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Abstract: Recently, state-of-the-art classification performance of natural images has been obtained by
self-supervised learning (S2L) as it can generate latent features through learning between different
views of the same images. However, the latent semantic information of similar images has hardly
been exploited by these S2L-based methods. Consequently, to explore the potential of S2L between
similar samples in hyperspectral image classification (HSIC), we propose the nearest neighboring
self-supervised learning (N2SSL) method, by interacting between different augmentations of reliable
nearest neighboring pairs (RN2Ps) of HSI samples in the framework of bootstrap your own latent
(BYOL). Specifically, there are four main steps: pretraining of spectral spatial residual network
(SSRN)-based BYOL, generation of nearest neighboring pairs (N2Ps), training of BYOL based on
RN2P, final classification. Experimental results of three benchmark HSIs validated that S2L on similar
samples can facilitate subsequent classification. Moreover, we found that BYOL trained on an un-
related HSI can be fine-tuned for classification of other HSIs with less computational cost and higher
accuracy than training from scratch. Beyond the methodology, we present a comprehensive review of
HSI-related data augmentation (DA), which is meaningful to future research of S2L on HSIs.

Keywords: self-supervised learning; nearest neighboring; hyperspectral image classification (HSIC);
data augmentation (DA); bootstrap your own latent (BYOL); spectral spatial residual network (SSRN)

1. Introduction

The contiguous and rich spectral information captured by hyperspectral images (HSIs)
reflects the most fundamental characteristics of composition of ground objects, providing
capability to perform diagnostic identification of ground objects [1]. Thus, HSIs are usu-
ally employed in various remote sensing applications related to recognition of different
materials, such as environmental monitoring [2], mineral exploration [3] and land-cover
classification [4,5]. One critical technique in these applications is HSI classification (HSIC)
that is usually addressed in the framework of supervised learning [6]. Recently, state-of-
the-art (SOTA) performance of HSIC has been realized by the following deep learning
(DL) methods, that make full use of spectral–spatial information: spectral–spatial residual
network (SSRN) [7], multiscale covariance maps with 2-D convolutional neural networks
(CNNs) [8], automatic CNN [9], hybrid spectral CNN (HybridSN) [10], spectral–spatial
transformer network (SSTN) [11], bole convolution with three-direction attention mech-
anism [12] and Gabor ensemble filters [13]. However, due to the curse of dimensionality,
directly applying supervised classification to HSIs may require a huge number of labeled
samples to gain satisfactory performance. Since scenes in practical hyperspectral remote
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sensing applications are usually varied, with complex types of surface materials, it is
difficult to always obtain sufficient labeled samples for HSIC.

In order to circumvent the problem, the following research topics of HSIC devel-
oped: unsupervised feature extraction (UFE), unsupervised classification (clustering),
semi-supervised learning, transfer learning and self-supervised learning (S2L). The UFE
methods aim to transform HSI samples linearly, or non-linearly, to extract informative
and distinguishable features, facilitating the subsequent training of classifiers. Like the
above-mentioned DL methods, the dominant UFE methods, such as the following, exploit
the information of the spatial context: superpixels or principal component analysis (PCA),
such as superpixel PCA (SuperPCA) [14], spectral–spatial and superpixelwise PCA (S3-
PCA) [15], PCA-based multiscale 2-D singular spectrum analysis [16], flexible Gabor-based
superpixel-level unsupervised linear discriminant analysis [17]. Meanwhile, a few of the
UFE methods achieve SOTA performance by applying sequential conventional feature
extraction to form deep features. Specifically, and interestingly, random image patches
have been successfully employed as convolutional kernels to extract deep features, such as
random patches network [18], spectral–spatial random patches network [19] and random
multiscale convolutional network [20]. Furthermore, other UFE methods are derived from
filter-based methods, such as PCA network-based multi-grained network (MugNet) [21],
etc. Unlike the above-mentioned UFE methods that use conventional feature extraction to
generate deep features, autoencoder-based UFE methods learn deep features directly from
data itself, such as 3D convolutional autoencoder [22] and recursive autoencoder [23].

