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Abstract: Hyperspectral videos (HSVs) can record more adequate detail clues than other videos,
which is especially beneficial in cases of abundant spectral information. Although traditional methods
based on correlation filters (CFs) employed to explore spectral information locally achieve promising
results, their performances are limited by ignoring global information. In this paper, a joint spectral–
spatial information method, named spectral–spatial transformer-based feature fusion tracker (SSTFT),
is proposed for hyperspectral video tracking, which is capable of utilizing spectral–spatial features
and considering global interactions. Specifically, the feature extraction module employs two parallel
branches to extract multiple-level coarse-grained and fine-grained spectral–spatial features, which are
fused with adaptive weights. The extracted features are further fused with the context fusion module
based on a transformer with the hyperspectral self-attention (HSA) and hyperspectral cross-attention
(HCA), which are designed to capture the self-context feature interaction and the cross-context feature
interaction, respectively. Furthermore, an adaptive dynamic template updating strategy is used
to update the template bounding box based on the prediction score. The extensive experimental
results on benchmark hyperspectral video tracking datasets demonstrated that the proposed SSTFT
outperforms the state-of-the-art methods in both precision and speed.

Keywords: transformer fusion; spectral–spatial joint; hyperspectral object tracking

1. Introduction

Object tracking is one of the most important research fields in computer vision [1]
and has been widely developed in the past decade and successfully employed in many
applications [2], such as video surveillance [3], artificial intelligence [4], intelligent traffic
control [5], and autonomous driving [6]. It is a challenging task that requires constantly
tracking the object in the video subsequences due to the fast motion, occlusion and inter-
ference from similar appearances, to name a few. Most of the existing methods merely
obtain color intensities, texture, semantic information, and deep representation features
to track the object in the limitations of imaging technology, which are not suitable for
HSVs tracking. Thanks to the advent of the hyperspectral imager, object tracking has been
extended to hyperspectral images, which is some of the best research because hyperspectral
images have a large amount of spectral information. Many efforts have been made to
improve the performance of hyperspectral video tracking in recent year; however, the
performance of hyperspectral video tracking is still unsatisfactory in complex scenarios in
that the spectral information of hyperspectral images is not fully utilized in the existing
object tracking methods.

Spectral reflectance preserved in hyperspectral images contains a unique feature of
the hyperspectral object potentially, which is not available in other types of images [7–9].
Hyperspectral images record high-dimensional spectral information [10–12], which is
advantageous for the discriminative feature extraction of objects in challenging tracking ex-
traction such as similar appearances, and scale change. Previous studies revealed that [13]
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spatial–spectral information can increase inter-object separability and discriminability to
handle the tracking drift. At present, traditional trackers focus on optical feature extrac-
tion, which is not suitable for hyperspectral video tracking. However, the performance
of existing hyperspectral video trackers is still unsatisfactory in typical complex scenar-
ios. The first reason is that the existing hyperspectral trackers have not fully explored
the spectral–spatial information to describe HSVs [14]. Chen et al. [13] proposed a fast
spectral–spatial convolution kernel feature-extraction method to extract the discriminative
feature of hyperspectral images. However, the proposed method merely tends to extract
efficient encoding of local spectral–spatial information rather than the global feature maps.
Therefore, the performance of the proposed method is still poor in challenging scenarios
on account of the lack of global interactivity of data. Meanwhile, the proposed method
is most appropriate for specific public datasets, while the tracking results display poor
generalization ability. The second reason is that high-dimensional spectral information
is a double-edged sword, which will bring difficulties to the feature extraction and high
computational costs due to the enhancement of the bands. Xiong et al. [15] proposed two
spectral–spatial feature extractors, namely, local spectral–spatial histogram of multidimen-
sional gradient (SSHMG) and spatial distribution of materials (MHT). The former method
captures spectral–spatial texture information using gradient orientations, and the latter
method obtains two visual feature descriptors, namely end-members and abundances,
yielding material to track. Nevertheless, the most attention in the MHT is concentrated on
spectral extraction, resulting in spending massive computation costs to extract the feature
information, which is not suitable for real-time tracking.

In recent years, Uzkent et al. [14] produced a synthetic aerial hyperspectral dataset
with the digital imaging and remote sensing image generation (DIRSIG) software. However,
the dataset is generated at 1.42 fps, leading to the difficulty of tracking objects which change
rapidly in a short period of time. Thanks to the development of hyperspectral imaging
technology, hyperspectral video has been widely obtained in various scenarios. The existing
two types of hyperspectral video datasets are collected by [13,15], named IMEC16 and
IMEC25, respectively. Accordingly, hyperspectral trackers have been developed rapidly.

Among the present hyperspectral trackers, correlation filters (CF) [14,16] and discrimina-
tive correlation filters (DCF) [17,18] have achieved much success in terms of tracking. These
trackers learn an object prediction model for location in video subsequences by using the
correlation-minimizing object function, which integrates both foreground and background
knowledge, providing effective features responding to the model. Xiong et al. [15] proposed
two spectral–spatial feature extractors, namely SSHMG and MHT, which are embedded into
background-aware correlation filters to track specific objects. SSHMG is designed to capture
local spectral–spatial histograms of multidimensional gradients, while MHT is proposed
to represent material information, and uses fractional abundances to encode the material
distribution. Liu et al. [19] introduced a spectral classification branch into the anchor-free
Siamese network to enhance the representation of objects in HSVs. Lei et al. [20] employed a
spatial–spectral cross-correlation embedded dual-transfer network (SSDT-Net) to extract high-
dimensional characteristics of HSVs. Meanwhile, a spatial–spectral cross-correlation module
is designed to capture material information and spatial distribution with two branches
of the Siamese network. Zhang et al. [21] proposed spectral matching reduction features
and adaptive-scale 3D hog features to track the objects to confront scale variation, where
adaptive-scale 3D hog features mainly consist of cube-level features at three different scales.
Zhao et al. [22] proposed a feature fusion network for the synchronous extraction of the
spatial and spectral features of hyperspectral data, where the color intensity feature and the
modality-specific feature are mixed to assist the tracker in accurate positioning. However,
the method also displays limitations in that the severe inductive bias of CF and DCF is
imposed on the model, which leads to poor generalization performance. Consequently, the
model is only suitable for the object in available data but it could not integrate any learned
priors. At present, several deep learning-based methods have gradually presented. Liu et al.
[23] proposed a dual deep Siamese network framework with a pretrained RGB tracker and
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spatial–spectral cross-attention learning. Afterward, they [24] proposed unsupervised deep
learning-based object tracking framework, and a new hyperspectral dataset was collected.
Nonetheless, the aforementioned methods are merely verified on a public hyperspectral
video dataset [15]. The further generalization ability of these models must be investigated
for generating a universal hyperspectral video tracker. Although Chen et al. [25] proposed
a feature descriptor using a Histogram Oriented Mosaic Gradient (HOMG) to gain spatial–
spectral features directly from mosaic spectral images on two datasets, the performance of
the tracker displays a preference for IMEC25. On the contrary, transformers have shown
a strong global reasoning capability across multiple frames, which is a great advantage
for video tracking. Specifically, the self-attention and the cross-attention mechanism can
capture the global interaction of the video with considerable success [26–28]. However, the
existing transformer-based methods specially designed for natural scenes merely focus
on extracting spatial features, and are not suitable for hyperspectral video tracking due
to the ignorance of spectral information. An effective approach to address this issue is
integrating spectral information into RGB trackers to achieve multi-modal tracking. For
example, Zhao et al. [29] proposed a tracker named TMTNet to efficiently transfer the
information of multi-modality data composed of RGB and the hyperspectrum in the hyper-
spectral tracking process. Nevertheless, these methods rely on consistent, aligned RGB and
hyperspectral images, which are generally unavailable in practice in real scenes.

