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Abstract: Heterogeneous change detection has a wide range of applications in many fields. However,
to date, many existing problems of heterogeneous change detection, such as false alarm suppression,
have not been specifically addressed. In this article, we discuss the problem of false alarm suppression
and propose a new method based on the combination of a convolutional neural network (CNN)
and graph convolutional network (GCN). This approach employs a two-channel CNN to learn the
feature maps of multitemporal images and then calculates difference maps of different scales, which
means that both low-level and high-level features contribute equally to the change detection. The
GCN, with a newly built convolution kernel (called the partially absorbing random walk convolution
kernel), classifies these difference maps to obtain the inter-feature relationships between true targets
and false ones, which can be represented by an adjacent matrix. We use pseudo-label samples to
train the whole network, which means our method is unsupervised. Our method is verified on
two typical data sets. The experimental results indicate the superiority of our method compared to
some state-of-the-art approaches, which proves the efficacy of our method in false alarm suppression.

Keywords: heterogeneous change detection; CNN; feature difference; GCN

1. Introduction

Recently, heterogeneous change detection has drawn increased attention. Hetero-
geneous change detection aims to achieve change detection from images coming from
different types of sensors. Its advantages over homogeneous change detection are clear. It
not only combines the characteristics of multiple types of data and removes the environ-
mental conditions. Additionally, it provides a timely change analysis, especially in case
of disasters. However, many issues related to heterogeneous change detection have not
been addressed, such as false alarms. False alarms can lead researchers to misjudge and
mispredict the development trends of events. Furthermore, they can cause researchers to
waste resources when dealing with change. Therefore, in this paper, we discuss the issue of
false alarm suppression in detail.

Existing heterogeneous change detection methods can be classified from different
perspectives. According to the availability of labeled samples, this type of detection can be
classified into supervised and unsupervised methods. Since it is difficult to obtain change
samples and ground truth maps, unsupervised methods are preferable to supervised
ones. According to the processing scale, there are patch-level, pixel-level and subpixel-
level methods. Among them, subpixel-level methods are more prominent in improving
accuracy [1]. In [2], fine spatial but coarse temporal resolution images and coarse spatial but
fine temporal images are combined to detect changes by using spectral unmixing to generate
the abundance image. According to the principle of the algorithms, there are classification-
based, parametric, non-parametric, similarity-based and translation and projection-based
methods. Classification-based techniques compare the results of classifying individual
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images. Parametric techniques use a set of multivariate distributions to model the joint
statistics of different imaging modalities, while non-parametric ones do not explicitly
assume a specific parametric distribution. The similarity measures are modality-invariant
properties. Translation or projection-based methods convert multimodal images onto
a common space in which homogeneous change detection methods can be applied [3].

Among these methods, those based on translation and projection without the presup-
position of various conditions have gained the greatest popularity. Non-deep learning
methods and deep learning methods are used to realize translation and projection. First, we
take a look at the non-deep learning methods. Based on changes in smoothness, a decom-
position method was proposed to decompose the post-event image into a regression image
of pre-event image and a changed image [4]. In [5], heterogeneous change detection was
converted into a graph signal processing problem and structural differences were used to
detect changes. In [6], a robust K-nearest neighbor graph was established and an iterative
framework was put forward based on a combination of difference map generation and
change map calculation. In [7], a self-expressive property was exploited and difference
image was obtained by measuring how much one image conformed to the similarity graph
compared to the other image. Furthermore, considering the impact of noise, the fusion of
forward and backward difference images was accomplished by statistical modeling in [8].
In [9], a new method called INLPG was developed by constructing a graph for the whole
image and applying the discrete wavelet transform to fuse difference images. In [10], a prob-
abilistic graph was constructed and image translation was based on the sparse-constrained
image regression model. Next, we investigated deep learning methods. A conditional
generative adversarial network was used to transform the heterogeneous synthetic aper-
ture radar (SAR) and optical images into the same space to form the difference image [11].
In [12], CycleGAN was adopted to translate the pre-event SAR image into an optical image,
and the difference image was obtained by comparing the translated optical image with the
post-event optical image. In [13], a self-supervised detection method was developed based
on pseudo-training from affinity matrices and four kinds of regression methods, namely,
Gaussian process regression, support vector regression, random forest regression, and
homogeneous pixel transformation. In [14], two new convolutional neural networks were
constructed with a loss function based on the affinity priors to mitigate the impact of change
pixels on the learning objective. In [15], a graph fusion framework for change detection
was proposed on the condition of smoothness priors. In [16], an end-to-end framework
of a graph convolutional network was constructed to increase localization accuracy in the
vertex domain by exploiting intra-modality and cross-modality information.

