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Abstract: Noises in the GPS vertical coordinate time series, mainly including the white and flicker
noise, have been proven to impair the accuracy and reliability of GPS products. Various methods were
adopted to weaken the white and flicker noises in the GPS time series, such as the complementary
ensemble empirical mode decomposition (CEEMD), wavelet denoising (WD), and variational mode
decomposition (VMD). However, a single method only works at a limited frequency band of the
time series, and the corresponding denoising ability is insufficient, especially for the flicker noise.
Hence, in this study, we try to build two combined methods: CEEMD & WD and VMD & WD, to
weaken the flicker noise in the GPS positioning time series from the Crustal Movement Observation
Network of China. First, we handled the original signal using CEEMD or VMD with the appropriate
parameters. Then, the processed signal was further denoised by WD. The results show that the
average flicker noise in the time series was reduced from 19.90 mm/year0.25 to 2.8 mm/year0.25.
This relates to a reduction of 86% after applying the two methods to process the GPS data, which
indicates our solutions outperform CEEMD by 6.84% and VMD by 16.88% in weakening the flicker
noise, respectively. Those apparent decreases in the flicker noises for the two combined methods are
attributed to the differences in the frequencies between the WD and the other two methods, which
were verified by analyzing the power spectrum density (PSD). With the help of WD, CEEMD & WD
and VMD & WD can identify more flicker noise hidden in the low-frequency signals obtained by
CEEMD and VMD. Finally, we found that the two combined methods have almost identical effects on
removing the flicker noise in the time series for 226 GPS stations in China, testified by the Wilcoxon
rank sum test.

Keywords: GPS time series; complementary ensemble empirical mode denoising; wavelet denoising;
variational mode decomposition; flicker noise

1. Introduction

In the past two decades, the Global Positioning System (GPS) has produced a dense
and accurate set of observations for crustal motion and provided essential constraints on
tectonics, rheological structure, and geodynamics (e.g., plate motion [1–3], crustal defor-
mation [4–6]). The daily coordinate time series from a reprocessing of GPS measurements
are also helpful for refining the terrestrial reference frame [7,8] and better understanding
surface mass loading [9–11] and water storage [12,13]. However, the millimeter-level flicker
and white noises in the GPS coordinate time series (see Appendix A) are detrimental to
the estimations of velocity and their uncertainties [14,15]. The noise is usually caused by
the environment (e.g., the surrounding topography, upper atmosphere conditions) of the
GPS site and the processing (e.g., the employed models) of the GPS data [16–18]. Therefore,
weakening the noise in the GPS time series is essential to improving data reliability and
can further provide substantial constraints on regional tectonics and rheology.

The non-linear and non-stationary noises involved in the GPS time series can be de-
tected and weakened by various approaches. Empirical Mode Decomposition (EMD), a
data-driven approach, decomposes the non-stationary and non-linear signals adaptively
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into a finite number of intrinsic mode function (IMF) components using all the local ex-
trema [19]. Based on the EMD, Montillet et al. [20] proposed an algorithm to estimate
the white noise in the GPS time series and demonstrated its efficiency. However, EMD
constructs the envelopes by utilizing all the local extremes, causing a mode mixing problem
that an IMF includes incorporates signals with multiple scales [21]. To overcome this
shortcoming, the ensemble EMD (EEMD) and complementary EEMD (CEEMD) were pro-
posed by adding the white noises [21,22]. Peng et al. [23] and Li et al. [24] used EEMD and
CEEMD to decompose the GPS time series into IMFs and focus on the extraction of seasonal
signals not involving noise characteristics. The second method, Wavelet Denoising (WD),
usually decomposes the signal into the wavelet coefficients of multiple high-frequency
components and a low-frequency component, then performs a thresholding operation on
the high-frequency coefficients, and finally reconstructs the threshold coefficients with the
low-frequency coefficients to obtain a denoising signal [25–27]. Due to multiresolution
decomposition, WD was applied to remove white noise and assist the maximum likelihood
estimate (MLE) method in estimating the GPS coordinate time series [28]. Wu et al. [16]
proposed a wavelet algorithm, merging Shannon entropy and wavelet thresholding, to
remove white noise and flicker noise from the GPS position time series, and proved the com-
prehension of hybrid thresholding in removing white noise and flicker noise. Kaczmarek
and Kontny [29] used the inverse continuous wavelet transform to model the GPS mea-
surements and proved that the nature of noise could be analyzed by the wavelet algorithm.
Those studies all indicate that the WD can be an efficient tool for removing noise from the
GPS time series. The third method, Variational Mode Decomposition (VMD), decomposes
the original signals robustly into IMF components with a specified center frequency by a
partially variational approach, which avoids the mode mixing problem during the EMD
iterations [30]. For the GPS signals, Sivavaraprasad et al. [31] investigated the application
of VMD on GPS signals to research the influences of ionospheric scintillations and its
potentiality in mitigating the ionospheric amplitude scintillation effects. Shen et al. [32]
further confirmed the ability of VMD to extract seasonal signals from GPS and GRACE data.
Those studies only focus on the decomposition ability of VMD and ignore its denoising
performance for the GPS observations.

