integrates deep
learning, physical methods, and statistical methods. The key condition of the general paradigm
proposed by us is that the output parameters of deep learning can be uniquely determined by the
input parameters theoretically through a certain mathematical equation. Firstly, the physical method
is deduced based on the energy radiation balance equation. The nine unknowns require the brightness
temperatures of nine channels to construct nine equations, and the solutions of the physical method
equations are obtained by model simulation. Based on the derivation of the physical method, the
solution of the statistical method is constructed using multi-source data. Secondly, the solutions
of physical and statistical methods constitute the training and test data of deep learning, which is
used to obtain the solution curve of physical and statistical methods. The retrieval accuracy of LST
and SM is greatly improved by smartly utilizing the mutual prior knowledge of SM and LST and
cross iterative optimization calculations. Finally, validation indicates that the mean absolute error of
the retrieved SM and LST data are 0.027 m3/m3 and 1.38 K, respectively, at an incidence angle of
0–65◦. A model-data-knowledge-driven and deep learning method can overcome the shortcomings of
traditional methods and provide a paradigm for retrieval of other geophysical variables. The proposed
paradigm not only has physical meaning, but also makes deep learning physically interpretable,
which is a milestone in the retrieval of geophysical remote sensing parameters based on artificial
intelligence technology.

Keywords: deep learning; geophysical logical reasoning; interleaved iterative optimization; soil
moisture; land surface temperature; collaborative retrieval
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1. Introduction

Soil moisture (SM) and land surface temperature (LST) are land surface state variables
that control surface energy and water fluxes, land–atmosphere interactions and terrestrial
processes. They are indispensable to climate, ecology, agriculture, and other fields [1–3].
The timely and effective acquisition of SM and LST is of great practical significance for
regional climate and agricultural monitoring, and it has broad application prospects. Re-
mote sensing technology has the ability to accurately monitor many elements in the earth
system at the global scale and allows us to quickly and effectively obtain SM and LST
over large-scale domains. In particular, passive microwave remote sensing has all-weather
monitoring capabilities and strong penetration abilities with respect to clouds and rain. It
is also very sensitive to changes in SM, and LST, and has been widely used in the moni-
toring and retrieval of surface parameters [4–6]. The emissivity at the microwave bands is
mainly controlled by the dielectric constant, which itself is a function of SM, roughness,
LST, soil salinity, and vegetation type and structure [7]. Among all influencing factors, SM
changes have the largest impact on the dielectric constant and the influence of other factors
is relatively stable for bare areas [4]. Therefore, land surface emissivity (LSE) is mainly
controlled by SM and thus has the signature of retrieving SM. The brightness temperature
(TB) is recorded by satellite. LST should be known a priori to estimate the LSE from TB via
TB = LST × LSE. On the other hand, to retrieve LST from TB measurements, LSE should
be known, which itself is mainly controlled by the SM [4]. Therefore, SM and LST are
entangled and the estimation of each of them requires a priori knowledge of the other
one. This raises the question of how to retrieve two interrelated variables. Although there
have been many studies on passive microwave retrieval of SM [8–11], there is not a solid
approach for obtaining high-precision LST [5,12,13].

The existing SM retrieval methods fall into five main groupings [14]: (1) the opera-
tional algorithm adopted by NASA, which is referred to as the Normalized Polarization
Difference (NPD) algorithm [15], (2) the Single Channel Algorithm (SCA) [16,17], (3) the
Land Parameter Retrieval Model (LPRM) [18,19], (4) the University of Montana (UMT)
soil moisture algorithm [20], and (5) the HydroAlgo Artificial Neural Network (HA-ANN)
algorithm [9,21,22]. The majority of these approaches work based on the Radiative Transfer
Equation (RTE), but the treatment of the key parameter of surface temperature in the soil
moisture retrieval process is different. The SM retrieval equations are simplified to be
independent of LST for the operational NPD algorithm. The SCA and LPRM estimates
LST from brightness temperature via a regression-based equation. UMT obtains LST by
a geophysical radiative transfer model. The HA-ANN algorithm does not use LST as
an input parameter. Many studies have used neural networks to retrieve geophysical
parameters [23–30], but the computational process of the hidden layers of neural networks
needs further interpretation and research.

Passive microwave remote sensing can rapidly achieve global coverage and help us
study the spatiotemporal changes of LST in large-scale regions [12,31]. However, due to
the variation of surface emissivity with SM, it is difficult to accurately retrieve LST from
passive microwave remote sensing data. There are two main methods for retrieving LST
from passive microwave remote sensing data. The first is the statistical method, which
includes single-channel statistical methods [32] and multi-channel statistical methods [4,33].
The other method is the neural network algorithm, which also directly uses the brightness
temperature to retrieve LST without considering the changes of SM [34,35].

For passive microwave remote sensing, most existing algorithms do not consider
the mutual influence of SM and LST changes over time; the main reason is that it is very
difficult to capture their respective dynamic changes. Some physical retrieval methods
of geophysical variables have to utilize empirical equations, which cannot accurately
represent the problem, thus making the overall retrieval weak [36]. Statistical methods
are mainly applicable to local areas [30]. Although there are also studies using neural
networks or deep learning to retrieve soil moisture or surface temperature from passive
microwave data [9,23,24,37,38], some of them are not very portable. The main reason is
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that training and testing data mainly come from statistical sampling, which limits both
the retrieval accuracy and the range of applications. However, most of these studies have
not clearly explained why and how to use deep learning to obtain better results from
physical mechanisms. They also have not used the mutual prior knowledge of SM and
LST to perform cross iteration to improve retrieval accuracy. In this study, we propose a
“Geophysical Parameter Retrieval Paradigm Theory”, which uses deep learning technology
to integrate physical methods, statistical methods, and expert knowledge to improve the
retrieval accuracy of LST and SM from passive microwave remote sensing data. The fully
coupled SM-LST algorithm can overcome the shortcomings of previous algorithms and
make full use of the respective advantages of physical methods and deep learning methods.
This paradigm retrieval theory maintains the physical meaning of the method, and deep
learning is only used for optimization calculations, which makes the application of deep
learning physically interpretable.