Generally, the detection results contain many pseudo-changes, which stem from
three sources. The first is the difference between shapes and sizes of the same object in
heterogeneous images, the second is the imbalance in sample categories in supervised and
self-supervised methods, and the third is inherent noise in the imaging process. A common
method to solve this problem is supervised classification, which requires some prior
knowledge. In [17], a simple CNN was built to classify the feature difference maps with
a few pixel-level training samples to suppress false alarms. In [18], a structural consistency
loss based on the cross-modal distance between affinity and an adversarial loss were
introduced to deal with pseudo-changes. In addition, a multitemporal segmentation
combining the spectral, spatial, and temporal information of the heterogeneous images
was introduced in the preprocessing to reduce false positives [19]. In [20], a feature
difference network was built to reduce false detections by addressing the information loss
and imbalance in feature fusion.

In this article, we propose a new method based on a combination of CNN and GCN
to deal with false alarm suppression in heterogeneous change detection. The main contri-
butions of our method are as follows: First, by generating pseudo-label samples to train
the whole network, our method is unsupervised. This can help to avoid the false alarms
introduced by imbalances in training sample categories. Second, we use the inter-feature
relationships between true targets and false ones, which can be represented by an adja-
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cent matrix to generate a change map. This can facilitate the detection of the same object,
showing differences in the shapes and sizes of heterogeneous images. Third, a partially ab-
sorbing random walk convolution kernel is constructed and applied in the GCN. This new
convolution kernel can enhance the features of individual vertex and mitigate the impact
of noise to some extent, which is advantageous in the suppression of noise-introduced false
alarms. This paper is organized as follows: Section 2 presents our proposed method and
the experiment results obtained by comparison with some state-of-the-art approaches. Our
final conclusion is given in Section 3.

2. Method
2.1. Generation of Pseudo-Label Samples

Two images, acquired at the same region by different sensors at different times, t1 and
t2, are denoted as X ∈ Rn1×n2×p and Y ∈ Rn1×n2×q, respectively, where n1 and n2 are the
height and width, and p and q are the numbers of channels [13].

We aimed to develop a training set T = {(xm, ym)}
N′
m=1, N′ < N, where N = n1 × n2.

A pair of corresponding patches were selected over the same area z between X and Y.
The patches covered a k× k window, whose pixel i was denoted as zl

i , where l indicates

either X or Y. The distance d
(

zl
i , zl

j

)
was calculated between all pixel pairs in the patch by

Euclidean distance.
These distances can be transformed to affinities as

Al
i,j = exp

−d
(

zl
i , zl

j

)
h2

 (1)

where h is determined as the mean of the seventh nearest neighbor for all the data in zl .
Since the affinity matrices indicate the spatial structure and relations between pixels in

each patch, if there are changes, a large divergence between them will emerge. The distance
between affinity matrices was calculated as

f =
∥∥AX − AY∥∥ (2)

Each pixel is the average distance between the patches covering that pixel. We chose
the pixels with a short average distance, which means these pixels come from the unchanged
area. Then, we calculated the Euclidean distance between these pixels in the pre-event and
after-event images separately. Finally, we chose the pixels with small Euclidean distances
in both pre-event and after-event images as training samples. This is because the farther
the pixels are, the more likely they are to have come from different categories.