Overall, previous studies indicate that the three decomposition methods, CEEMD,
VMD, and WD, are feasible for removing white noise and partial flicker noise from the GPS
data [16,24,33]. However, the non-stationary nature of the flicker noise leads to residual
flicker noises still hidden in the signal components decomposed by the CEEMD or VMD
methods and the low-frequency signal obtained by the WD method [16,33]. Studies have
suggested that it is challenging to eliminate the flicker noise from the GPS data by a single
denoising approach [16,33]. With the help of the multi-scale feature, WD can decompose the
low-frequency signal components obtained by VMD or CEEMD to extract low-frequency
flicker noise. Hence, combining the above different methods may be a reasonable and
effective way to extract the flicker noise in the GPS data [33,34]. Additionally, the VMD was
usually used to estimate the GPS seasonal signals rather than the observation noises [32]. It
is necessary to investigate its denoising ability for the GPS time series.

In this study, we propose two hybrid algorithms based on the wavelet denoising
approach to reduce flicker noise in the GPS time series. We first introduce the three
decomposition methods, CEEMD, VMD, and WD, and obtain their optimal denoising
parameters. Secondly, the two WD-based combined algorithms, CEEMD & WD and
VMD & WD, are proposed to remove the noises in the GPS data. Finally, the two hybrid
approaches to reduce flicker noise are further assessed by the 226 GPS stations from the
Crustal Movement Observation Network of China (CMONOC).

2. Methods

In this section, we introduce the principles and processes of the three decomposition
methods: CEEMD, VMD, and WD. Then, the two combined methods, CEEMD & WD
and VMD &WD, are presented in detail. For assessing and comparing the abilities of the
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combined methods, we also build an indicator, the level of the flicker noises, derived from
the trajectory model based on the study of Bos et al. [35] and Klos et al. [36].

2.1. The Principles of CEEMD, WD, and VMD
2.1.1. Complementary Ensemble Empirical Mode Decomposition (CEEMD)

CEEMD is an enhanced EMD method assisted by a pair of white noise, which is
proposed to solve the mode mixing problem for EMD and to remove the residual white
noise in the EEMD algorithm [22]. The denoising steps of CEEMD are the following [24]:
(1) the positive and negative white noise are added to the original data; (2) EMD is applied
to decompose the two new signals, and the positive and negative ensemble intrinsic mode
functions (IMFs) are achieved; (3) the IMFs of the original signal are calculated by averaging
the corresponding positive and negative modes; and (4) a criterion is used to determine the
noise components from IMFs.

2.1.2. Wavelet Denoising (WD)

Wavelet denoising (WD) is an essential application of wavelet analysis, in which the
wavelet coefficients are handled by a threshold rule in the decomposition and reconstruction
of the signal through the wavelet transform. The procedure of WD can be accomplished
in three stages [16,37,38]: firstly, the noisy signal is decomposed by applying the wavelet
transform with orthogonal scaling functions and wavelet functions to obtain a sequence
of wavelet coefficients comprising high-frequency and low-frequency components. Then,
a thresholding rule is used for high-frequency coefficients. Finally, the denoised signal is
derived by reconstructing the coefficients using the inverse wavelet transform operation.

2.1.3. Variational Mode Decomposition (VMD)

Following a non-recursive method, the variational mode decomposition (VMD) could
adaptively decompose a multi-frequency signal into a number of IMFs, which are limited
to a band in the spectral domain [30]. VMD can decompose the GPS coordinate time series
into several modes uk(K = 1, 2 . . . K) around their respective center frequencies wk [31,32].
In searching for uk and wk, a constrained variational problem needs to be resolved by
a quadratic penalty and Lagrangian multipliers [39]. Note that the number K is set in
advance. A detailed principle of the VMD algorithm can be found in Dragomiretskiy and
Zosso [30]. Similar to CEEMD, the denoising procedure of VMD utilizes a criterion to
differentiate the components from signal and noise.

2.2. Parameters of CEEMD, VMD, and WD

We selected the vertical time series at an IGS station, BJSH, with a lower flicker noise
(18.85 mm/year0.25) as the test sample to find the optimal settings for the denoising methods
for the CEEMD, VMD, and WD. In addition, the components, decomposed by CEEMD and
VMD, require a criterion to define the noise and signal components as mentioned above.
We also introduce the Hausdorff distance as the filtering criterion (see Appendix B), which
was proved to be an efficient and robust criterion [40].