The transformer, benefiting from excellent global interaction ability and generalization
performance, has been introduced to improve the accuracy of tracking. It is worth noting
that the transformer is a novel structure that has not been applied to universal hyperspectral
video tracking. It is necessary to illustrate that the transformer could be utilized to extract
the spectral–spatial features of hyperspectral video sequences. The transformer was first
introduced by Vaswani et al. [30] to deal with sequential tasks. It is customary that
the sequences-to-sequences structures are isomorphic across layers, and the success of
multi-head self-attentions (MSAs) for computer vision is now indisputable [31]. The self-
attentions [32] aggregate spatial tokens that can be unified into a single function:

Aj = ∑
i

So f tmax(
QKT
√

d
)iVi,j (1)

where Q, K, and V are defined as query, key, and value, respectively. d is the dimension
of the query and key, Equation (1) is a simple function that can be used to calculate the
attention score of the image token. A single-head self-attention layer limits the ability to
focus on one or more specific positions. Multi-head attention is a mechanism that can be
used to boost the performance of the self-attention layer [33]. The multi-head self-attention
process is as follows:

MultiHead(Q′, K′, V′) = Concat(head1, . . . , headh)WO

headh = Ah(QWQ
h , KWK

h , VWV
h )

(2)

where Q′ (K′, V′) is the concatenation of the query (key, value) vectors of all heads, WO is
the projection matrix of the output and WQ

h , WK
h , and WV

h are the projection matrices of the
query, key, and value, respectively.

Several transformer-based trackers [1,26,28] have been proposed to deal with the
tracking task. The transformers are typically employed to predict discriminative features
to localize the object. Cao et al. [34] designed an adaptive temporal transformer to encode
temporal knowledge effectively before the temporal knowledge is decoded for accurate
adjustment of the similarity map. Mayer et al. [35] proposed a transformer-based tracker,
where transformers obtain global relations with a weak induction bias, allowing the pre-
diction of more powerful target models. Bin et al. [27] proposed an encoder-decoder
transformer without using any proposals or predefined anchors to estimate the corners
of objects directly, where the prediction head is a simple fully convolutional network.
Wang et al. [26] separated the transformer encoder and decoder into two parallel branches
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designed within the Siamese-like tracking. The encoder promotes the target templates via
attention-based feature reinforcement, while the decoder propagates the tracking cues from
previous templates to the current frame.

Existing transformer-based trackers are mainly designed for optical (red, blue, and
green) videos or multi-modal videos. In hyperspectral videos, there is abundant spectral
information and context semantics among successive frames, which have been largely
overlooked in transformer-based trackers. Therefore, it is significant to design a transformer-
based tracker to deal with the hyperspectral video tracking task.

In this paper, a novel hyperspectral video tracker named Spectral-Spatial Transformer-
based Feature Fusion Tracker (SSTFT) is proposed to address the aforementioned problems
by adequately utilizing the spectral–spatial information of hyperspectral images. As the
spectral–spatial information is separate in the original hyperspectral images, the proposed
SSTFT adopts a shallow spectral–spatial (SSS) subbranch and a deep ResNet (DRN) sub-
branch to integrate multi-scale representations and promote preliminary interaction of
information. On this basis, a transformer-based context fusion (TCF) module is designed to
adequately fuse the template branch and the search branch features, which can effectively
establish the context relationship of hyperspectral video sequences. Furthermore, an adap-
tive dynamic template update (ADTU) module is designed to deal with the problems of
object drift in challenging conditions.

To summarize, compared with the existing hyperspectral object trackers, the main
contributions of this paper are as follows.

1. A spectral–spatial multiscale feature extraction module is proposed for the adaptive fusion
of multiple-level semantics of hyperspectral videos. Two parallel branches are designed to
extract the features with full integration of spectral and spatial information, and each branch
is further divided into multiple levels to extract the semantic information. The fusion strategy
of coarse-grained and fine-grained features can effectively improve the completeness of the
representation of objects and backgrounds.

2. A context fusion module based on the transformer is proposed to fuse the template
branch and the search branch features, which can effectively establish the forward and
backward frame-dependence relationship of hyperspectral video sequences with the
ranking of prediction box confidence scores rather than cosine penalty. Meanwhile,
the proposed method can capture the global interaction of the video with considerable
success, improving the robustness performance of the hyperspectral tracker.

3. An adaptive dynamic template update strategy is proposed to handle the drift of
object regression in challenging scenarios. The approach ensures the tracker can adapt
to the changing environment and further improves the robustness of performance.

The rest of the paper is structured as follows. The proposed SSTFT tracker is detailed
in Section 2. The experimental results are presented in Section 3. Finally, the conclusions
are drawn in Section 4.

2. Methodology

The proposed spectral–spatial transformer-based feature fusion tracker (SSTFT) is
introduced in this section in detail. As shown in Figure 1, our model consists of three
parts, a spectral–spatial multiscale feature extraction module, a transformer-based context
fusion module, and an adaptive dynamic template update strategy. It is difficult to train a
robust transformer network to extract deep features from hyperspectral videos, which is
mainly due to the shortage of public hyperspectral videos. Therefore, the whole structure
of the proposed method utilizes the pre-trained model [1] to prevent overfitting and poor
generalization ability [36].

The spectral–spatial multiscale feature extraction module is proposed to extract the
multiple-level features with a shallow spectral–spatial (SSS) subbranch and a deep ResNet
(DRN) subbranch, both of which are designed for multiple spectral bands. The transformer-
based context fusion (TCF) module is proposed to fuse the spectral–spatial features from
the template branch and search branch with the transformer integrated with self-attention
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and cross-attention. Self-attention is utilized to realize the feature interaction of the systems
own context within each branch. However, cross-attention is utilized to implement the
feature interaction between the template branch and the search branch. The adaptive
dynamic template update (ADTU) strategy is proposed to update the template with more
reliable response scores.
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Figure 1. Illustration of the whole structure of the proposed hyperspectral video tracking, named
SSTFT. The network extracts spectral–spatial multiscale features of the template and search region
through the two branches. Specifically, these features interact with their own branches and are fused
within the template and search branches using a transformer-based context fusion module to predict
the bounding box and classification label. Finaly, the adaptive template update strategy is proposed
to adapt the model to different challenges in real-time.