2.2. Structure of Network

The principle of our method is illustrated in Figure 1. It includes three parts, namely,
feature extraction, feature difference, and feature classification. In feature extraction, we
apply CNN to extract the low- to high-level features of the pre-event image and after-event
image. In feature difference, these features undergo difference processing, and feature
difference maps are obtained. In feature classification, three difference maps enter separate
GCN blocks to generate the inter-relationship features, and a fully connected layer is used
to classify these features to generate a change map. The detailed structure of our network
is illustrated in Table 1.
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Figure 1. The principle of our proposed method.

Table 1. Detailed structure of our network.

Type Output

Conv+Relu 224× 224× 64
Conv+Relu 224× 224× 64

Max pooling 112× 112× 64
Conv+Relu 112× 112× 128
Conv+Relu 112× 112× 128

Max pooling 56× 56× 128
Conv+Relu 56× 56× 256
Conv+Relu 56× 56× 256
Conv+Relu 56× 56× 256
Conv+Relu 56× 56× 256

Feature difference 56× 56× 256
Upsampling 224× 224× 256

Feature difference 112× 112× 128
Upsampling 224× 224× 128

Feature difference 224× 224× 64
Fully connected layer 224× 224× 1

Softmax 224× 224× 1

(1) Feature extraction: since VGG16 is a lightweight CNN based network, the feature
extraction net employed VGG16 as the backbone to separately extract the pre-event
image and after-event image features. VGG16 includes 13 convolutional layers, 5 max
pooling layers, and 3 fully connected layers. Here, VGG16 is pruned, and only the
2nd, 4th, and 7th convolutional layers were used.

(2) Feature difference: since feature maps can reflect the changes in change detection task
and difference maps of different scales can make both low-level and high-level features
contribute equally to the change detection, we chose to add a feature difference module
in our network. After obtaining individual feature maps of layer 2nd, 4th, and 7th,
we generate their difference maps separately.
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(3) Feature classification: it is believed that differences in inter-feature relationships exist
between true targets and false ones, which can be represented by an adjacent matrix
Am. So, we apply the adjacent matrix Am as features. Since graph convolution tends
to homogenize the features of different nodes, the number of layers in GCN was set
to 3 in our proposed method. The intermediate feature maps of different levels in
GCN are denoted by fm(xn), where xn is the feature of pixel n, extracted from the m
level. A new graph can be formed, with fm(xn) being the nodes and Am,p(xn) being
the edge. Am,p(xn) was calculated as the Euclidean distance between fm(xn) and
fp(xn). After obtaining the features of Am,p(xn), we deployed a fully connected layer
to classify them and, finally, a change map is generated.

(4) Partially absorbing random walk convolution kernel: in GCN, we introduced a newly
built convolution kernel, which is enlightened by [21]. It was built by applying a par-
tially absorbing random walk to graphs, which can find the most related vertices in the
whole structure to maximize the feature of the vertex under concern and suppress noise.

The adjacency matrix can be expressed as

S = H(De − I)−1HT − Diag
(

H(De − I)−1HT
)

(3)

where H denotes the incidence matrix, and De is a diagonal matrix of edge degrees.
Random walk on a graph can be formulated as

P = Dv
−1S (4)

where Dv is a diagonal matrix of vertex degrees.
The corresponding Laplacian matrix is given as

L = Dv − S (5)

Introducing a regularization matrix Λ = diag(λ1, λ2, · · · , λN), and let C to be a ab-
sorption probability matrix,

C = (Λ + L)−1Λ (6)

There is Λ = αI, so we can obtain

C = (αI + L)−1α (7)

The convolution operator is defined as

Z(l+1) = σ
(

CZ(l)Θ(l)
)

(8)

where Z(l) is the lth layer, Θ(l) is the parameter of the lth layer, and C is formulated as

C = (αI + L)−1α (9)

where I is the identity matrix, L is the Laplacian matrix, and α is a predefined parameter.

2.3. Simulation

In this section, we conducted experiments on two different data sets to prove the
efficacy of our proposed method. First, the data sets are presented. Then, quantitative
measures are provided. Finally, the performance of our method is analyzed by comparison
with some state-of-the-art methods.