For CEEMD, β could be a critical element in the denoising process; we thus varied
β from 0.1 to 1 to obtain the best values (Figure 1). We found that both the original and
added white noise were removed, which is consistent with the conclusion of Yeh et al. [22].
The amplitude of flicker noise of the denoised coordinate time series of the BJSH station
achieved a minimum of 1.85 mm/year0.25 with β being equal to 4 (Figure 1a). Therefore, a
value of 0.4 was adopted in this research.
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In the VMD, a key parameter, the number of decomposition modes (K) usually needs to
be determined before the processing. We conducted a test varying K from 3 to 11 following
the study of Liu et al. [41]. The amplitude of flicker noise for the denoised coordinate time
series of BJSH station using VMD with different K are shown in Figure 1b. We discovered
that K = 4 resulted in a minimum amplitude of flicker noise of 6.14 mm/year0.25. Therefore,
4 was employed as an appropriate decomposition mode for VMD.

In addition, the performance of the WD method usually depends on the wavelet,
decomposed level, and thresholding selection rule [25,26,42]. Therefore, we investigated
various combinations of factors that were widely used in the wavelets, including bior3.5,
db4, coif3, and sym5, and the decomposed levels ranging from 1 to 20, and the thresholding
selection rules such as Rigrsure, Sqtwolog, Heursure, and Minimaxi [38]. As shown in
Figure 1c, the amplitude of the semi-annual signals in the denoised time series ranges from
1.30 mm to 1.60 mm when the level is less than 7 but drops sharply to a maximum of 0.40 mm
with increasing levels. It suggests that a larger decomposition level causes an unreasonable
removal of the seasonal signals in GPS measurement. Meanwhile, with the determined
thresholding selection rule and the wavelet, the amplitude of flicker noise decreases as the
number of decomposition layers grows. Hence, the superlative decomposed level is set to 6.
In terms of threshold selection (Figure 1d), the average noise amplitudes for Sqtwolog and
Heursure are 2.59 mm/year0.25 and 2.78 mm/year0.25, which are substantially lower than
those for Rigrsure (8.00 mm/year0.25) and Minimaxi (4.73 mm/year0.25). This is mainly
due to the differences that Sqtwolog and Heursure are applied to all wavelet coefficients,
unlike the partial thresholds of the others [38]. When the threshold method is identical,
coif3 yields a smaller noise amplitude than other wavelets (Figure 1d). Hence, we adopted
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coif3 wavelet, 6 for decomposition level and Sqtwolog for the thresholding selection in the
following denoising process.

2.3. Proposed Mixture Methods

The two combined methods proposed in this study, CEEMD & WD and VMD &
WD, are performed in two steps: (1) CEEMD or VMD is first used to decompose the GPS
coordinate time series into noise modes and signal modes with the help of the Hausdorff
distance; (2) then, the WD is used to further denoise the signal modes.

The detailed procedure of the hybrid approaches for the denoising process can be
described as follows (Figure 2):

i. The coordinate time series of a GPS station, X(t), is decomposed into K modes by
CEEMD or VMD.

ii. Based on the criterion of the Hausdorff distance, the modes are classified into two
types, including pure noise modes and signal modes.

iii. The pure noise modes are eliminated directly and signal modes are reconstructed to
obtain the initial denoised signal S1.

iv. WD is performed to decompose the signal S1, then the high-frequency and low-
frequency wavelet coefficients are obtained by wavelet transform.

v. The thresholding rules are applied to high-frequency wavelet coefficients.
vi. The thresholded high-frequency wavelet coefficients and low-frequency wavelet

coefficients are reconstructed by the inverse wavelet transform to obtain the final
denoised signal S2.
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2.4. The Trajectory Model of the GPS Time Series

The GPS time series is the sum of a trend term, a seasonal term, and stochastic
noise [43,44]. Their trajectory model can be described as follows [43]:

y(t) = a + v(t− tR) +
nF

∑
k=1

sk cos(ωkt + ϕk) + ε(t) (1)

where y(t) is the position at time t; a and tR are the reference position and epoch; v is the
station velocity; nF is the number of frequencies used to model the nonlinear variations
cycle, sk and ϕk are amplitude and phase of the frequency, annual (k = 1) and semi-annual
(k = 2) variations are considered in this study; ε(t) is random noise.

In this study, MLE was used to accurately estimate the parameters with a noise
model [35]. The combination of the white noise and flicker noise was proved to be a better
description for the noise in the GPS time series [16,45,46]. Therefore, we adopt this model
to calculate the amplitudes of the flicker noise in the vertical components before and after
the noise reduction, based on the maximum likelihood estimation.