2. Methodology

The retrieval paradigm of geophysical parameters proposed by us is that a complete
set of closed-form equations can be constructed between the input parameters and output
parameters of deep learning in theory. If there is a strong correlation between input
parameters and output parameters, deep learning can be directly used for inversion. If
there is a weak correlation between input parameters and output parameters, it is necessary
to add prior knowledge to improve the inversion accuracy of output parameters. If we
know a large number of representative solutions of the physical method, we can use deep
learning to obtain the curve function of the solution through training. Physical model
simulations provide us with the opportunity to obtain solutions of physical methods,
so deep learning can replicate physical methods. Physical methods cannot describe all
situations, and we can supplement solutions of statistics methods with multi-source data.

The main hypothesis behind “Geophysical Parameter Retrieval Paradigm Theory”
is that if the target information (problem) can be described by a mathematical equation
(which form the only solution curve in the space), then deep learning can couple the
physical and traditional statistical methods through big data learning and optimization.
The proposed paradigm not only maintains the physical significance of the method and
the advantages of the statistical method, but also utilizes the optimization ability of deep
learning to maximizes the retrieval accuracy of SM and LST. Here we give a classic case of
remote sensing retrieval of geophysical parameters. Based on the entangled relationship
between SM and LST, a model-data-knowledge driven collaborative retrieval (MDK-CR)
method for SM and LST is proposed. The flow chart of the MDK-CR method based on
artificial intelligence is shown as in Figure 1, which can unify various methods through
smartly utilizing deep learning for interleaved iterative optimization computations. The
proposed approach can be summarized via the following steps:

Step (a): According to the specific passive microwave data, the physical mechanism
of SM and LST retrieval is derived based on expert knowledge, and then logical rules are
established to determine the mutual prior knowledge of SM and LST (Section 3.2). Finally,
the best retrieval scheme is constructed for the specific data (Section 3.3).

Step (b): The details are in Section 3.1. The simulation data obtained from the physical
model, image brightness temperature data with corresponding high precision SM and LST
product data, assimilation product data, and ground observation site data, are used as the
training and testing sample of the deep learning neural network (DL-NN). The sample
space can represent physical algorithms and statistical methods, and we use big data and
deep learning to integrate physical and statistical methods.

Step (c): Build a DL-NN for SM and LST collaborative retrieval. To overcome the
shortcomings of previous machine learning iterations on only one parameter (SM or
LST) and the entanglement of surface temperature and soil moisture, we smartly design
interleaved iterative optimization computations for SM and LST.
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Step (d): For SM, the brightness temperatures of low frequency bands of passive
microwaves are used as the input value of DL-NN input nodes while the corresponding
SM is used as the output value, and the optimal number of hidden layers and hidden nodes
are found for SM retrieval.

Step (e): The SM obtained in step (d) or step (f) and the brightness temperature of
passive microwave high frequency bands are used as the input values of the neural network
input node while the corresponding LST is used as the output value. Similarly, the best
number of hidden layers and hidden nodes is found for LST retrieval.

Step (f): The LST obtained in step (e) and the brightness temperatures of passive
microwave low frequency bands are used as the input values of the neural network input
node, and the corresponding SM is used as the output value. Similarly, the best number of
hidden layers and hidden nodes is again found for SM retrieval, and then one can repeat
step (e) until the accuracy of the soil moisture and surface temperature retrieval no longer
improves and then stop the iteration.

Step (g): The accuracy of the trained DL-NN is verified by the testing data, and the
retrieval results are obtained. The specific and detailed implementation process of the
abovementioned algorithm refers to Sections 3 and 4.

Figure 1. The proposed MDK-CR method consists of two parts: geophysical logical reasoning
based on the RTE (Steps (a–d)), and an iterative optimization algorithm using a deep learning
neural network (DL-NN) (Steps (e–g)). In Step (a), The brightness temperature at satellite includes
contributions from the soil (emissivity (Es), soil moisture (SM), roughness parameters (Q & h)),
vegetation (vegetation canopy temperature (Tc), soil temperatures (Ts), vegetation opacity (Oc) and
vegetation water content (Wc)), and atmosphere (upwelling atmospheric radiance (Ur), downwelling
atmospheric radiance (Dr), atmosphere water vapor (Wa)). Models and characteristics of land surface
microwave emission have been studied extensively; Q and h are roughness parameters. In Step (c),

the model function Φi(X) relates the parameters
{

xj

}
of the soil-vegetation-atmosphere medium to

the brightness temperature observations TBi at channel i.

3. Materials and Methods
3.1. Data

Multi-source data including physical model simulations, ground observations, remote
sensing data, and assimilation products (the fifth generation of ECMWF reanalysis (ERA5),
and China Land Data Assimilation System (CLDAS)) were used to generate the training
and test datasets. Each of these data streams is explained below.

(1) Remote sensing data.
We used the brightness temperatures of AMSR2 as known independent variables in our

SM and LST retrieval algorithm. AMSR2 is a second-generation advanced microwave radia-
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tion imager, which is installed on the “Global Change Observation Mission—Water (GCOM-
W1)” by the Japan Aerospace Exploration Agency (JAXA) and successfully launched in
2012. The AMSR2 daily brightness temperature level three product is available to the public
from JAXA (gportal.jaxa.jp). At present, AMSR2 SM products mainly have two sets of data:
the official soil moisture product of JAXA produced by a lookup table algorithm and the
soil moisture product of the University of Amsterdam in the Netherlands produced by the
land surface parameter retrieval model LPRM (Land Surface Parameter Model) algorithm.
We used 10 km of JAXA L3 grade AMSR2 SM products and corresponding brightness
temperature data at satellite, which has been widely recognized [39–41].

The MODIS surface temperature product is used as the source of the corresponding
surface temperature data. MODIS is mounted on Terra and Aqua satellites [42]. Terra’s
orbit around the Earth is timed so that it passes descending from north to south across the
equator in the morning (10:30 a.m.), while Aqua passes south to north over the equator
ascending in the afternoon (1:30 p.m.). The data are updated at least twice a day, and
MODIS LST products (MYD11C1) have been widely applied in many fields [2,6,42–44].
MYD11C1 data with a time resolution of one day and a spatial resolution of 10 km are used
in this study, and the accuracy of the LST product is generally recognized and has been
well verified [42,44].