Since HSI annotation usually requires extensive field data collection campaigns, that
are costly and impractical when the HSI scene involves incooperative areas [24], a few pub-
lished works focus on unsupervised classification, i.e., clustering, that directly models the
intrinsic characteristic of HSI samples to form several clusters [25]. Typical HSI clustering
methods include k-means, fuzzy c-means and etc. Compared with supervised classifi-
cation, clustering is more challenging and fundamental, due to spectral variability and
the absence of a supervisory signal. Differing from unsupervised classification methods,
semi-supervised classification makes use of unlabeled samples in the supervised process,
such as Laplacian support vector machine [26]. Indeed, the idea of clustering has been used
in semi-supervised classification to exploit the characteristics of HSI samples. For instance,
Wei et al. proposed a multitask network by integrating the intra-cluster similarity and inter-
cluster dissimilarity of unlabeled HSI samples with supervised classification loss to boost
the classification performance [27], whereas Yao et al. proposed a two-step cluster–CNN
method for HSIC [28].

As a critical part of machine learning, transfer learning usually mitigates the infor-
mation learned from the source domain to the target domain. In this way, the demand
for labeled samples in the classification task of the target domain is decreased. Li et al.
first proved that a network trained by supervision on partial classes can be used to extract
discriminative features of other classes in one HSI [29]. In this case, source and target
domains correspond to different classes in the same HSI, where the domain divergence is
smaller than is the case when two domains correspond to different HSIs, usually processed
by domain adaptation techniques that aim to mitigate the supervisory signal from the
source HSI to the target HSI [30].

From the perspective of the classification task, the preceding S2L methods mainly
work in extracting more discriminative features via pseudo-supervised or reconstructed in-
formation of unlabeled samples [31–34]. Recently, S2L methods in the literature concerning
computer vision has shown their power to learn effective visual representations without
any other supervision. Generally, these methods employ Siamese networks that are natu-
rally suitable for comparing different views of one image [35]. However, they use different
strategies to prevent the network output from being a constant for all inputs, i.e., network
collapsing. The method named momentum contrast (MoCo) constructs the Siamese net-
works with an encoder and the corresponding moving-averaged encoder that enables the
building of a large and consistent queue on-the-fly [36]. Starting from the network input
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of two different augmented views of one image, MoCo regards representations of the two
encoders as positive pairs, whereas the representation of the encoder and the queue form
negative pairs. Considering the memory cost of the queue in MoCo, the simple framework
for contrastive learning representation (SimCLR) directly shares the weights of the Siamese
networks and constructs negative pairs using different instances in each training batch [37].
Benefiting from the strategy of discriminating between groups of similar images, instead of
individual images, Caron et al. proposed to swap assignments between multiple views of
the same image (SwAV), using a “swapped” prediction mechanism, where the code of a
view computed by the trainable prototypes is predicted from the representation of another
view [38].

To eliminate the shortcomings of MoCo and SimCLR, that require either a memory
bank or large batch-size to obtain accurate negative pairs, a novel method, namely bootstrap
your own latent (BYOL), abandoned negative pairs and employed two neural networks,
referred to as online and target networks, that interact and learn from each other [39].
Along the lines of BYOL, the method named simple siamese (SimSiam) representation
learning prevents collapsing with a stop-gradient operation of the target encoder, instead
of the average-moving strategy [35]. Figure 1 gives a comparison of the above-mentioned
S2L methods and it is clear that BYOL surpassed other methods by large margins under
the same evaluation protocol of the ImageNet dataset [40].
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Figure 1. Comparison of typical S2L methods. Following the same procedure in [35–39], these
methods achieved 60.6%, 69.3%, 71.8%, 74.3% and 71.3% top-1 linear classification accuracy by
self-supervised pretraining on the training set of the ImageNet ILSVRC-2012 dataset [40] with
ResNet50 [41], respectively. It can be simply concluded that BYOL outperformed the other methods
with the largest margin of 13.7%. Note that the encoder and the projector of BYOL were integrated as
a “whole encoder” herein to draw a consistent comparison of network architectures.

Following the success of S2L in visual representation learning, the community of
hyperspectral remote sensing has introduced self-supervised learning to HSIC [42–45] or
clustering [46]. Hu et al. used BYOL with the encoder backbone of a two-layer transformer
for HSIC [42], whereas Cao et al. treated features extracted by a variational autoencoder and
an adversarial autoencoder as two views, instead of feeding two augmentations of each HSI
sample [43]. Derived from the framework of SimCLR [37], Hou et al. paid more attention to
the preprocessing of HSI samples and used Gaussian noise for augmentation [44]. From the
view of semantic feature extraction, Xu et al. proposed an end-to-end spectral–spatial
network via the contrastive loss of two feature descriptions [45]. Furthermore, Cai et al. first
applied S2L to a scalable deep online clustering model, named spectral–spatial contrastive
clustering, based on within cluster similarity and between-cluster redundancy [46].