3. Data and Experimental Design
3.1. GPS Data

In this study, the daily vertical coordinate time series of 226 CMONOC GPS stations
(Figure 3), spanning from 2010 to 2020, are employed. Among these, the tracking data of
19 stations are available until September 2019, while for 200 more stations, observations
could be retrieved until December 2020, corresponding to a mean duration of 10.35 and
7.75 years, respectively. The observation spans of the remaining 7 stations range from
4.57 years to 9.98 years. Long observations ensure reliable estimations of parameters in the
trajectory model of GPS stations [35,47]. The detailed strategies of GPS data processing can
be found in the study by Hao et al. [9].
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Due to the observation environments (e.g., instruments and earthquakes) and data
processing, there are inevitable outliers and gaps in the GPS coordinate time series, affecting
the denoising process. Therefore, before denoising the 226 GPS time series, a pre-processing
procedure was conducted to eliminate the outliers and gaps. Firstly, in order to eliminate
the outliers induced by numerous causes, the interquartile range (IQR) approach was
applied [18,35]. Then, considering the constraints of denoising methods, missing data were
interpolated using segment cubic Hermite interpolation, which was typically performed to
cover the gaps [48,49]. Figure 4. represents the vertical time series of three typical GPS sites
before and after conducting the pre-processing procedure.
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Figure 4. The vertical time series before and after conducting the pre-processing procedure of three
typical GPS sites (BJFS: 115.89◦E, 39.61◦N, YNCX: 101.49◦E, 25.05◦N and XJRQ: 88.17◦E, 39.02◦N)
are shown. Good measurements (black points) plus outliers (red points) present the raw time
series. Good measurements (black points) plus gaps (blue points) present the input time series to
our investigations.

3.2. Experimental Design

A series of experiments were designed to evaluate the improvement in the new hybrid
methods on denoising GPS coordinate time series. To start, two hybrid algorithms, CEEMD
& WD and VMD & WD, were utilized to denoise the coordinate time series of 226 GPS
sites. In order to compare the capabilities of the mixed methods, CEEMD, VMD, and WD
methods were also applied. All parameters of the subsequent methods involved in this
process were obtained from the previous parts. Then, the maximum likelihood estimation
method was used to estimate the noise amplitudes, and the variations in the levels of flicker
noise were quantified and analyzed.

In order to facilitate the subsequent analysis, the denoised results are represented
using corresponding methods. The result obtained before denoising is referred to as Raw.
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4. Results
4.1. Flicker Noises in the GPS Time Series

The scatter plot in Figure 5 illustrates the geographical distribution and magnitudes of
flicker noise at the 226 investigated GPS sites evaluated using six strategies. The results in-
dicate that the minimal and maximal amplitudes of flicker noise are 10.99 mm/year0.25 and
34.38 mm/year0.25, respectively, with an average of 19.90 mm. Most stations in northwest,
south, and northeast of China, as well as locations adjacent to the South China Sea, have
amplitudes between 15.00 mm/year0.25 and 30.00 mm/year0.25. By comparison, those of
stations in eastern and mid-China range from 10.00 mm/year0.25 to 15.00 mm/year0.25, and
the poorer observing environments around eight stations resulted in flicker noise exceeding
30 mm/year0.25. Additionally, 207 stations, accounting for 91.6% of total stations, are char-
acterized by an amplitude of flicker noise more significant than 15 mm/year0.25. Among
these, the number of stations with an amplitude of 15–20 mm/year0.25 is 111, whereas 75 sta-
tions experience an amplitude of 20–25 mm/year0.25. The amplitudes of 19 and 8 stations
range between the amplitudes of 10–15 mm/year0.25 and 30–35 mm/year0.25, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 

4. Results 

4.1. Flicker Noises in the GPS Time Series 

The scatter plot in Figure 5 illustrates the geographical distribution and magnitudes 

of flicker noise at the 226 investigated GPS sites evaluated using six strategies. The results 

indicate that the minimal and maximal amplitudes of flicker noise are 10.99 mm/year0.25 

and 34.38 mm/year0.25, respectively, with an average of 19.90 mm. Most stations in north-

west, south, and northeast of China, as well as locations adjacent to the South China Sea, 

have amplitudes between 15.00 mm/year0.25 and 30.00 mm/year0.25. By comparison, those 

of stations in eastern and mid-China range from 10.00 mm/year0.25 to 15.00 mm/year0.25, 

and the poorer observing environments around eight stations resulted in flicker noise ex-

ceeding 30 mm/year0.25. Additionally, 207 stations, accounting for 91.6% of total stations, 

are characterized by an amplitude of flicker noise more significant than 15 mm/year0.25. 