(2) Simulation data of AIEM and M-D.
Under the conditions of setting 0.5 < sig < 3.5, 3 < cl < 35, 0.02 < SM < 0.45, 270 K < LST

< 325 K, the SM and LST simulation data are generated using the advanced integral equation
model (AIEM) [45] and the matrix doubling (M-D) model [46]. AIEM was developed based
on the Integral Equation Model (IEM). The M-D model presents relatively high accuracy in
simulating SM because the algorithm fully considers multiple scattering within vegetation
and between vegetation and the surface [46]. In this study, we use two models to simulate
TB with the corresponding SM and LST which is used for the training and test data in
a DL-NN.

(3) SM and LST assimilation products.
ERA5 is the fifth-generation ECMWF (the European Centre for Medium-Range Weather

Forecasts) atmospheric reanalysis global climate data, which covers the period from Jan-
uary 1950 onwards, and provides hourly estimates of atmospheric, land, and ocean climate
variables. The resolution of most of the variables is 30 km, and the resolution of some land
parameters is 0.1◦. In recent years, this data set has been widely used and the accuracy
of the parameters has been improved compared to the previous version [47–49]. We used
ERA5 LST data (0.1◦) and SM data (0.1◦) at a depth of 0–7 cm underground.

The CLDAS (China Land Data Assimilation System) data product from the China
Meteorological Administration covers the Asian region (0–65◦N, 60–160◦E) [50]. CLDAS
uses data fusion and assimilation technology to integrate multisource data (e.g., ground
observation data, satellite remote sensing data, and numerical model products) to generate
meteorological variables such as air and surface temperature, soil moisture, air pressure,
humidity, wind speed, precipitation, and radiation. The SM and LST data are from the
CLDAS-V1.0 business system, which are released to the public by the China Meteorological
Data Network. The CLDAS dataset includes hourly soil moisture and soil temperature data
with a spatial resolution of 0.0625◦ × 0.0625◦ at depths of 0–5, 0–10, 10–40, 40–100, and
100–200 cm in East Asia. Surface temperature and soil moisture at the depth of 0–5 cm were
used in this study. The CLDAS SM and LST data were resampled to a resolution of 10 km
to be consistent with those of AMSR2. When collecting data, only ground observation data
close to ERA5 and CLDAS data values will be used, and abnormal and unrepresentative
data should be eliminated to ensure that the selected data reflect all physical conditions.

3.2. Geophysical Logical Reasoning Driven by Expert Knowledge

The SM-LST retrieval algorithm is based on the radiative transfer (RT) process that
relates surface and atmospheric variables to the brightness temperature observations. In
the proposed SM-LST retrieval paradigm, the deep learning network finds the relationship
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between inputs (brightness temperatures) and outputs (SM and LST). Figure 2 shows the
physical derivation of SM and LST based on the RT modeling.

Figure 2. A simplified diagram of thermal RT modeling to relate LST and SM to brightness tempera-
ture measurements.

The SM and LST retrieval are based on modeling the thermal radiance from the bare
soil, vegetated soil, and canopy. For bare soil, LSE mainly changes with SM and ground
roughness. Atmospheric water vapor influences satellite radiance measurements at several
frequencies. The space-borne brightness temperature (TBi) measurements in channel i can
be related to the state variables of land surface (i.e., SM and LST) via the model function
Φi(X), as in Equation (1):

TBi = Φi(SM, LST, Roughness) (1)

In this study, in order to improve the retrieval accuracy of LST and SM, we considered
the influence of atmospheric water vapor on brightness temperature at satellite, and the
soil and vegetation temperatures were retrieved as a single effective surface temperature
averaged over the satellite footprint. Three surface radiation models were used depending
on the surface roughness.

(1) Smooth surfaces radiometric modelling.
For a smooth surface, the brightness temperature (TBp), (where p represents polariza-

tion, H or V) is related to the effective land surface temperature (Ts) and via:

Tbp(θ) = esp(θ) · Ts (2)

where Ts is the effective land surface temperature, θ is the incidence (observation) angle
relative to nadir, and esp is the LSE that can be computed from the land surface reflectivity
Γbp [51]:

esp(θ) = 1 − Γbp(θ) (3)

Using the Fresnel equations for smooth surfaces, soil reflectivity (ΓBp* ) can be com-
puted from the soil dielectric constant (ε) and incidence angle (θ) (Equations (4) and (5)).
The dielectric constant at a given frequency depends on SM and, to a lesser extent, on the
soil density and percentage of sand and clay. The Dobson dielectric model is used in this
study to estimate the soil dielectric constant [52].

According to the Fresnel formulas (Equations (4) and (5)), the reflectivity of a smooth
surface under H and V polarizations is related to the soil dielectric constant, ε (which
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itself depends on SM) and observation angle (θ). Given the brightness temperature mea-
surements (TBp) in Equation (1), Ts, θ, and esp (which itself is a function of SM) are the
three unknowns.

Γ∗BH
=

∣∣∣∣∣ cosθ −
(
ε− sin2θ

)0.5

cosθ + (ε− sin2θ)
0.5

∣∣∣∣∣
2

(4)

Γ∗BV
=

∣∣∣∣∣ εcosθ −
(
ε− sin2θ

)0.5

εcosθ + (ε− sin2θ)
0.5

∣∣∣∣∣
2

(5)

(2) Rough surface radiometric modelling.
A smooth land surface is a special case of a rough surface. Hence, the influence of

roughness should be considered in surface radiation modeling. Moreover, since microwave
radiation penetrates into the ground, the volume scattering (caused by uneven physical
properties of the soil) must be considered. Semi-empirical and physical models have been
used to calculate the emissivity of rough surfaces [52].

In this study, the semi-empirical L-MEB model, which was developed by Wang and
Choudhury [53], was used to analyze the roughness surface. The rough surface reflectivity
(ΓBp) can be written as follows:

ΓBp(θ) = [((1−QR(θ))Γ∗Bp1(θ) + QR(θ)Γ∗Bp2(θ)) exp
(
−HRP(θ)cosNPR(θ)

)
(6)

where Γ∗Bp1 and Γ∗Bp2 (with p1 = H and p2 = V) are the specular reflectivity of a smooth
surface for the horizontal and vertical polarizations, respectively. HRP, QR and NPR are the
roughness parameters, as in Equation (7):

HQN = f (s, l, . . .) (7)

where HQN is roughness model, s and l are the root mean square height and correlation
length, respectively, which are used to describe surface roughness. Therefore, given the
brightness temperature measurements (TBp) in Equation (1), there are five main unknowns
in the case of a rough surface— SM, LST, θ, s, and l, so at least five equations must be
constructed to solve the SM and LST.