2.1. Spectral–Spatial Multiscale Feature Extraction Module

As is already known, spectral–spatial feature extraction is the most important pro-
cedure for hyperspectral videos. In order to save on computation cost, the template and
search region branch share the same structures and weights, which are designed for high-
dimensional spectral bands. In Figure 1, the Spectral–Spatial Multiscale Feature Extraction
Module is shown to be composed of two parts in each branch, including the ResNet net-
work and the spectral learning network, which are designed to extract the discriminative
spectral–spatial features. The deep ResNet is capable of acquiring both shallow appearance
information and deep semantic information, and fine spectral–spatial representations are
integrated with this deep network. To enhance spectral information, the spectral learning
network is adopted to utilize the original hyperspectral information and obtain more coarse
spectral features. By employing this multiscale feature-extraction structure, the network
can acquire both coarse-grained and fine-grained spectral–spatial information.

Formally, given the input hyperspectral video Xt
T and Xt

S, which are the template and
search region, respectively, the shallow spectral–spatial feature of the template branch in
the t-th frame can be extracted as follows:

Ft
Tshallow

= wt � Xt
T + bt (3)
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where wt and bt are the weight and bias of the shallow spectral–spatial feature extraction
network, and � is the element-wise multiplication.

Inspired by [37], the other deep spectral–spatial feature of the template branch in the
t-th frame is extracted by ResNet, designed as follows:

Ft
Tdeep

= F (Xt
T , {Wi}) + WsXt

T (4)

where F is a residual function with multiple convolutional layers, Wi is the weight matrix
matching dimensions in the i-th layer, Ws is a square matrix, and + is the element-wise
addition, which is performed on two feature maps channel by channel.

Finally, the features from two sub-branches are concatenated with the adaptive coeffi-
cient α and β to obtain the spectral–spatial multiscale feature of the template branch in the
t-th frame, designed as follows:

Ft
T = αFt

Tshallow
+ βFt

Tdeep
(5)

It is noted that the spectral–spatial multiscale feature of the search branch in the t-th
frame operates in the same way as the template branch. Meanwhile, the two branches are
injected with the inductive bias to avoid the overfitting problem, and the multiscale feature-
extraction and shallow–deep subbranch modules are designed to extract the discriminative
and robust features.

2.2. Transformer-Based Context Fusion Module

The transformer-based context fusion module, including Hyperspectral Self-Attention
(HSA) and Hyperspectral Cross-Attention (HCA) in Figure 1, is designed to fuse the
spectral–spatial features from the template branch and search branch with the transformer.

The HSA is utilized to realize the feature interaction of the context of each branch in
Figure 2a. The HSA operation is the same for both the template branch and the search
branch. Assume that Fn

SAT and Fn
SAS are the input spectral–spatial features of the template

branch and search branch, respectively. Without loss of generality, the template branch is
taken as an example in the left of Figure 2a, using Fn−1

SAT as the input of the n-th HSA layer.
The output of the previous layer is the input of the next layer, and the one head of the n-th
HSA operation is designed as follows:

Fn
SATh = LN(So f tmax(

(Fn−1
SAT + Pn

SAT)(Fn−1
SAT + Pn

SAT)
T

√
d

)Fn−1
SAT )

= LN(So f tmax(
(Qn

SAT)(K
n
SAT)

T
√

d
)Vn

SAT)

(6)

where Qn
SAT = Kn

SAT = Fn−1
SAT + Pn

SAT , Fn
SATh is the output of template branch of the self-

attention operation in the h-th head of the n-th layer, h = 1, . . . , H, H is the number of the
heads, n = 1, . . . , 4, Pn

SAT is the absolute position embedding, d is the dimension of the
feature, and LN is the layer normalization. Then, the multiple heads are concatenated to
obtain the n-th layer output of the self-attention operation, designed as follows:

Fn
SAT = Concat(Fn

SAT1, Fn
SAT2, . . . , Fn

SATH) + Fn−1
SAT (7)

where Fn
SAT1, Fn

SAT2, . . . , Fn
SATH are the output of the self-attention operation about multiple

heads, and + is the element-wise addition. The same self-attention operation is performed
on the search branch to obtain the fusion feature on the right of Figure 2a.
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Figure 2. The detailed demonstrated ion of transformer-based context fusion. (a) The self-attention
of the template branch in the n-th layer is displayed on the left, and that of the search region branch
is on the right. (b) The cross-attention of the template branch in the n-th layer is displayed on the left,
and the final cross-attention layer is on the right.

Meanwhile, the HCA, different from the HSA, conducts the hyperspectral cross-
attention operation of their context and the feature interaction between the template branch
and search branch in Figure 2b. Similarly to self-attention, without loss of generality, the
template branch is taken as an example to introduce cross-attention. As shown on the left
of Figure 2b, the common cross-attention operation in the n-th fusion layer, employed in
the template branch, is designed as follows:

Fn
CATh = LN(So f tmax(

(Fn−1
SAT + Pn

CAT)(Fn−1
SAS + Pn

CAT)
T

√
d

)Fn−1
SAT )

= LN(So f tmax(
(Qn

CAT)(K
n
CAS)

T
√

d
)Vn

CAS)

(8)

where Qn
CAT = Fn−1

SAT + Pn
CAT , Kn

CAS = Fn−1
SAS + Pn

CAT , Fn
CATh is the output of the cross-

attention operation about one head, h = 1, . . . , H, H is the number of the heads, n = 1, . . . , 4,
Pn

CAT is the absolute position embedding, d is the dimension of the feature, and LN is the
layer normalization. Then the multiple heads are concatenated to obtain the n-th layer
output of the cross-attention operation, designed as follows:

Fn
CAT

′ = Concat(Fn
CAT1, Fn

CAT2, . . . , Fn
CATH) + Fn−1

SAT (9)

where FCAT1, FCAT2, . . . , FCATH are the output of the cross-attention operation about mul-
tiple heads and + is the element-wise addition. The final first cross-attention layer is
designed as follows:

Fn
CAT = Fn

CAT
′ + LN(FFN(Fn

CAT
′)) (10)

where Fn
CAT

′ is the output of the cross-attention operation for multiple heads in the template
branch, LN is the layer normalization, and FFN is the feed-forward network. In addition,
the FFN module is designed with two linear layers with a ReLU function in between,
that is:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (11)
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where W1, W2, b1, and b2 are the weight matrices and basis vectors in the FFN module,
respectively. Furthermore, the different subscripts 1 and 2 represent the first and second
linear layers, respectively.

Finally, when n = 5 in this paper, the spectral–spatial features of the two branches
are fused with the last cross-attention layer. As shown in the right of Figure 2b, which is
designed as follows:

Fn
CAMh = LN(So f tmax(

(Fn−1
CAS + P f )(Fn−1

CAT + P f )T
√

d
)Fn−1

CAT)

= LN(So f tmax(
(Qn

CAS)(K
n
CAT)

T
√

d
)Vn

CAT)

F f inal
CAm = Concat(Fn

CAM1, Fn
CAM2, . . . , Fn

CAMH)

F f inal
CA = F f inal

CAm + LN(FFN(F f inal
CAm ))

(12)

where Qn
CAS = Fn

CAS + P f , Kn
CAT = Fn−1

CAT + P f , Fn
CAMh is also the output of the cross-

attention operation about one head, P f is the position embedding, F f inal
CAm is the concatena-

tion of all heads in the final cross attention layer, and F f inal
CA is the final output. It must be

emphasized that the feature is the output of the respective branches, which facilitates hy-
perspectral feature interaction in a spatio-temporal context. Furthermore, the search branch
is also involved in the cross-attention operation as the template, which can effectively learn
relationships between contexts.