Among these, the number of stations with an amplitude of 15–20 mm/year0.25 is 111, 

whereas 75 stations experience an amplitude of 20–25 mm/year0.25. The amplitudes of 19 

and 8 stations range between the amplitudes of 10–15 mm/year0.25 and 30–35 mm/year0.25, 

respectively. 

 

Figure 5. The estimations of flicker noise of GPS vertical coordinate time series with six strategies 

for the 226 CMONOC stations employed in this study. 
Figure 5. The estimations of flicker noise of GPS vertical coordinate time series with six strategies for
the 226 CMONOC stations employed in this study.



Remote Sens. 2023, 15, 1716 9 of 17

Figure 5 exhibits that the distribution of flicker noise for the four strategies is similar
to Raw, but with significantly lower amplitude after subtracting the bouncing noise from
the GPS coordinate time series. The averages of flicker noise for 226 GPS stations are
3.92 mm/year0.25 for CEEMD, 2.78 mm/year0.25 for CEEMD & WD, 6.1 mm/year0.25 for
VMD, 2.82 mm/year0.25 for VMD & WD, and 3.84 mm/year0.25 for WD, respectively, all
of which are notably lower than the Raw. For CEEMD, 104 stations have flicker noise of
less than 3 mm/year0.25, 76 stations have flicker noise between 3 and 5 mm/year0.25,
and 45 stations have flicker noise more remarkable than 5 mm/year0.25 at a level of
5–8 mm/year0.25. All stations for VMD have a flicker noise level of 3–12 mm/year0.25.
There are 48 stations with amplitudes between 3 and 5 mm/year0.25, and 163 GPS stations
have results between 5 mm/year0.25 and 9 mm/year0.25, accounting for about 72.12% of
the stations. For both hybrid methodologies, amplitudes of flicker noise are limited to
10 mm/year0.25, and 211 stations, representing almost 93.36% of total sites, do not exceed
5 mm/year0.25. In detail, 138 stations show a flicker noise between 3 and 4 mm/year0.25

after denoising with CEEMD & WD, while 144 stations show a noise in this range after
denoising with VMD & WD.

We discovered that the levels and geographic distributions of flicker noise are analo-
gous after applying CEEMD and WD, CEEMD & WD, and VMD & WD. In order to verify
the difference in results between the mentioned methods, the Wilcoxon rank sum test
was performed. According to the favorable response, the two denoising methods are not
significantly different. It demonstrates that CEEMD and WD may have the same denoising
ability for the employed stations. The conclusion applies to the two hybrid methods.

4.2. Correction Rate of Flicker Noise

The correction rate (CR) of flicker noise was introduced to assess the effects of the
denoising methods on the flicker noise in the vertical time series. The CR was calculated
as follows:

CR =
Pbe f ore − Pa f ter

Pbe f ore
(2)

in which Pbe f ore and Pa f ter are the flicker noise, which were estimated from the model
of GPS height time series before and after denoising processes with different methods,
respectively. Positive CR indicates that the denoising algorithm decreases the flicker noise
of the GPS time series.

We calculated the CRs of several denoising methods for each GPS station to compare
their ability to denoise (Figure 6). In general, the averages of CRs for 226 GPS stations,
after utilizing five denoising approaches, are 80.93% for CEEMD, 86.47% for CEEMD &
WD, 69.39% for VMD, 86.27% for VMD & WD, and 81.49% for WD, respectively. In order
to compare the denoising ability of different methods, this study further categorized the
226 GPS coordinate time series with different noise levels into five groups. This is based on
research concerning the influence of flicker noise with 1 mm/year0.25,10 mm/year0.25, and
25 mm/year0.25 on the extraction of seasonal signals from GPS coordinate time series [36]
and the number of employed stations with varying flicker noise. The five groups are
designated as follows: 10–15 mm/year0.25 comprises 19 stations,15–20 mm/year0.25 com-
prises 111 stations,20–25 mm/year0.25 comprises 75 stations,25–30 mm/year0.25 comprises
13 stations, and 30–35 mm/year0.25 comprises 8 stations.