(3) Vegetation radiometric modeling.
For a vegetated land surface, the soil, vegetation, and atmosphere contribute to the

brightness temperature measurements of the satellite. The contribution of the atmosphere
(TA) to the brightness temperature is given by Equation (8).

TA = Tu + exp(−τa)rpTd (8)

where Tu and Td are the upwelling and downwelling atmospheric emissions, respectively.
τa is the atmospheric opacity along the viewing path, which depends on water vapor
content (WVC). rp is the surface reflectivity. The brightness temperature (Tbp) for a ho-
mogeneous vegetated surface can be calculated by Equation (9). After considering the
influence of the atmosphere, the whole radiative transfer (RT) process can be described by
Equation (10).

Tbp = Ts

(
1− rsp

)
exp(−τc)

+Tc
(
1−ωp

)
[1− exp(−τc)]

+Tc
(
1−ωp

)
[1− exp(−τc)]rsp exp(−τc)

(9)

Tbp = Tu + exp(−τa)
{

rpTd + Ts

(
1− rsp

)
exp(−τc)

+Tc
(
1−ωp

)
[1− exp(−τc)]

+Tc
(
1−ωp

)
[1− exp(−τc)]rsp exp(−τc)

} (10)
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Here, the LSE (esp) and reflectivity (rsp) are related by esp = 1 − rsp, τc which is the
vegetation opacity along the viewing path while ωp is the vegetation single scattering
albedo. Multiple scattering in the vegetation layer is neglected, and the soil and vegetation
temperatures Ts are assumed to be approximately equal [4]. The opacity along the viewing
path is related to the vegetation water content by Equation (11):

τc = bwe/cosθ (11)

where b is the statistical coefficient and ωe is the vegetation water content. Therefore, for
vegetated land surface, there are nine unknowns, namely, SM, LST, esp, ωp, ωe, s, l, θ, and
WVC. Bare surface is considered a special case of a vegetated surface.

Given the abovementioned nine unknown variables, nine equations are required for
the simultaneous retrieval of SM and LST on a vegetated surface. Since there is an inherent
connection (e.g., Equation (6)) among the different physical parameters, we compared
the retrieval accuracy at different frequencies by constructing different combinations with
eight to fourteen radiative transfer equations. Low frequencies are more sensitive to SM.
Hence, brightness temperatures in at least eight low-frequency channels (6.9, 7.3, 10.65,
and 18.7 GHz V/H) were utilized to construct eight theoretical equations for deep learning.
The high frequency is more sensitive to LST. Therefore, at least eight high-frequency
channels (18.7, 23.8, 36.5, and 89 GHz V/H) were employed to retrieve LST. In addition,
the geophysical variables are interrelated and restricted [54]. When the number of input
microwave channels is less than eight, the accuracy of SM and LST may be slightly reduced.

We first obtained the initial soil moisture by retrieval using the brightness temperatures
of no less than eight channels. To improve the accuracy of LST retrieval, SM is the input
into the deep learning model. On the other hand, LST is a key variable for calculating
LSE. Therefore, the accuracy of SM retrievals is improved by using LST as the input for
the deep learning network. After iterations, the accuracy of SM and LST retrieval reaches
its maximum.

3.3. Iterative Computing

Brightness temperature measurements in different microwave frequencies can be used
to generate radiation transmission equations, e.g., Equation (10). Thereafter, SM and LST
can be obtained by solving those equations. It is worth mentioning that the resulting
equations are complex and difficult to solve. However, we can efficiently solve them
and find SM and LST by using a deep learning network. In order to capture different
hydrological and vegetation conditions, sample data constituting the solution of equation
(10) were collected from different regions and seasons in China during the period of
2018–2020 (three years). It includes known variables (brightness temperature of each
frequency) and corresponding unknown variables (SM and LST).

Strictly ensure that the brightness temperature (BT) of AMSR2 at satellite is synchro-
nized with the corresponding ground temperature and soil moisture data. At the same time,
only when AMSR2 SM products and MODIS LST products are very close to the surface
temperature and soil moisture data of ERA5 and CLDAS will these data of bare land and
vegetation areas be collected. After geometric correction, we collected 20,000 samples
using longitude and latitude as control conditions. These data were integrated into a
high-precision sample database, of which 14,000 and 6000 samples were used to train and
test the deep learning neural network to solve the Equation (10).

Figure 3 shows the developed iterative procedure for computing SM and LST. As can
be seen, the training and test databases are continuously updated by the new retrievals.
Iterations continue until the network structure reaches the global optimal solution, i.e., the
difference between LST/SM estimates in two consecutive iterations is less than 0.01 K/0.001.
In the figure, the subscripts tr and te indicate training data and test data respectively. The
subscript in Ri (i = 1, 2, 3, . . . , F) indicates the ith retrieved results, and F represents the
final iteration.
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Figure 3. The iterative computing flow of SM and LST.

4. Results and Validation

To verify the accuracy of the MDK-CR method, a case study in China was selected
where we have more prior knowledge. China ranges from 3◦31’00” to 53◦33’00”N latitude
and 73◦29’59” to 135◦2’30”E longitude. China’s terrain is high in the west and low in
the east. The main terrain includes five types: plateau, mountain, hill, basin, and plain.
Geographical location and diverse terrain determine China’s diverse climate, making the
spatial distribution pattern of rainfall high in the southeast and low in the northwest. We
selected the Chinese mainland as the research area because the climate types of different
regions are distinct, and the Chinese mainland is divided into six regions according to the
climate conditions (Figure 4).
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Figure 4. A case study of China. I: Northeast China, II: Northwest China, III: North China, IV:
southeast China, V: Southwest China, and VI: Qinghai–Tibet.

(1) SM retrieval

Considering that the most sensitive channel to SM retrieval is the low-frequency
channel, we gradually reduced from fourteen channels to eight low-frequency channels. An
introduction to deep learning methods and calculations can be found in [25,26,54,55]. The
combination of different combination frequencies (eight to fourteen brightness temperature
equations) is optimized by deep learning and the results are shown in Tables 1–4.

As shown in the above tables, it can be concluded that the accuracy of SM retrieval of
ten to fourteen channels is good and stable, and the minimum ME (mean absolute error)
is about 0.037 m3/m3. However, the SM retrieval error of eight channels starts to become
larger, which is not the best combination for SM retrieval. Further, considering the time
cost and data redundancy, we recommend using ten low-frequency channels to retrieve
SM, which can ensure high accuracy and efficiency.