2.3.1. Data Set Description

We used two typical data sets to verify our method. The Italy data set includes
one near-infrared band image and one optical image, taken over Sardinia, Italy in September,
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1995 and July, 1996, respectively [3]. The former derives from Landsat-5 and the latter from
Google Earth with R, G, and B bands. The multitemporal images indicate the event of lake
expansion, with a resolution of 30 m. The California data set includes a multispectral image,
with eight channels taken by Landsat 8, and an SAR image with VV and VH polarizations
taken over California on 5 January 2017, and 18 February 2017. The multitemporal images
indicate a flood in this area [20]. The description of this data set is given in Table 2.

Table 2. Data set description.

Sensor Size Date Location Event (Resolution)

Landsat-5/google earth 300× 412× 1 September 1995–July 1996 Sardinia, Italy Lake expansion (30 m)

Landsat-8/Sentinel-1A 875× 500× 11 January 2017–February 2017 Sutter Country,
California, USA Flooding (approximate 15 m)

2.3.2. Quantitative Measures

We evaluated the performance of our method from two perspectives, namely, dif-
ference image (DI) generation and change map (CM) classification. DI was evaluated by
the receiver-operating characteristics (ROC) curve, which plots the false positive against
the true positive. The area under the curve (AUC) represents the performance, ranging
from 0 to 1. The larger the AUC, the better the detection performance. The false alarm
rate (FA) was also adopted to indicate the performance of false alarm suppression. CM
was evaluated by overall accuracy (OA), Kappa coefficient (KC) and F1-score. OA was
the ratio of correct classification pixels versus total pixels, ranging from 0 to 1. Kappa
coefficient demonstrates the agreement between two classifiers, ranging from −1 to 1,
which is calculated as

KC =
PCC− PRE

1− PRE
(10)

where

PRE =
(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TP + TN + FP + FN)2 (11)

TP, TN, FN and FP represent true positive, true negative, false negative and false
positive, respectively.

F1-score is defined as

F1 =
TP

TP + 1/2(FP + FN)
(12)

2.3.3. Performance Analysis

Our method was implemented on Tensorflow 2.1.0 with python. The inputs of our
network were images of 224× 224 pixels. The learning rate, momentum, and weight decay
were set as 1 × 10−7, 0.99 and 0.0005, respectively.

To prove the superiority of our method, we selected another two methods, namely,
FDCNN [4] and INLPG [17], and our method without the newly built convolution kernel
for comparison. Instead of quoting the results in the original papers, we ran them under
the same circumstances as our method and the results are shown in Figure 2, Tables 3 and 4.
Here, our method achieved a competitive detection ability with the other three methods
and a better false alarm suppression ability than the other three methods. Among these
four methods, INLPG was not effective in dealing with pseudo-changes. Both FDCNN and
our method without a newly built convolution kernel showed a comparable performance
in terms of false alarm suppression, which was better than INLPG. This is because they
can eliminate the false alarms introduced by imaging conditions or surface color changes
to some extent. Since our method, with a newly built convolution kernel, could not only
mitigate the impact of imaging conditions or surface color changes, but also reduce noise
influence, it showed the best overall performance regarding false alarm suppression.
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of Italy; (g) our method with newly built convolution kernel of Italy; (h) pre-event of California; (i) 

Figure 2. Performance comparison: (a) pre-event of Italy; (b) after-event of Italy; (c) ground truth of
Italy; (d) INLPG of Italy; (e) FDCCN of Italy; (f) our method without newly built convolution kernel
of Italy; (g) our method with newly built convolution kernel of Italy; (h) pre-event of California;
(i) after-event of California; (j) ground truth of California; (k) INLPG of California; (l) FDCCN of
California; (m) our method without newly built convolution kernel of California; (n) our method
with newly built convolution kernel of California.

Table 3. The performance comparison for Italy between our proposed method and state-of-the-
art approaches.

AUC FA OA KC F1

INLPG 0.949 0.124 0.945 0.742 0.628
FDCCN 0.963 0.0762 0.966 0.781 0.685

Our method without new conv 0.968 0.0744 0.969 0.793 0.703
Out method with new conv 0.976 0.0438 0.982 0.810 0.770

Table 4. The performance comparison for California between our proposed method and state-of-the-
art approaches.