Figure 7 exhibited the differences in CRs between CEEMD & WD and VMD & WD.
We found that 189 stations, accounting for 83.6% of total stations, are characterized by a
difference of 1% between CEEMD & WD and VMD & WD. The stations with a difference
of 1–2% and 2–6% are 27 and 9, respectively. The results indicate that the difference in
denoising ability between CEEMD & WD and VMD & WD is within 2% for 83.6% of the
employed stations. In conclusion, the two hybrid methods have the same ability to weaken
the flicker noise.
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As seen in Figure 6 and Table 1, the CRs for the first two groups of CEEMD surpass
80%, while the CRs for the latter three groups are 78.97%, 76.71%, and 70.12% on average,
respectively, and are accompanied by more than 6% for standard deviation of the 226 CRs.
For the WD method, the first two groups have an average CR of more than 80% with
a standard deviation of less than 5%, whereas the average CRs of the latter two groups
are 77.82% ± 7.13% and 62.77% ± 10.45%, respectively. Although CEEMD and WD were
statistically indistinguishable for the flicker noise levels of 226 stations, their CRs differed
for groups of 10–15 mm/year0.25, 20–25 mm/year0.25, and especially 30–35 mm/year0.25

with a difference of 7.35%. The CRs of the other two groups for CEEMD are comparable
to those for WD. These indicate that CEEMD is superior to WD for denoising GPS time
series with lower and higher levels of flicker noise. Concerning the VMD method, the
CRs of the first four groups are around 69.89%, which is about 4% higher than that of the
fifth group. The standard deviation of each group for VMD is smaller than that of other
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methods, demonstrating that VMD is insensitive to the levels of flicker noise compared to
other methods. For both hybrid methods, the average CRs of the five groups are higher
than that for the other methods. Among them, the average CRs of the first four groups
are all higher than 83%, whereas those of the 30–35 mm/year0.25 were 77.63% ± 5.42% for
CEEMD & WD and 76.60% ± 5.18% for VMD & WD, respectively.

Table 1. The averages of CRs of flicker noise for different methods with five groups. (Unit: %).

Group CEEMD CEEMD & WD VMD CEEMD & WD WD

10–15 mm/year0.25 84.11 ± 2.83 88.85 ± 1.55 68.77 ± 1.58 88.90 ± 1.40 87.22 ± 1.47
15–20 mm/year0.25 82.98 ± 5.00 87.30 ± 1.59 69.67 ± 2.31 87.13 ± 1.25 82.51 ± 2.32
20–25 mm/year0.25 78.97 ± 6.95 85.98 ± 3.17 69.71 ± 2.96 85.77 ± 2.84 81.17 ± 4.35
25–30 mm/year0.25 76.71 ± 8.87 84.05 ± 5.45 68.89 ± 3.08 83.89 ± 5.08 77.82 ± 7.13
30–35 mm/year0.25 70.12 ± 8.86 77.63 ± 5.42 64.95 ± 2.13 76.60 ± 5.18 62.77 ± 10.45

Judging from the standard deviations of the correction rates of the five groups, the
standard deviations of the latter three groups are significantly larger than those of the two
groups. It indicates that the denoising capability of each method is more stable for GPS
stations with small levels of flicker noise than those with significant levels of flicker noise.

4.3. Comparison of Hybrid Algorithms and Single Algorithms

Figure 8 presents the amplitudes and disparities of CRs for flicker noise after applying
CEEMD and VMD and their hybrid methods. After flicker noise was subtracted by CEEMD
and CEEMD & WD, the average CRs of flicker noise for 226 GPS stations were 80.93% and
86.47%, respectively. Compared to CEEMD, the mean CR for 226 GPS stations shows a
superiority of 5.51% when CEEMD & WD was applied. There are 39 and 120 GPS stations
with CR improvement at 0–2% and 2–6%, respectively. Of the 226 stations, 57 showed a
bigger superiority, ranging between 6% and 14%, and 46 out of the 57 stations showed
an advance higher than 10%. The largest differences in CR for 8 stations ranged between
14% and 26%, which includes a maximal station of 26.58%, three stations of 24–26%, two
stations of 22–24%, a station of 18.01%, and a station of 14.78%. Two disadvantages were
noticed for stations SCPZ and SCTQ located in Sichuan province, with differences of 0.1%
and 0.2%, respectively. The difference in average CRs of flicker noise was 16.88% between
VMD and VMD & WD when we subtracted the noise from the vertical GPS position time
series of 226 GPS stations. We found an ascendancy arises from the VMD & WD algorithm
in correction rates. In detail, the differences in 153 stations vary from 14% to 20%, followed
by 39 stations, for which the differences fluctuate from 20 to 28% and 26 stations with
a difference of 12–14%. Only eight out of 226 stations showed an increase of less than
10%: six stations of 8–10% and two stations of 4–6%. After comparing the differences in
CRs of flicker noise for 226 stations, we found that the hybrid algorithms, CEEMD & WD
and CEEMD & WD, exhibited a superiority of 5.54% and 16.88% compared to the single
CEEMD and VMD, respectively.
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5. Discussions
5.1. The Comparisons of the Power Spectral Density

As stated previously, the hybrid approaches were more efficient in removing flicker
noise. We attempted to deduce the reasons for the advantages of hybrid algorithms in the
frequency domain. Figure 9 presents the power spectral density (PSD) of several denoised
vertical coordinate time series for the BJSH station.
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Figure 9. The power spectral density (PSD) of residual vertical coordinate time series after applying
different methods for BJSH station.