Table 1. Fourteen channels are used to retrieve SM (brightness temperature combination of four-
teen channels).

I 14 BTs (from 6.9, 7.3,10.65, 18.7, 23.8, 36.5, 89 GHz V/H)→SM

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 0.039 0.037 0.859 0.039 0.037 0.860 0.041 0.037 0.842 0.038 0.037 0.864 0.038 0.037 0.867
4 0.041 0.038 0.836 0.040 0.038 0.849 0.041 0.038 0.838 0.038 0.037 0.870 0.039 0.036 0.863
5 0.042 0.039 0.828 0.039 0.037 0.864 0.040 0.038 0.843 0.040 0.037 0.856 0.037 0.036 0.878
6 0.038 0.037 0.866 0.040 0.037 0.855 0.038 0.037 0.870 0.037 0.036 0.881 0.039 0.037 0.860
7 0.041 0.039 0.826 0.038 0.036 0.876 0.039 0.038 0.851 0.037 0.035 0.889 0.038 0.037 0.872
8 0.038 0.036 0.867 0.040 0.038 0.843 0.038 0.036 0.876 0.037 0.036 0.884 0.037 0.036 0.880
9 0.040 0.038 0.841 0.039 0.037 0.869 0.039 0.036 0.867 0.038 0.036 0.869 0.039 0.037 0.859

10 0.041 0.038 0.829 0.039 0.037 0.861 0.037 0.036 0.884 0.037 0.036 0.879 0.038 0.037 0.869

ME: Mean absolute error; R: Correlation coefficient; SD: Standard deviation of the fit, units (m3/m3).
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Table 2. Twelve channels are used to retrieve SM (brightness temperature combination of twelve channels).

II 12 BTs (from 6.9, 7.3,10.65, 18.7, 23.8, 36.5 GHz V/H)→SM

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 0.040 0.037 0.849 0.040 0.038 0.837 0.038 0.036 0.868 0.039 0.037 0.855 0.037 0.036 0.882
4 0.042 0.039 0.811 0.040 0.038 0.839 0.039 0.037 0.853 0.038 0.037 0.865 0.037 0.037 0.875
5 0.039 0.037 0.852 0.039 0.037 0.856 0.039 0.037 0.869 0.038 0.036 0.874 0.038 0.037 0.872
6 0.041 0.038 0.827 0.037 0.036 0.889 0.039 0.036 0.864 0.037 0.036 0.882 0.038 0.036 0.875
7 0.040 0.038 0.844 0.038 0.037 0.872 0.038 0.037 0.863 0.038 0.036 0.871 0.039 0.037 0.852
8 0.039 0.037 0.858 0.038 0.037 0.862 0.041 0.038 0.828 0.039 0.037 0.855 0.039 0.037 0.852
9 0.040 0.037 0.844 0.036 0.035 0.891 0.039 0.037 0.853 0.040 0.037 0.849 0.038 0.036 0.876

10 0.041 0.038 0.839 0.040 0.037 0.844 0.038 0.037 0.869 0.040 0.038 0.841 0.038 0.037 0.868

Table 3. Ten channels are used to retrieve SM (brightness temperature combination of ten channels).

III 10 BTs (from 6.9, 7.3,10.65, 18.7, 23.8 GHz V/H)→SM

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 0.041 0.038 0.836 0.041 0.037 0.840 0.039 0.037 0.859 0.038 0.037 0.866 0.038 0.036 0.871
4 0.040 0.038 0.836 0.041 0.038 0.832 0.037 0.036 0.875 0.038 0.036 0.875 0.038 0.037 0.870
5 0.038 0.036 0.870 0.039 0.037 0.861 0.037 0.036 0.884 0.037 0.036 0.884 0.037 0.036 0.878
6 0.037 0.036 0.878 0.039 0.037 0.860 0.038 0.037 0.868 0.038 0.036 0.872 0.037 0.036 0.876
7 0.038 0.036 0.868 0.039 0.037 0.858 0.038 0.036 0.871 0.038 0.037 0.863 0.037 0.036 0.881
8 0.038 0.036 0.869 0.038 0.037 0.866 0.037 0.036 0.878 0.038 0.036 0.868 0.037 0.036 0.893
9 0.037 0.036 0.882 0.037 0.036 0.875 0.038 0.037 0.867 0.038 0.037 0.8678 0.037 0.036 0.884

10 0.039 0.037 0.858 0.037 0.036 0.883 0.041 0.038 0.839 0.038 0.037 0.859 0.038 0.036 0.872

Table 4. Eight channels are used to retrieve SM (brightness temperature combination of eight channels).

IV 8 BTs (from 6.9, 7.3,10.65, 18.7 GHz V/H)→SM

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 0.046 0.046 0.789 0.045 0.045 0.802 0.047 0.046 0.781 0.044 0.045 0.833 0.045 0.045 0.805
4 0.045 0.045 0.811 0.047 0.046 0.772 0.046 0.046 0.791 0.045 0.045 0.824 0.046 0.045 0.794
5 0.047 0.046 0.774 0.048 0.046 0.768 0.047 0.046 0.781 0.045 0.045 0.813 0.045 0.045 0.811
6 0.044 0.045 0.817 0.045 0.045 0.812 0.044 0.045 0.814 0.045 0.045 0.813 0.045 0.045 0.812
7 0.045 0.045 0.805 0.046 0.045 0.801 0.046 0.046 0.785 0.045 0.045 0.811 0.045 0.046 0.802
8 0.046 0.045 0.798 0.046 0.045 0.801 0.045 0.045 0.811 0.044 0.045 0.815 0.047 0.046 0.773
9 0.045 0.045 0.805 0.048 0.047 0.759 0.045 0.045 0.803 0.046 0.045 0.803 0.045 0.045 0.814

10 0.045 0.045 0.801 0.045 0.045 0.812 0.043 0.042 0.852 0.039 0.039 0.881 0.044 0.044 0.821

(2) LST retrieval based on SM as a priori knowledge

Through geophysical logic reasoning, we know that soil moisture, as a priori knowl-
edge, when used as input information for deep learning, can improve the accuracy of
surface temperature retrieval. Therefore, the most accurate soil moisture value obtained by
the above retrieval is used as prior knowledge to retrieve the surface temperature, together
with the high-frequency brightness temperatures. Similar to the soil moisture retrieval
above, we gradually reduce from fourteen channels and retain eight high-frequency chan-
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nels. Through constant iteration, the LSTs retrieved based on SM as priori knowledge are
shown in Tables 5–8, and the accuracy is relatively stable.