The strong attention response map is shown in Figure 3, which is obtained by the
last cross-attention layer. The maps contain less clutter than other weak response maps to
achieve more accurate positioning. The center of the object is located at the position with
the maximum value of the response map.
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Figure 3. Cont.
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Figure 3. The strong attention response map for two datasets. It displays the attention map of
objects in challenging scenarios. Each image consists of an initial image, cropped image, and the
corresponding attention map. (a) The attention map of four sequences on IMEC16; (b) the attention
map of four sequences on IMEC25.

2.3. Loss Function

The prediction head receives fusion feature vectors to output a binary classification
and regression results. The positive sample is the feature vector corresponding to the pixel
in the ground-truth bounding box, while the negative sample is the remainder. The whole
sample contributes to the classification loss, while there is an imbalance problem between
the positive sample and the negative sample, which is solved by down-weighing the loss
of the negative sample with a factor of 16. The traditional binary cross-entropy loss in
classification is defined as follows:

Lcls = −Σ
t
[yt log(pt) + (1− yt) log(1− pt)] (13)

where yt is the ground-truth label in the t-th frame, pt is the predicted probability of object
in the t-th frame, p ∈ {0, 1}, and pt = 1 represents the foreground.

In addition, the regression loss is utilized as the positive sample, defined as follows:

Lres = −Σ
t
[LIoU(bt, bg) + L2(bt, bg)] (14)

where bt is the predicted bounding box in the t-th frame, bg is the ground-truth bounding
box, and LIoU and L2 are the IoU loss and L2 loss, respectively.

2.4. Adaptive Dynamic Template Update Strategy

In previous Siamese tracking networks, it was common to use either a fixed time
interval or response scores to update the template according to the last tracking result.
However, these approaches may not be suitable for all hyperspectral video situations, such
as that with object occlusion or fast motion. To address this problem, an adaptive template
update strategy is proposed to dynamically adjust the threshold controlling the template
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update. The threshold is not only determined by the last tracking frame but also affected
by accumulation of all previous tracking scores, which can be described as follows:

θt = ηθt−1 + (1− η)st, (15)

where θt is the accumulation threshold computed progressively in frames 1, 2, . . . , t− 1
and θt is initialized as 0, η is a momentum factor to control the influence of the previous
threshold, and st is the tracking score of the current t-th frame.

It can be seen through Equation (15) that the threshold increases if the current tracking
score is larger than the accumulation threshold; otherwise, the threshold decreases. The
template is updated when tracking score st is greater than the current threshold. With this
adaptive template update strategy, the tracking net is more likely to keep the template
when the target is occluded or in fast motion, rather than updating the template with a low
score, which can be seen as a more robust strategy.

3. Results and Analysis

In this section, the experimental results and analysis of the proposed method are
reported. The details of the experimental settings are presented in Section 3.1, the public hy-
perspectral datasets are introduced in Section 3.2, and the comprehensive comparisons with
the existing algorithms are presented in Sections 3.3–3.5. Moreover, to verify the advantages
of the components of the proposed hyperspectral trackers mentioned, comparisons with
ablation experiments are shown in Section 3.6.

3.1. Experiment Settings
3.1.1. Implementation Details

The proposed SSTFT method was implemented in PyTorch (version 1.5.1) and trained
on NVIDIA GeForce RTX 2080 Ti GPU, which was trained using the Adam optimizer. The
base learning rate was set to 0.0001, which was an adaptive modification following the
poly learning rate policy with a power of 0.005. The batch size was set to 8, and the weight
decay is set to 0.0001. The training process was terminated after 20 epochs. In the first
15 epochs, the fusion layers were frozen, and in the last 5 epochs, the fusion layers were
trained. Specifically, our proposed SSTFT model was trained with pre-trained weights of
the network [1] to resist the overfitting problem due to the shortage of samples, which
provides an available reference initialization for the hyperspectral tracking method.

3.1.2. Evaluation Metrics

Five evaluation metrics are utilized to evaluate the performance of the SSTFT method—
the area under the curve (AUC), location precision (LP), success score plot, precision score
plot, and speed—to ensure fairness of comparison. All experimental results are reported on
one-pass evaluation (OPE), and the whole trackers employed the test datasets. The AUC
is the most commonly used evaluation metric for object tracking, and it is calculated as
the average overlap rate when the threshold is less than 0.5. The LP is the percentage of
the frame of Euclidean distance between the central location of the predicted and ground-
truth bounding box at a threshold of 20 pixels (DP@20P). The success plot denotes the
percentages of successful frames whose predicted bounding box and ground-truth overlap
ratio is greater than a threshold varying from 0 to 1. A precision plot records the percentage
of video frames whose distance between the center point of the estimated object position
and the center point of the ground truth is less than a given threshold from 0 to 50 pixels.
The speed is the average processing time in each frame.

3.2. Hyperspectral Datasets

The proposed method is evaluated on two public hyperspectral datasets, including
IMEC16 and IMEC25. The details of the two datasets are shown in Sections 3.2.1 and 3.2.2.
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3.2.1. IMEC16 Dataset

The IMEC16 dataset is a hyperspectral dataset collected by the hyperspectral cam-
era of the IMEC company in [15]. The dataset is divided into 75 sequences, including
40 training sequences and 35 testing sequences. Each hyperspectral video sequence con-
tains 16 spectral bands in wavelengths from 470 m to 620 m, and the spatial resolution is
512 × 256 pixels, as shown in Table 1. The entire dataset is manually labeled with bounding
boxes representing the object by the central location and its height and width for each frame.
The collected hyperspectral video sequences accompany the challenges, such as occlusion
(OCC), illumination variation (IV), background clutter (BC), low resolution (LR), out-of-
view (OV), in-plane rotation (IPR), out-of-plane rotation (OPR), deformation (DEF), motion
blur (MB), scale variation (SV), and fast motion (FM). Meanwhile, the tracked objects
include faces, pedestrians, animals, vehicles, etc. It is worth noting that the dataset involves
similar objects in different scenes and the identical color of the target and background in
different scenarios.

Table 1. IMEC16 Dataset Statistic Analysis for Close-range Object tracking.