In comparison to the CEEMD and WD approaches, CEEMD & WD removes the power
compared to CEEMD between 3 and 7 cpy and the power retained by WD between 8–13 cpy
and 36–182 cpy, respectively, leading to a decrease in the amplitude of the flicker noise of
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about 1 mm/year0.25. Compared to CEEMD and VMD, VMD & WD primarily liberates the
power between 3 and 50 cpy reserved by VMD, which explains the level of flicker noise
of 3.29 mm/year0.25. VMD & WD still deviates from CEEMD & WD at some frequencies
(e.g.,15–30 cpy), although this difference has little bearing on the estimation of flicker noise.
Simultaneously, CEEMD and WD have differences in frequency, and the powers of those
frequencies are identical, resulting in similar flicker noise levels. While VMD outperforms
WD between 73 and 180 cpy, the reduced power is insufficient to compensate for the
disadvantages of VMD.

The perspective of PSD suggests that CEEMD and VMD work better on high-frequency
signals of 3–7 cpy, while WD works on low-frequency signals larger than 36 cpy. The
advantage of the two hybrid algorithms is that they can combine the characteristics of two
approaches to decrease flicker noise across a more comprehensive frequency range.

5.2. The Adaptability of Optimal Parameters

In this paper, we utilized the height time series at BJSH with a lower level of flicker
noise to determine the optimal parameters of CEEMD, VMD, and WD and apply them
to all stations. Although this strategy considers the workload of ascertaining the optimal
parameters of each denoising method for each GPS time series, it also increases the uncer-
tainty in the denoising effect of the above methods. Therefore, we evaluate the adaptability
of the applied methods in this section.

After denoising methods are applied, the CRs of flicker noise are 80.91% for CCEMD,
69.37% for VMD, and 81.51% for WD, respectively. A total of 146 CCEMD stations, 215 VMD
stations, and 142 WD stations were selected, which represented 64.6%, 85.1%, and 62.8%
of all stations with CRs higher than those of the BJFS station. It proves that the three
algorithms have a significant denoising effect on over 60% of the stations. In addition, we
discuss the adaptability of the parameters of each method from the point of CRs of the five
groups (Figure 6). For the 15–20 mm/year0.25 group to which the BJFS station belongs, the
average CRs of flicker noise for each method are congenial relative to the results of the BJFS
station and have slight disadvantages in standard deviation. Nevertheless, it is still shown
that the parameters are applicable to the 15–20 mm/year0.25 group. Compared to the results
of the BJFS station, for CEEMD, the average CRs of the first two groups are higher, while
the average of the latter two groups are slightly lower. The average CRs for the first four
groups are comparable regarding VMD. For WD, the average CRs are greater for the first
three groups, while the average for the latter group is slightly lower. The average CRs of
the three algorithms for the 30–35 mm/year0.25 group are significantly smaller than the
test results, accompanied by large fluctuations. Thus, it is worth researching whether the
parameters determined by the 30–35 mm/year0.25 group have the best correction effect.
The mean CRs of the first four groups for CEEMD & WD and VMD & WD are superior
to the test results, with a standard deviation of less than 4%, respectively. The above fact
indicates that the two hybrid methods are beneficial for denoising coordinate time series of
stations with a flicker noise level of 10–30 mm/year0.25.

The above analysis reveals that the strategy of determining the parameters of the
noise reduction algorithm for single station data can significantly reduce the complexity
and time of the test while also being effective for the majority of stations, which has
important implications.

5.3. Analysis of the Performance of the Vmd Method

In the preliminary explorations of the VMD method for denoising GPS coordinate time
series, it was found that VMD reduces flicker noise by an average CR of 69.39% when the
optimal parameter, k = 4, was determined by the criterion of Hausdorff distance. The CR
of VMD has a disadvantage of 11.53% compared to that of CEEMD, which is inconsistent
with the conclusion of Sivavaraprasad, Padmaja, and Ratnam [31]. Although the data
characteristics are distinct, it is critical to analyze the disadvantages of VMD in denoising
GPS coordinate time series.