Table 5. SM and fourteen channels are used to retrieve LST (SM and brightness temperature combi-
nation of fourteen channels).

V SM + 14 BTs (from 6.9, 7.3,10.65, 18.7, 23.8, 36.5, 89 GHz V/H)→LST

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 1.76 1.60 0.987 1.65 1.51 0.988 1.55 1.34 0.990 1.65 1.48 0.989 1.55 1.37 0.990
4 1.74 1.58 0.987 1.71 1.55 0.988 1.63 1.44 0.989 1.74 1.58 0.987 1.52 1.34 0.990
5 1.68 1.50 0.988 1.60 1.46 0.989 1.57 1.40 0.990 1.50 1.28 0.991 1.50 1.39 0.991
6 1.66 1.47 0.989 1.61 1.41 0.989 1.56 1.38 0.990 1.58 1.41 0.990 1.51 1.30 0.991
7 1.57 1.37 0.990 1.64 1.48 0.989 1.64 1.49 0.989 1.50 1.30 0.991 1.56 1.38 0.990
8 1.71 1.56 0.988 1.62 1.50 0.989 1.55 1.37 0.990 1.51 1.30 0.991 1.56 1.38 0.990
9 1.59 1.38 0.990 1.61 1.39 0.989 1.58 1.41 0.990 1.50 1.33 0.991 1.56 1.35 0.990

10 1.65 1.48 0.989 1.71 1.55 0.987 1.63 1.44 0.989 1.55 1.37 0.990 1.57 1.40 0.990

Table 6. SM and twelve channels are used to retrieve LST (SM and brightness temperature combina-
tion of twelve channels).

VI SM + 12 BTs (from 7.3,10.65, 18.7, 23.8, 36.5, 89 GHz V/H)→LST

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 1.68 1.49 0.988 1.63 1.48 0.989 1.61 1.44 0.989 1.59 1.41 0.990 1.51 1.32 0.991
4 1.62 1.42 0.989 1.63 1.45 0.989 1.60 1.42 0.989 1.54 1.36 0.990 1.59 1.43 0.989
5 1.75 1.61 0.987 1.62 1.45 0.989 1.53 1.34 0.990 1.54 1.35 0.990 1.58 1.40 0.990
6 1.70 1.59 0.987 1.63 1.46 0.989 1.52 1.31 0.991 1.53 1.29 0.991 1.52 1.33 0.991
7 1.63 1.45 0.989 1.58 1.37 0.990 1.66 1.52 0.988 1.50 1.29 0.991 1.52 1.33 0.991
8 1.71 1.57 0.987 1.59 1.42 0.989 1.55 1.33 0.990 1.58 1.41 0.990 1.60 1.43 0.989
9 1.71 1.59 0.987 1.62 1.45 0.989 1.54 1.33 0.990 1.58 1.39 0.990 1.51 1.31 0.991

10 1.58 1.42 0.989 1.60 1.40 0.989 1.69 1.56 0.988 1.54 1.34 0.990 1.53 1.32 0.990

Table 7. SM and ten channels are used to retrieve LST (SM and brightness temperature combination
of ten channels).

VII SM + 10 BTs (from 10.65, 18.7, 23.8, 36.5, 89 GHz V/H)→LST

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 1.74 1.57 0.987 1.54 1.34 0.990 1.60 1.44 0.989 1.58 1.38 0.990 1.56 1.35 0.990
4 1.68 1.54 0.988 1.67 1.56 0.988 1.55 1.33 0.990 1.61 1.45 0.989 1.58 1.36 0.990
5 1.62 1.43 0.989 1.59 1.42 0.989 1.62 1.43 0.989 1.53 1.33 0.991 1.53 1.32 0.990
6 1.72 1.61 0.987 1.74 1.59 0.987 1.56 1.35 0.990 1.56 1.38 0.990 1.66 1.50 0.988
7 1.71 1.57 0.987 1.60 1.44 0.989 1.62 1.41 0.989 1.54 1.34 0.990 1.69 1.55 0.988
8 1.67 1.49 0.988 1.56 1.38 0.990 1.62 1.45 0.989 1.56 1.36 0.990 1.59 1.42 0.989
9 1.69 1.53 0.988 1.61 1.43 0.989 1.64 1.50 0.988 1.56 1.36 0.990 1.59 1.40 0.989

10 1.62 1.43 0.989 1.65 1.48 0.988 1.55 1.33 0.990 1.50 1.31 0.991 1.56 1.38 0.990

As shown in the above tables, it can be concluded that the accuracy of LST retrieval of
ten to fourteen channels is good and stable, and the minimum ME is about 1.5 K. However,
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the LST retrieval error of eight channels starts to become larger, i.e., it is not the best
combination for LST retrieval. Similar to soil moisture retrieval, we recommend using soil
moisture as prior knowledge and ten high-frequency channels to retrieve LST, which can
ensure high accuracy and efficiency.

Table 8. SM and eight channels are used to retrieve LST (SM and brightness temperature combination
of eight channels).

VIII SM + 8 BTs (from 18.7, 23.8, 36.5, 89 GHz V/H)→LST

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 2.19 1.96 0.978 2.12 1.83 0.979 2.19 1.94 0.978 2.10 1.83 0.979 2.09 1.82 0.979
4 2.14 1.84 0.979 2.15 1.89 0.978 2.10 1.84 0.979 2.19 1.94 0.978 2.16 1.93 0.978
5 2.19 1.94 0.978 2.16 1.93 0.978 2.12 1.86 0.979 2.12 1.83 0.979 2.07 1.79 0.980
6 2.20 1.98 0.977 2.14 1.90 0.978 2.15 1.87 0.979 1.85 1.77 0.980 2.07 1.78 0.980
7 2.19 1.92 0.978 2.11 1.86 0.979 2.10 1.84 0.979 2.16 1.92 0.978 2.14 1.86 0.979
8 2.23 1.96 0.977 2.10 1.86 0.979 2.21 1.96 0.977 2.12 1.85 0.979 2.10 1.84 0.979
9 2.24 1.99 0.977 2.14 1.89 0.979 2.14 1.87 0.979 2.10 1.82 0.979 2.10 1.84 0.979