Classes Sequences Challenges Classes Sequences Challenges

ball 625 SC, MB,
OCC, SV basketball 186 FM, MB,

OCC, LR

board 471 IPR, OPR,
BC, OCC, SV book 601 IPR, DEF,

OPR

bus 131 LR, BC, FM bus2 326 IV, SV, OCC,
FM

campus 970 IV, SV, OCC car 101 SV, OCC, IPR,
OPR

car2 131 SV, IPR, OPR car3 331 SV, LR, OCC,
IV

card 930 IPR, BC,
OCC coin 149 BC

coke 731 BC, IPR,
OPR, FM, SV drive 725 BC, IPR,

OPR, SV

excavator 501 IPR, OPR, SV,
OCC, DEF face 279 IPR, OPR, SV,

MB

face2 1111 IPR, OPR, SV,
OCC forest 530 BC, OCC

forest2 363 BC, OCC fruit 552 BC, OCC

hand 184 BC, SV, DEF,
OPR kangaroo 117 BC, SV, DEF,

OPR, MB
paper 278 IPR, BC pedestrain 306 IV, SV

pedestrain2 363 OCC, LR,
DEF, IV player 901 IPR, DEF,

OPR, SV

playground 800 SV, OCC rider1 336 LR, OCC, IV,
SV

rider2 210 LR, OCC, IV,
SV rubik 526 DEF, IPR,

OPR
student 396 IV, SV toy1 376 BC, OCC

toy2 601 BC, OCC, SV,
IV, OPR truck 221 OCC, IV, SV,

OV
worker 1209 SV, LR, BC

3.2.2. IMEC25 Dataset

The other IMEC25 hyperspectral dataset was collected by a snapshot mosaic hyper-
spectral camera of the IMEC company in [13]. Chen et al., collected the hyperspectral
surveillance video sequences with 25 spectral bands in wavelengths from 680 nm to 960 nm,
and the spatial resolution was 409 × 216 pixels. The hyperspectral video dataset includes
135 manual sequences with 55 training sequences and 80 testing sequences. Each hy-
perspectral frame is also manually annotated with a bounding box that represents the
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object by the central location and its height and width. The collected hyperspectral video
sequences accompany the challenges that are different from the previous dataset, such as
scale variation (SV), motion blur (MB), occlusion (OCC), fast motion (FM), background
clutters (BC), low resolution (LR), in-plane rotation (IPR), out-of-plane rotation (OPR),
deformation (DEF), fast motion (FM), illumination variation (IV), and out-of-view (OV).
The average length of the hyperspectral video sequences is 174 frames, and the acquisition
speed is 10 frames per second. The dataset is obtained in three typical real-world scenarios,
including navigation, traffic, and take-off of the plane, in which tracked objects include
ships, electric cars, pedestrians, bicycles, vehicles, and airplanes. It is worth noting that the
tracked object is mostly small compared with the background with a motion shot, which
brings more challenges for the hyperspectral tracking.

3.3. Quantitative Comparison
3.3.1. Quantitative Comparison with the Correlation Filters Tracking Methods

In this subsection, we reported the quantitative comparison of the proposed SSTFT
method with the state-of-the-art Correlation Filter Trackers, including hyperspectral track-
ing methods and traditional CF algorithms. The comparison results of the IMEC16 and
IMEC25 datasets are reported as Tables 2 and 3. The best values are highlighted in bold
black, while an underscore is added to the second value. The same operation is adopted in
the following sections.

Table 2. Comparison with the state-of-the-art correlation filters’ trackers on IMEC16.

Trackers MHT SSHMG KCF DCF BACF MCCT fDSST Struck SAMF STRCF Ours

AUC 0.587 0.578 0.352 0.310 0.561 0.539 0.482 0.357 0.416 0.456 0.682
LP@(20) 0.882 0.875 0.591 0.544 0.861 0.838 0.791 0.635 0.671 0.717 0.884

Table 3. Comparison with the state-of-the-art correlation filters trackers on IMEC25.

Trackers CSRDCF CSK HOMG ECO BACF MCCT DSST LDES Ours

AUC 0.527 0.222 0.746 0.598 0.540 0.552 0.502 0.449 0.619
LP@(20) 0.775 0.429 0.823 0.634 0.797 0.797 0.720 0.650 0.888

As shown in Table 2, the proposed SSTFT method achieves the top performance on
the IMEC16 dataset among the evaluated 10 trackers including MTH [15], SSHMG [15],
KCF [38], BACF [39], MCCT [40], fDSST [41], Struck [42], SAMF [43], and STRCF [44].

Each tracker is briefly introduced as follows. The KCF tracker is a fast kernelized cor-
relation filter to capture non-linear classification boundaries. The MCCT tracker constructs
the divergence of multiple experts through a discriminative correlation filter, in which a
suitable expert is selected for tracking adaptively in the current frame. The fDSST tracker
works to learn discriminative correlation filters based on a scale pyramid representation,
which separates filters for translation and scale estimation. The Struck tracker adopts
a kernelized structured support vector machine (SVM) to predict the object location by
online tracking. The SAMF tracker extracts HoG [45] and color-naming features with a
scale-adaptive scheme. The STRCF tracker is based on spatial–temporal correlation filters to
handle boundary effects, which provides reasonable approximation with multiple training
samples. The BACF tracker is a background-aware CF based on hand-crafted features such
as HoG, which is designed to distinguish the foreground and background of the object.
The SSHMG is the hyperspectral feature descriptor based on spectral–spatial structure
information, which is the fundamental feature to represent the local material in the hyper-
spectral image. The MTH is also a hyperspectral tracker based on the BACF tracker while
considering the material and fractional abundance information to recognize the object
in complex scenarios. The spectral–spatial histogram of multidimensional gradients is
a fundamental feature to represent the material of the object in the hyperspectral image,
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while fractional abundances encode the underlying material distribution. Both feature
descriptors capture the local spectral and spatial information of the object.

As shown in Table 2, the SSTFT, SSHMG, and MHT trackers are tested on the hyper-
spectral dataset, while the other trackers are tested on the false-color videos generated
from hyperspectral images. The results show that the KCF, DCF, and Struck obtained
unsatisfying AUC and LP scores, which are due to ignoring scale estimation. BACF, MCCT,
SAMF, and STRCF trackers are based on learning more discriminative feature descriptors,
leading to much better performance. The fDSST tracker presents better performance than
the KCF and DCF trackers, which is due to the scale estimation. The MTH and SSHMG
trackers are based on hyperspectral feature descriptors, which obtain better performance
than the other compared trackers. It is worth mentioning that the proposed SSTFT tracker
achieves higher performance over the MHT, providing a gain of 9.5% and 0.2% in AUC and
LP, respectively. Meanwhile, compared with other CF trackers, the proposed SSTFT tracker
achieves the top performance on the IMEC16 dataset by obtaining 68.2% in AUC and
88.4% in LP. This implies that the proposed tracker has the ability to distinguish the object
from the background using the spectral–spatial information and global feature distribution
information contained in the hyperspectral video. The SSTF tracker is adapted to complex
scenarios, which is beneficial to hyperspectral video tracking.