Remote Sens. 2023, 15, 1716 14 of 17

There are two potential reasons for the poor performance of VMD. To begin, k = 4
is smaller than the value of 6 in Sivavaraprasad, Padmaja, and Ratnam [31]. A smaller k
indicates fewer modal components, which may cause flicker noise in the signal components
determined by the Hausdorff distance or other criteria. On the contrary, since a larger
k increases the likelihood that flicker noise would be distributed in different modes, an
excellent criterion (such as the detrended fluctuation analysis) may be used to filter out the
modal components that contain more flicker noise. Secondly, the results in this paper seem
to prove that the Hausdorff distance is not very effective at identifying noise components
for VMD. The primary reason for utilizing the Hausdorff distance in this paper is to mitigate
the impact of the criterion when compared to CEEMD. The above analysis demonstrates
that when studying the noise reduction results of VMD with different k, particular attention
should be given to the criteria.

6. Conclusions

In this study, we develop two hybrid algorithms, CEEMD & WD and VMD & WD,
for denoising the GPS time series to mitigate the flicker noise. Compared with the single
methods, our hybrid algorithms are proved to be a more advantageous way to weaken the
flicker noise, based on the vertical time series of 226 GPS sites from the CMONOC.

The new methods, CEEMD & WD and VMD & WD, significantly decrease the magni-
tude of flicker noise from 19.90 mm/year0.25 to 2.77 mm/year0.25 and 2.84 mm/year0.25 on
average, respectively. Moreover, the CRs of flicker noise for CEEMD & WD and VMD &
WD are estimated to be 86.47% and 86.27%. Compared to the single method, the two hybrid
algorithms reveal improvements of 6.84% to CEEMD and 16.88% to VMD, respectively.

The hybrid approaches remove flicker noise from GPS signals larger than 3 cpy in
more comprehensive bands than the single methods. The improvements are attributed to
the integrations of CEEMD or VMD and WD, which reduce the power held by CEEMD
between 3 and 7 cpy, the power between 8–13 cpy and 36–182 cpy retained by WD, and
primarily liberates power between 3 and 50 cpy reserved by VMD, respectively. VMD &
WD still varies from CEEMD & WD at some frequencies, but this has a negligible influence
on the estimate of flicker noise.

Despite the achievements of this study, the influence of parameters on the denoising
method needs to be further examined, especially the criterion of VMD. We cannot rule
out the possibility of improving the hybrid algorithm by changing other parameters.
In addition, to mitigate the complex noise in global GPS time series, it is necessary to
investigate the parameters to further improve the ability to remove flicker noise for the
hybrid method.
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Appendix A

For the noise in the geophysics signals, the power spectrum is a useful tool. The power
spectrum of noise is represented by a power law process as follows:

P( f ) = P0 f−α (A1)

in which P( f ) is the spectrum at the frequency f . α is the spectrum index. P0 is a constant.
The spectral index is not always an integer, and most geophysical phenomena have

a spectral index value of 1 < α < 3, called ‘fractal random walk’; and when the spectral
index −1 < α < 2, called fractal white noise. In particular, the white noise is defined as
α = 0 and flicker noise is defined as α = 1.

Appendix B

The principle of the Hausdorff distance can be described as below.
To separate pure noise modes and signal modes, x(t) is first decomposed into intrinsic

mode function (IMF) components arranged from high-frequency to low-frequency. In order
to classify the noise modes and the signal modes, the Hausdorff distance, proposed by
Komaty et al., is introduced to represent the relationship between the signal and each com-
ponent using the probability density functions (PDF). The Hausdorff distance is described
defined as follows:

For two signals, A = {a1, · · · , am} and B = {b1, · · · , bn}, the Hausdorff distance is
defined as:

HD(A, B) = max{h(A, B), h(B, A)}
h(A, B) = max

a∈A
d(a, B) = max

a∈A
min
b∈B

d(a, b) = max
a∈A

min
b∈B
‖a− b‖

h(B, A) = max
b∈B

d(b, A) = max
b∈B

min
a∈A

d(b, a) = max
b∈B

min
a∈A
‖b− a‖

(A2)

where HD(A, B) is Hausdorff distance of A and B. Here, h(A, B) and h(B, A) are the one-
way distance from A to B and B to A, respectively. The d(a, b) = ‖a− b‖ and d(b, a) =
‖b− a‖ represent the Euclidean distance of a and b, respectively.

Furthermore, the steps of Hausdorff distance to classify the IMFs are described defined
as follows:

L(i) = HD{pdf(x), pdf(IMF(i)}i = 1, 2 · · · n (A3)

In which L(i) is the i-th Hausdorff distance of x and IMF(i) the i-th IMF component.
M is the maximum point of the L(i), which can be defined by

l = argmax
i
{L(i)} (A4)

Therefore, starting the IMF with a high frequency, the first l IMF components are
the pure noise modes. The residual IMF components are the signal models. The noise
component, N, and signal component, S, are calculated as follows:

N =
l

∑
i=1

IMFi

S =
n
∑

i=l+1
IMFi

(A5)
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