10 2.18 1.91 0.978 2.13 1.88 0.979 2.16 1.91 0.978 2.14 1.85 0.979 2.07 1.79 0.980

(3) Iterative retrieval based on LST and SM as a priori knowledge

We continue to use the LST dataset with the highest accuracy retrieved above as a priori
knowledge, and we use ten low-frequency brightness temperatures as input nodes for deep
learning to retrieve SM. We then use the highest SM value obtained from previous retrieval
as a priori knowledge and high-frequency brightness temperature as input information to
retrieve LST. After three iterations, the SM and LST retrieved based on LST or SM as priori
knowledge are shown in Tables 9 and 10. The minimum average error is about 0.027 m3/m3,
which is 0.01 m3/m3 higher than without prior knowledge (LST). The highest average
accuracy for the retrieval of surface temperature is 1.38 K, which is 0.12 K higher than the
first inversion. Although we continued to iterate, which made the inversion more stable,
the average accuracy was not improved further. The accuracy of deep learning training and
testing has a close relationship with the accuracy of the collected training and test datasets.
If we want to further improve the accuracy, we need to further discriminate the sample
accuracy of the training and test data or add a more high-precision data set. We can also
build different training and testing databases according to different regions, seasons, and
weather conditions, so as to improve the accuracy of the retrieval.

Table 9. LST and ten channels are used to retrieve SM (LST and brightness temperature combination
of ten channels).

IX LST + 10 BTs (from 6.9, 7.3,10.65, 18.7, 23.8 GHz V/H)→SM

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 0.039 0.037 0.839 0.036 0.035 0.845 0.035 0.036 0.866 0.035 0.034 0.869 0.035 0.034 0.873
4 0.038 0.036 0.833 0.037 0.036 0.847 0.034 0.033 0.879 0.033 0.034 0.878 0.033 0.034 0.874
5 0.035 0.033 0.875 0.039 0.036 0.846 0.036 0.037 0.874 0.033 0.032 0.888 0.035 0.033 0.881
6 0.033 0.034 0.880 0.036 0.035 0.861 0.035 0.043 0.875 0.035 0.034 0.875 0.035 0.034 0.879
7 0.034 0.035 0.871 0.035 0.034 0.863 0.034 0.035 0.876 0.029 0.031 0.892 0.036 0.033 0.884
8 0.035 0.036 0.870 0.035 0.034 0.867 0.036 0.035 0.865 0.032 0.033 0.880 0.036 0.035 0.895
9 0.036 0.035 0.855 0.034 0.034 0.879 0.030 0.032 0.883 0.035 0.034 0.869 0.035 0.034 0.886

10 0.036 0.037 0.851 0.034 0.035 0.887 0.027 0.029 0.899 0.035 0.036 0.868 0.036 0.034 0.875
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Table 10. SM and ten channels are used to retrieve LST (SM and brightness temperature combination
of ten channels).

X SM + 10 BTs (from 10.65, 18.7, 23.8, 36.5, 89 GHz V/H)→LST

Layers

Nodes 400 500 600 700 800

ME SD R ME SD R ME SD R ME SD R ME SD R
3 1.59 1.46 0.988 1.48 1.34 0.991 1.46 1.43 0.989 1.46 1.37 0.991 1.47 1.34 0.990
4 1.53 1.48 0.989 1.52 1.49 0.989 1.43 1.35 0.991 1.43 1.36 0.990 1.43 1.33 0.990
5 1.51 1.45 0.990 1.48 1.41 0.990 1.48 1.44 0.989 1.43 1.34 0.991 1.42 1.32 0.990
6 1.59 1.49 0.989 1.59 1.51 0.988 1.44 1.33 0.990 1.40 1.31 0.991 1.45 1.48 0.989
7 1.62 1.51 0.988 1.47 1.41 0.990 1.45 1.39 0.989 1.39 1.28 0.992 1.45 1.51 0.989
8 1.53 1.45 0.989 1.43 1.39 0.991 1.45 1.38 0.989 1.43 1.34 0.990 1.44 1.41 0.990
9 1.55 1.48 0.988 1.44 1.41 0.990 1.41 1.35 0.990 1.44 1.35 0.990 1.45 1.35 0.990

10 1.49 1.42 0.990 1.51 1.44 0.989 1.38 1.26 0.992 1.46 1.33 0.991 1.44 1.32 0.991

(4) Validation and application

(1) A case study.
To provide an example of the application of the algorithm, the images of AMSR2 in

China on 20 July 2019 were selected as a case study. Using the training database established
above, we input the brightness temperatures accordingly, and iteratively calculate SM and
LST. Figure 5A,B shows that the distribution trend of retrieved SM in China is relatively
reasonable, and the retrieval results are consistent with the distribution of dry and wet con-
ditions in north and south China. The SM gradually increases from northwest to southeast
China. The overall performance is the “western dry, northeastern and southeastern wet”
spatial distribution pattern. The ascending orbit (Figure 5A) shows the daytime (13:30)
and the descending orbit (Figure 5B) shows the nighttime (1:30). In general, SM at night is
higher than SM during the day. SM with a low value is mainly distributed in the desert
from the Tarim Basin to the Alashan Plateau in Xinjiang, Gobi (in the II area, Northwest
China). The average SM is below 0.1 m3/m3. These areas have temperate continental
climates with less precipitation and strong radiation, and the surface water fixation capacity
is poor due to low vegetation coverage. The SM with high value is mainly distributed in
the Northeast Plain (I area) and North China Plain (III area). In the plains, the Yangtze
River Basin, and south of the Yangtze River, the average SM is more than 0.3 m3/m3. These
areas are mostly affected by monsoon climates, high temperature and rain in summer, high
vegetation coverage, developed water systems, and good surface water fixation capacities.

Figure 5a,b are the corresponding AMSR2 soil moisture products obtained from the
Japan Aerospace Exploration Agency (JAXA). By comparing Figure 5A,a,B,b, we see that
the soil moisture results retrieved by the MDK-CR method are in good agreement with
the overall trend of AMSR2 soil moisture products. In northeast and southwest China,
there are many forest cover areas, and the soil moisture product of AMSR2 is somewhat
overestimated. Soil moisture under forests is usually not too high, and ground observatory
data have confirmed this observation [39,40]. The soil moisture retrieved by the MDK-CR
method is more reasonable than the official product.