As shown in Table 3, the proposed SSTFT method ranks the first on the IMEC25 dataset
among the eight evaluated trackers, i.e., CSRDCF [46], CSK [47], HOMG [25], ECO [48],
BACF [39], MCCT [40], DSST [49], and LDES [50]. The CSRDCF tracker introduces the
channel and spatial reliability score to the discriminative correlation filter tracker, which
utilizes HoGs features and Colornames features. The CSK tracker extends ridge regression
and an approximate dense sampling method based on cyclic shift. The HOMG tracker
is a hyperspectral object-tracking method based on the histograms of an oriented mosaic
gradients descriptor. The ECO tracker is a fast, compact generative model based on a
factorized convolution operator in which there is a trade-off between speed and accuracy.
The LDES tracker is a correlation-filter-based tracker with a robust estimation to simulta-
neously handle changes in both scale and rotation. The results show that the CSK, which
is the single-channel grayscale tracker, presents the poorest performance. In contrast, the
CSRDCF and ECO tracker obtains improved performance due to the fact that diverse types
of features are combined to learn the discriminative characteristics, while it is not very
suitable for hyperspectral video tracking. The HOMG tracker focuses on the hyperspectral
mosaic gradient features, which are employed to distinguish the object from the back-
ground. The DSST tracker reduces all the scale detection image blocks to the same size to
compute feature (CN+HoG) and then represents the feature as one dimension. However,
the tracker tends to obtain the local spectral–spatial information and does not achieve
the best positioning accuracy. The other CF trackers are based on hand-crafted features,
which are not suitable for hyperspectral video tracking. The SSTFT method, achieving the
top LP score (0.888) and the second highest AUC score (0.619), can distinguish the object
from the background using the spectral–spatial information and global feature distribution
information contained in the hyperspectral video. This implies that the proposed tracker is
adapted to complex scenarios, which is beneficial for hyperspectral video tracking.

3.3.2. Quantitative Comparison with State-of-the-Art Deep Learning Tracking Methods

In this section, we compare the proposed SSTFT tracker with the state-of-the-art
deep learning trackers on the IMEC16 in Figure 4 and IMEC25 in Figure 5. Except for
the proposed method and BAENet, the other deep-learning trackers were tested on the
false-color videos generated from hyperspectral images.

The proposed SSTFT tracker was compared with nine trackers, namely SiamFC [51],
SiamRPN [52], SiamRPN++ [53], DaSiamRPN [54], SiamBAN [55], MDNet [56], BAE-
Net [57], SiamHYPER [23], and TransT [1], on the IMEC16 dataset. The SiamFC tracker is
the first Siamese deep-learning tracker, and it is based on a fully convolutional Siamese
network and combines the resulting feature maps based on the cross-correlation layer. The



Remote Sens. 2023, 15, 1735 14 of 24

SiamRPN tracker introduces the region proposal network to generate the classification
label and regression boxes for tracking. The SiamRPN++ tracker provides a simple yet
effective spatially aware sampling strategy in which multi-level features are extracted from
the residual block for layer-wise aggregation to improve the performance of the SiamRPN
tracker. The DaSiamRPN tracker further explores a distractor-aware module to improve
the localization accuracy of the model. The SiamBAN tracker consists of the expressive
power of the fully convolutional network, which does not require pre-defined candidate
boxes or multi-scale searching. The MDNet tracker consists of shared layers and multiple
branches of domain-specific layers, where generic object representations are obtained in
the former layers, and domain-specific representations are obtained in the latter layers.
The BAE-Net is based on that of Vital [58] to explore the spectral–spatial feature of the
hyperspectral video, which predicates the tracking results based on ensemble learning.
The TransT tracker is introduced to learn the template and search region feature solely
using attention. The SiamHYPER is a multi-modal hyperspectral tracker combined with a
pre-trained RGB tracker and a spatial–spectral cross-attention module to be aware of the
location of the object.

As shown in Figure 4, the SSTFT method achieves the top performance on the IMEC16
dataset by achieving 88.4% in the precision plot score, the second performance by achieving
68.2% in success plot score, and 82.5% in normalization precision plot score. Compared
with the hyperspectral tracker BAENet, the proposed tracker gains improvements with 7.5%
in the success plot score, 0.6% in the precision plot score, and 5.8% in the normalization
precision plot score. The reason for the lower performance of BAENet is that several
spectral information is ignored in the band attention module. The reason why other deep
learning trackers present lower success rate scores and precision rate scores is the loss
of useful spectral information in the false-color videos for the challenging scenarios of
the dataset. The most important reason that the SiamHYPER obtained the top precision
rate score is the use of highly aligned multi-modal data with visible and hyperspectral
information. However, such methods face a very demanding challenge of data sets, which
requires a lot of storage resources and human resources.

(a) (b) (c)

Figure 4. Comparisons with deep learning trackers on IMEC16.

The proposed SSTFT tracker is compared with six deep learning trackers, namely
SiamFC [51], SiamRPN++ [53], DASiamRPN [59], UpdateNet [60], and TransT [1], on the
IMEC25 dataset. The SiamCAR is a Siamese network consisting of a feature extraction
subnetwork and a bounding box prediction subnetwork, which is based on a proposal and
is anchor-free without tricky hyper-parameter tuning of boxes. The UpdateNet tracker
introduces a learned update strategy with target and image information to update the
template. The other compared trackers are the same as the IMEC16 dataset, and the
corresponding results are implemented on three bands of video sequences.
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The proposed tracker achieves the top performance on the IMEC25 dataset as shown in
Figure 5, which is the first deep learning tracker based on hyperspectral video datasets with
25 bands, by achieving 88.8% in precision plot score, 61.9% in success plot score, and 77.9%
in normalization precision plot score. It is worth noting that the proposed trackers obtain a
performance improvement of 7.2% in success plot score, 1.7% in precision plot score, and
3.8% in normalization precision plot score compared with the transformer tracker named
TransT. The traditional TransT is trained on optical datasets, and the performance of TransT
is not satisfactory on the hyperspectral video dataset. DaSiamRPN and SiamCAR trackers
obtain inferior performance in that the target is not easy to distinguish in challenging
video surveillance scenarios without the use of abundant spectral information. The most
important reason why the SSTFT tracker obtains the best performance on the IMEC25 and
IMEC16 datasets is that the proposed tracker utilizes the spectral–spatial features of the
hyperspectral video. Meanwhile, the feature global interaction is beneficial to predict the
data distribution.

(a) (b) (c)

Figure 5. Comparisons with deep learning trackers on IMEC25.

The floating point of operations (FLOPs) and parameters are reported in Table 4, from
which it can be obviously found that our method has the lowest computational complexity.

Table 4. Model complexity comparison.

Trackers FLOPs Parameters

SiamBAN 51.5 G 53 M
TMTNet 1846.6 G 333.4 M

Ours 3.36 G 20 M

3.3.3. Attribute-Based Evaluation

In this section, we report the effectiveness of the proposed SSTFT tracker on the public
hyperspectral video datasets IMEC16 and IMEC25 with different attributes. The result of
attribute-based evaluation is reported in Figures 6–8 and Tables 5 and 6.
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Table 5. Comparison with the other trackers in terms of precision rate on IMEC25.

Attributes BACF CSRDCF UpdateN MCCT DSST-LP SiamFC DA-
SiamRPN SiamCAR Siam-

RPN++ TransT Ours

SV 0.685 0.831 0.844 0.834 0.709 0.840 0.605 0.692 0.888 0.946 0.846
MB 0.841 0.816 0.914 0.852 0.740 0.944 0.657 0.813 0.876 0.847 0.890

OCC 0.810 0.750 0.851 0.760 0.664 0.823 0.452 0.726 0.863 0.843 0.889
FM 0.800 0.642 0.857 0.692 0.577 0.838 0.619 0.618 0.829 0.750 0.871
BC 0.737 0.702 0.741 0.816 0.742 0.776 0.607 0.659 0.753 0.802 0.836
LR 0.779 0.772 0.819 0.916 0.701 0.869 0.503 0.750 0.808 0.890 0.920
IPR 0.568 0.532 0.742 0.630 0.448 0.695 0.604 0.592 0.809 0.820 0.884
OPR 0.760 0.655 0.814 0.704 0.714 0.778 0.398 0.700 0.819 0.803 0.882
DEF 0.764 0.696 0.794 0.730 0.724 0.786 0.420 0.685 0.775 0.807 0.833
IV 0.840 0.791 0.898 0.742 0.795 0.802 0.592 0.819 0.924 0.795 0.852
OV 0.648 0.763 0.889 0.650 0.598 0.820 0.661 0.764 0.883 0.841 0.864

Table 6. Comparison with the other trackers in terms of success rate on IMEC25.