AUC FA OA KC F1

INLPG 0.953 0.0745 0.957 0.651 0.628
FDCCN 0.962 0.0576 0.972 0.772 0.669

Our method without new conv 0.963 0.0561 0.975 0.833 0.674
Out method with new conv 0.971 0.0423 0.980 0.852 0.753

In addition, we discuss the impact of predefined parameter α on the performance of
our method, and the result is shown in Figure 3. Too small α could cause the probability
to be distributed evenly on the whole graph, leading to the confusion of neighborhood
vertices. Too large α could cause the probability to concentrate on a single vertex, leading
to the ineffectiveness of convolution. When α was set properly, a vertex could aggregate
the features in its neighborhood, so as to improve the classification performance. Therefore,
α was set as 60 in our experiment.
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2.3.4. Ablation Study

Two ablation experiments were conducted. One was to prove the effectiveness of the
feature classification module. The other one was to show the effectiveness of VGG16 in
feature extraction.

In the first experiment, we eliminated the feature classification module by replacing it
with a CNN-based classifier, as in [17], and compared it with our proposed method (without
a new convolution kernel). In the following, our proposed method referred to that without
a new convolution kernel. The experiment results are shown in Figure 4 and Tables 5 and 6,
which all prove the effectiveness of our proposed method in false alarm suppression.
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event of California; (g) after-event of California; (h) ground truth of California; (i) our proposed
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Table 5. The performance comparison for Italy to show the role of feature classification part.

AUC FA OA KC F1

Our proposed method with modification 0.851 0.152 0.822 0.537 0.607
Our proposed method 0.968 0.0744 0.969 0.793 0.703
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Table 6. The performance comparison for California to show the role of feature classification part.

AUC FA OA KC F1

Our proposed method with modification 0.842 0.157 0.812 0.522 0.569
Our proposed method 0.963 0.0561 0.975 0.833 0.674

In the second experiment, we chose a network with the best performance among
our self-constructed structures. The details of our self-constructed structure are shown
in Figure 5. Accordingly, the feature difference module was pruned to be one layer and
the feature classification module was eliminated and replaced by a CNN-based classifier
as in [17]. Meanwhile, the feature classification module was eliminated and replaced by
a CNN-based classifier as in [17] and our proposed method. The results are shown in
Figure 6 and Tables 7 and 8. From the experiment results, it was obvious that the feature
extraction module in our proposed method was superior to our self-constructed one both
in lightweight structure and detection performance.
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Figure 6. Performance comparison: (a) pre-event of Italy; (b) after-event of Italy; (c) ground truth of
Italy; (d) self-constructed network of Italy; (e) our proposed method with modification of Italy; (f) pre-
event of California; (g) after-event of California; (h) ground truth of California; (i) self-constructed
network of California; (j) our proposed method with modification of California.

Table 7. The performance comparison for Italy to show the effectiveness of feature extraction part.

AUC FA OA KC F1

Self-constructed network 0.819 0.171 0.795 0.492 0.553
Our proposed method with modification 0.851 0.152 0.822 0.537 0.607

Table 8. The performance comparison for California to show the effectiveness of feature extrac-
tion part.

AUC FA OA KC F1

Self-constructed network 0.808 0.184 0.757 0.451 0.528
Our proposed method with modification 0.842 0.157 0.812 0.522 0.569

3. Conclusions

In this paper, we focused on false alarm suppression in heterogeneous change de-
tection. Our proposed method exploits the inherent features of pre-event and after-event
images. We made the following innovations in our proposed method. First, we generated
pseudo-label samples without sample imbalances to train our network, which meant our
method was unsupervised. Second, we exploited inter-feature relationships to discriminate
true changes and false ones by combining CNN and GCN. Third, we employed a new
convolution kernel to mitigate the impact of noise. Our work is very enlightening, as false
alarm suppression in heterogeneous change detection is rarely studied. We tested our
method on different scenarios with two data sets, which shows its wide application range.
In the future, we will try to remove geometric registration, because even small geometric
registration errors can introduce serious false alarms. Whether our method is suitable for
complex scenes is worth testing.
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