Figure 6A is the retrieval LST of the MDK-CR method during the day (13:30), which
shows that the distribution trend of LST in China is relatively reasonable. The LST of the
Badain Jaran Desert, Tengger Desert, and Taklimakan Desert in Xinjiang is the highest,
and the LST of the Qinghai-Tibet Plateau is the lowest. Under normal circumstances,
the surface temperature in northern China is lower than that in southern China, but the
daytime temperature retrieval results on this day are just the opposite. The main reason is
that southern China is covered by clouds, which leads to the inability of thermal infrared
remote sensing to retrieve the surface temperature, as can be seen from the corresponding
MODIS LST product data (Figure 6a). There are no clouds in the sky of northern China,
and the sun’s rays shine directly on the ground surface, resulting in relatively high surface
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temperatures in northern China. There are relatively few clouds in northern China, and the
ground heat dissipation is very fast. The south of China is cloudy and has good thermal
insulation effect. As a result, the nighttime temperature in southern China is relatively
high, as shown in Figure 6B,b. By comparing Figure 6A,a,B,b, we find that the LST results
retrieved by the MDK-CR method are in good agreement with the overall trend of MODIS
LST products under cloud-free conditions. When there are clouds in the sky, we can use
passive microwave remote sensing data to retrieve surface temperature, which has unique
advantages by comparison.
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Figure 5. The retrieved SM (m3/m3) by “MDK-CR” method: (A) ascending and (B) descending
orbits. AMSR2 SM products: (a)ascending and (b) descending orbits.

(2) Validation.
Ground validation is very important for the practical application and promotion of

the method. Although the ground point measured data and the large-scale remote sensing
retrieval results cannot be accurately docked on the spatial scale of expression, we used
multi-source surface temperature data to ensure the accuracy of ground temperature as
much as possible. To ensure the accuracy of data collection, only these data were used
when soil moisture and LST values from ground observation sites were very close to both
the ERA5 and CLDAS data. We selected eighteen observation sites with flat terrain and
relatively single surface type in China, and we extracted a total of 495 observation data
sets from 2018 to 2019. The retrieved result pixel is extracted according to the latitude
and longitude position of the observation station. As shown in Figure 7a, the mean
absolute error (MAE) of the retrieved SM and ground synchronization observation data
was 0.029 m3/m3, and the RMSE was 0.037 m3/m3, and the coefficient of determination (R2)
was 0.91. As seen in Figure 7b, the MAE of the retrieved LST and ground synchronization
observation data was 1.64 K, the RMSE was 2.05 K, and the R2 was 0.98.
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Cross-validation is also an important part of comparing the algorithm with similar
products before its application. We compared the retrieved SM and LST with the SM
products of AMSR2 and the LST products of MODIS, respectively. Spatial comparisons
between different products have been made in Figures 5 and 6, and the comparative
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analysis found that the overall situation of the spatial contrast was very good. Specifically,
after resampling Figures 5 and 6to the same resolution, we conducted random sampling in
different areas where both had effective values. There are 2862 samples of soil moisture
and 1653 samples of surface temperature, and cross validation is shown in Figure 8. Taking
the soil moisture product of AMSR2 as a reference, the MAE of soil moisture estimated
by the MDK-CR method was 0.03 m3/m3 and RMSE was 0.037 m3/m3. Compared with
MODIS LST (MYD11C1) products, the MAE of LST estimated by the MDK-CR method
was 1.83 K and the RMSE was 2.38 K. Comparative analysis showed that our algorithm has
high consistency with other algorithm products, and our algorithm has certain advantages
because it can adapt to more situations by supplementing high-precision samples.
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5. Conclusions

A geophysical parameter retrieval paradigm theory is presented based on the combi-
nation of deep learning and model-data-knowledge, which integrates physical methods,
statistical methods and expert knowledge with deep learning. Deep learning solves the
ill-posed problem of entanglement between soil moisture and surface temperature by inte-
grating optimized computational physical methods and statistical methods. This greatly
improves the retrieval accuracy of passive microwave soil moisture and surface tempera-
ture and overcomes the shortcomings of previous single parameter (LST or SM) retrieval
algorithms. The physical models are simulated to obtain the solutions of physical methods
and multisource data are utilized to obtain the solutions of statistical methods. The two-
part solution constitutes the training and test data of deep learning, which is equivalent
to optimizing and solving physical and statistical methods at the same time. This makes
the use of deep learning have physical meaning and interpretability, and the application
of deep learning has great application potential in the field of geoscience. The retrieval of
soil moisture and surface temperature using passive microwave data shows that this mode
can obtain all-weather retrieval results, and the validation indicates that the mean absolute
error of the retrieved SM and LST data are 0.027 m3/m3 and 1.38 K, respectively. Two
points in the retrieval paradigm of geophysical parameters proposed by us need to be noted.
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In theory, the physical equation can be constructed between the input parameters and the
output parameters of deep learning. If more than 50% of the information of the output
parameters of deep learning depends on the input parameters (with a strong relationship),
it can be directly inverted. If the amount of information of the output parameters of deep
learning depends less than 50% on the input parameters (with a weak relationship), it is
necessary to use prior knowledge as input to improve the inversion accuracy of the output
parameters. There is a strong correlation between soil moisture and passive microwave
brightness temperature at satellite, so soil moisture retrieval may not need the surface tem-
perature as a prior knowledge. However, the relationship between the surface temperature
and the brightness temperature at satellite is weak. Therefore, in order to improve the
accuracy of passive microwave surface temperature retrieval, it is necessary to use soil
moisture as a prior knowledge. The basis of the general paradigm based on deep learning
is to prove that the input parameters can uniquely determine the output parameters. That
is to say, there is a causal relationship and a complete set of closed-form equations can
be constructed between the input and output parameters of deep learning in theory. If
the equation set cannot be completely constructed between the input parameters and the
output parameters of deep learning, then the inversion parameters using deep learning are
generally only applicable to local areas or short time ranges. The coupling of deep learning,
physical methods, and statistical methods is of milestone significance in the development
history of geophysical parameter retrieval technology, and this retrieval paradigm model
based on artificial intelligence can also be used for other geophysical retrievals.
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