Attributes BACF CSRDCF UpdateNet MCCT DSST-LP SiamFC DA-
SiamRPN SiamCAR Siam-

RPN++ TransT Ours

SV 0.397 0.530 0.569 0.526 0.463 0.591 0.393 0.420 0.592 0.609 0.619
MB 0.560 0.553 0.584 0.599 0.523 0.685 0.404 0.460 0.584 0.518 0.618

OCC 0.548 0.522 0.584 0.539 0.463 0.578 0.314 0.479 0.604 0.562 0.656
FM 0.578 0.462 0.622 0.519 0.429 0.602 0.432 0.410 0.608 0.515 0.635
BC 0.485 0.461 0.469 0.560 0.504 0.533 0.367 0.357 0.465 0.454 0.568
LR 0.499 0.447 0.311 0.555 0.416 0.567 0.188 0.380 0.295 0.420 0.526
IPR 0.421 0.396 0.501 0.456 0.348 0.512 0.395 0.374 0.557 0.536 0.657
OPR 0.530 0.459 0.599 0.506 0.512 0.564 0.278 0.467 0.618 0.557 0.666
DEF 0.501 0.478 0.532 0.507 0.508 0.543 0.261 0.436 0.525 0.511 0.576
IV 0.581 0.595 0.646 0.553 0.607 0.584 0.414 0.551 0.675 0.570 0.651
OV 0.487 0.545 0.627 0.465 0.445 0.604 0.467 0.491 0.651 0.681 0.703

As shown in Figures 6 and 7 on IMEC16, the proposed tracker is compared with
sixteen trackers, including eight deep learning trackers and eight correlation filter trackers,
in challenging scenarios such as BC, DEF, LR, and OV. In Figure 6, SSTFT achieves the
top performance on BC, DEF, LR, and OV attributes in terms of the success plot score and
precision plot score. It is worth noting that SSTFT shows outstanding results in LR and
OV attributes, in which the object is partially out of snapshot or under low-resolution
scenarios. In the LR attribute, compared with the tracker ranking second, SSTFT brings
a gain of 13.7% in the success plot score and 5.1% in the precision plot score, while in
the OV attribute, compared with the second best tracker, SSTFT brings a gain of 13.0% in
success plot score and 3.2% in precision plot score. The reason may be that the spectral–
spatial features of the hyperspectral video are fully utilized in the proposed method,
and the features of global interaction are beneficial to predict data distribution to locate
tracking objects. The other trackers based on the false-color images may not recognize
the specific properties of the object from the complex background. In addition, as shown
in Figure 7, various attributes are evaluated on the IMEC16 dataset with a radar graph.
SSTFT achieves the most outstanding performance in robustness and accuracy from
statistics of success rate and precision rate since the index of the proposed method is
relatively dense in various attributes.
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(a) Background Clutters (b) Background Clutters (c) Deformation (d) Deformation

(e) Low Resolution (f) Low Resolution (g) Out-of-view (h) Out-of-view

(i) Motion blur (j) Motion blur (k) Occlusion (l) Occlusion

Figure 6. The proposed method compared with all trackers on IMEC16.

(a) Success (b) Precision

Figure 7. The proposed method compared with trackers on IMEC16.
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(a) Success (b) Precision

Figure 8. The proposed method compared with trackers on IMEC25.

On the IMEC25 in Tables 5 and 6 and Figure 8, 11 attributes such as SV, MB, and OCC
are evaluated. As shown in Table 5, SSTFT ranks first on 7 out of 11 attributes, including
OCC, FM, BC, IPR, OPR, and DEF, in terms of precision rate. As shown in Table 6, the
SSTFT ranks first on 8 out of 11 attributes, including SV, OCC, FM, BC, IPR, OPR, DEF,
and OV, in terms of success rate. The challenging attribute BC results in great difficulty in
extracting discriminative features from the object in the image. However, the hyperspectral
cube with abundant spectral information can be effectively utilized to distinguish the object
from the background in SSTFT. In addition, SSTFT displays an excellent precision rate
in the OV attribute, which brings a gain of 2.2% in precision rate compared with TransT.
Meanwhile, SSTFT achieves the top performance in the LR attribute, which brings a gain of
3.0% in success rate compared with TransT. The DEF is also one of the most challenging
attributes, which is a target that has partly or fully deteriorated. However, SSTFT still
yields satisfactory results in this attribute by achieving 0.576 and 0.833 in success rate
and precision rate, respectively. The reason is that the spectral–spatial features of the
hyperspectral video are fully explored in the proposed tracker, and the global interaction
structure is beneficial to improve the performance of the model. Meanwhile, as shown in
Figure 8, SSTFT achieves the most outstanding performance in robustness and accuracy
from the statistics of success rate and precision rate. A possible reason is that the deep
features consisting of the coarse-grained cube and fine-grained cube, underlying physical
and robust attributes, are employed to capture the discriminative information of the object
compared with other trackers based on hand-crafted features.

3.4. Qualitative Comparison

In this section, the qualitative evaluations of the competing trackers on hyperspectral
or false-color videos are provided, as shown in Figures 9 and 10. Figure 9 reports the visual
results of the proposed method and six compared trackers on six challenging sequences on
IMEC16. For the sequence fruit, coke, toy1, and coin, the object is similar to the background,
which makes it difficult to locate. At the initial stage (e.g., #174 in fruit, #306 in coke, and
#153 in toy1), SSTFT, Vital, Staple, MHT, and BACF succeed in tracking to track the object,
while SiamBAN fails to track the fruit, and TransT fails to track the toy1. In #275 of the
fruit sequence, SSTFT shows the best performance, while other trackers have different
degrees of drift. In #728 of the coke sequence, SSTFT has stable tracking performance, while
SiamBAN and Vital display a slight drift, and BACF, MHT, and Staple lose the object. In
addition, TransT predicts the wrong position and scale of the object from #554 to #728. In
#233 and #270 of the toy1 sequence, other trackers such as SiamBAN, Staple, and MHT
predict a similar false object, while SSTFT still maintains optimal and stable performance.
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For the sequence of the forest and worker, the object suffers from BC challenge, which
makes the tracker confused in locating the object. In contrast, SSTFT performs well in the
whole sequence, which implies that it can handle challenging scenarios.
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Figure 9. Qualitative results of the proposed method on some challenging sequences on IMEC16.

Figure 10 reports the visual results of the proposed method and seven compared
trackers on six challenging sequences on IMEC25. It can be seen that the tracked object is
small compared with the background in sequence man3, boat8, double8, doublecar8, and
triple2. For sequence man3, the scale and appearance of the object change significantly
because of the fast motion and out-of-plane rotation. Besides SSTFT, the other trackers
do not perform well in the whole sequence. For sequences boat8, double8, and triple2,
the object is too small to recognize from the background. Furthermore, similar target
interference is also an enormous challenge for the tracker. In #155, #257, #323, and #461
of sequence boat8, SSTFT has the best tracking performance, while there are two types of
tracking failures for the other trackers: one is seriously drifting, and the other is tracking
similar targets. For sequences double8 and triple2, SSTFT is the only tracker that can predict
the correct position and scale of the target. For sequence doublecar8, the tracked car is
partially occluded by trees in #93 and #105, and the appearance of the car is significantly
changed because of the deformation in #172 and #198.

Although other trackers can locate the object well in #32, the estimated object local-
ization and scales are not accurate in a subsequent frame. In addition, for the airplane8
sequence, the airplane is moving fast, with the challenge of out-of-plane rotation. DaSi-
amRPN has a drift, whereas SSTFT can successfully track the airplane. Therefore, our
SSTFT performs more robustly.
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Figure 10. Qualitative results of the proposed method on some challenging sequences on IMEC25.

3.5. Running Time Analysis

Tables 7 and 8 report the running time of the proposed method and compare the
trackers on the IMEC16 and IMEC25 datasets, which record the frames per second ( f ps)
with identical hardware facility. As shown in Table 7, the running time of the proposed
method is 19.9 f ps on the IMEC16 dataset, which is much faster than MDNet, Vital, MCCT,
and MHT. Due to the high-dimensionality features of MHT, SSTFT is 7.7 times faster
than MHT. Furthermore, MDNet and Vital sacrificed speed for the accuracy by online
training, which is 8.3 and 8.7 times slower than SSTFT. Although TransT, SiamBAN, and
SiamFC are slightly faster than SSTFT, the performance of SSTFT is better than theirs. The
reason is that the compared trackers ignore the spectral information, which is important
for target tracking in hyperspectral video. However, as shown in Table 8, the speed of the
proposed method is 20.4 f ps on the IMEC25 dataset, which is much faster than HOMG
and ECO. Compared with HOMG extracted from the mosaic spectral image, SSTFT is more
than 9.3 times faster. Similarly, SSTFT is more than 15.7 times faster than ECO. The most
important reason is the compared high-dimensionality features of trackers, which have
a high computational cost. While the other compared trackers, named DaSiamRPN and
SiamBAN, that are based on deep learning are much faster than SSTFT, the performance is
not satisfactory due to the lack of spectral information. Therefore, the proposed method is
verified to be effective and robust in hyperspectral video tracking, which is much faster
than most compared trackers.

Table 7. Comparison the running time on IMEC16.

Trackers TransT SiamBAN SiamFC MDNet Vital MCCT MHT STRCF Ours

Speed 22.2 24.4 10.9 2.4 2.3 8.2 2.6 20.3 19.9

Table 8. Comparison the running time on IMEC25.

Trackers TransT SiamBAN DaSiamRPN SiamFC BACF HOMG ECO Ours

Speed 23.3 26.3 90.1 10.6 28.1 2.2 1.3 20.4
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3.6. Ablation Experiments

In this section, we report the ablation experiments to verify the effectiveness of the
proposed method. According to the experimental experience, the transformer obtained
the best tracking performance when it had four fusion layers, and we therefore set the
number of capacitive fusion layers to four. The result of the experiments is evaluated on
the IMEC16 and IMEC25 datasets.

3.6.1. Ablation Experiments on IMEC16

The proposed SSTFT contains three components: a spectral–spatial multiscale feature
extraction module, a context fusion module based on the transformer, and an adaptive dy-
namic template update strategy. In order to investigate the contributions of each component
of SSTFT, ablation experiments were conducted on the IMEC16 and IMEC25 datasets ac-
cording to three variants, SSTFT-noSSS, SSTFT-noDRN, and SSTFT-noADTU. SSTFT-noSSS
represents the features without the shallow spectral–spatial feature extraction module.
SSTFT-noDRN represents the features without the deep spectral–spatial feature extraction
module. SSTFT-noADTU represents the features without the adaptive dynamic template
update strategy.

Table 9 reports the results of the ablation study on the IMEC16 dataset. Each compo-
nent of SSTFT positively affects the tracking performance. SSTFT achieved {0.682, 0.884}
in AUC and DP, which ranks the first in all implementations, and obtained {4.6%, 0.6%},
{52.1%, 54.3%}, {26.9%, 32.7%} improvement in AUC and DP compared with SSTFT-noSSS,
SSTFT-noDRN, and SSTFT-noADTU, respectively. The results show that the spectral–spatial
multiscale feature extraction module, the transformer-based context fusion module, and the
adaptive dynamic template update strategy are complementary to each other. Therefore, it
is effective to construct a customized hyperspectral feature-extraction and data-interaction
model for the object-tracking task.

Table 9. Ablation experiment on IMEC16.

Trackers SSTFT-noSSS SSTFT-noDRN SSTFT-noADTU Ours

AUC 0.636 0.161 0.413 0.682
DP 0.878 0.341 0.557 0.884

3.6.2. Ablation Experiments on IMEC25

Table 10 reports the results of the ablation study on the IMEC25 dataset. The proposed
three components of SSTFT also improve the performance in hyperspectral object tracking.
SSTFT obtained the best performance, which is {0.619, 0.888} in AUC and DP. The final
results show that SSTFT achieved an improvement of 10.1% in AUC, 8.3% in DP compared
with SSTFT-noSSS, 38.3% in AUC, and 37.9% in DP compared with SSTFT-noDRN, yielding
a gain of 32.2% in AUC, 45.3% in DP compared with SSTFT-noADTU. The method without
deep ResNet provided the worst accuracy among the compared trackers, as the low dimen-
sionality of the features could not represent the fine-grained information of the object. The
method without the adaptive dynamic template update strategy also performed poorly,
which is due to the fact that the fixed template leads to the model losing the ability to adapt
to the object deformation. Therefore, the proposed method has shown effectiveness and
robustness in the hyperspectral object tracking task.

Table 10. Ablation experiment on IMEC25.

Trackers SSTFT-noSSS SSTFT-noDRN SSTFT-noADTU Ours

AUC 0.518 0.236 0.297 0.619
DP 0.805 0.509 0.435 0.888

4. Conclusions

This paper proposed a novel SSTFT model to extract the spatial–spectral feature from
hyperspectral videos. The confluent features were extracted with the spatial–spectral
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multiscale feature extraction module. Then, the context interaction module based on the
transformer structure was designed to interact with the fused features between the template
branch and the search branch. To evaluate the performance of the proposed SSTFT model,
we integrated it into the challenging visual tracking task, and extensive experiments were
performed on two datasets collected by different snapshot spectral cameras. Great experi-
ment results illustrate the effectiveness and generalization of the proposed SSTFT in the
obtained spatial–spectral features. Meanwhile, the research also provides a new perspective
for hyperspectral visible tracking using the transformer structure. The proposed method
has adequate ability to handle various complex challenges in hyperspectral object tracking.
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