From the perspective of enhancing classification performance, techniques related
to (semi-)supervised learning always require sufficient labeled samples as supervisory
information, including supervision of the source domain in transfer learning. Meanwhile,
although several works focus on clustering of HSIs, it is impossible to achieve performance
superior to supervised classification by means of clustering techniques, due to spectral
variations. Consequently, without the requirement of labeled samples, UFE and S2L that
only make use of unlabeled samples naturally show the following merits. First, unlike a
supervision process that has to be performed again with labeled samples updated, both
UFE and S2L directly output extracted features or learned representations. Both UFE
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and S2L show more generalization for labeled samples in division of feature extraction
and subsequent training of classifiers. Second, with the arrival of the era of big remote
sensing data, both UFE and S2L can provide an automatic way of learning representation,
and, thus, show more potential for future research of hyperspectral remote sensing. There
is a conviction, held by the machine learning community, that S2L is a hot topic of future
research. To summarize, UFE and S2L are more feasible when large amounts of HSI samples
are to be processed. Note that S2L can be roughly regarded as a general concept of UFE.

The intrinsic merits and the practical success of S2L have accelerated its application to
processing of HSIs, listed as the above-mentioned S2L-based methods for HSIC [42–45].
However, most of the methods that directly introduce S2L to HSIC are limited in the
following two aspects. First, from the perspective of feature learning, the classification
accuracy can be enhanced if more discriminative information of HSIs is exploited in the
training process of S2L. However, this strategy has been neglected in S2L-based tasks of
HSIC. Second, the computer vision community has proved that the success of S2L lies in
learning visual representation not only for linear classification but also for downstream
tasks. Specifically, the main merit of S2L on classification is that the learned visual represen-
tations from a relatively large dataset, such as ImageNet [40], can be fine-tuned on small
datasets. In this way, higher accuracy and faster convergence are more easily achieved than
in training from scratch. However, since existing S2L-based methods of HSIC process only
one HSI, without the involvement of fine-tuning from other HSIs, they hardly reflect the
advantages of S2L.

In this work, we, thus, tasked ourselves to find solutions to the above-mentioned two
aspects, namely, exploiting discriminative information in the training process of S2L and
fine-tuning from other HSIs. Aiming at the former aspect, we propose a n earest neighboring
self-supervised learning (N2SSL) method for HSIC, based on the framework of BYOL and the
well-known backbone of SSRN. To be specific, the proposed N2SSL method contains four
main steps: pretraining of SSRN-based BYOL, generating nearest neighboring pairs (N2Ps)
of samples derived from Log distance of local covariance (LDLC), training of BYOL based
on reliable N2P (RN2P), final classification. First, a subset of all HSI samples is extracted as
the initial training set to pretrain BYOL. Second, the affinity of these samples is generated
by LDLC, and, thus, N2Ps can be easily constructed from each sample of the training set
and one of its K-nearest neighboring samples. Third, extraction of RN2P and training of
BYOL work in a collaborative way. In particular, N2P fed into BYOL with relatively smaller
loss behave more similarly and, thus, can be treated as RN2P, whereas RN2P established by
different samples are believed to help BYOL learn more discriminative representations and
are, then, used to train BYOL. When the training process is finished, linear classification,
based on frozen representation, is performed for final classification.

To understand the effect and importance of fine-tuning, we conducted an experimental
study wherein N2SSL was performed on an unrelated HSI and then this was fine-tuned to
another HSI; N2SSL was conducted on the Kennedy Space Center scene, but the learned
network was then fine-tuned to University of Pavia and Indian Pines scenes. The classifica-
tion accuracy and computational cost showed that the trained network from an unrelated
HSI improved the efficiency.

The main contributions of our work are summarized as follows:

(1) To the best knowledge of the authors, this is the first time that discriminative informa-
tion, facilitating subsequent classification, is encoded by RN2P-based S2L. Compre-
hensive experiments on three benchmark HSIs were conducted to demonstrate the
effectiveness of N2SSL, in terms of higher classification accuracy and less computa-
tional cost, compared to a standard framework of SSRN-based BYOL and other SOTA
self-supervised methods designed for HSIC.

(2) Fine-tuning of trained networks by N2SSL from an unrelated HSI to other HSIs is
validated for the first time, which may be a new research topic of deep learning-
based HSIC.
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(3) Since data augmentation (DA) plays a critical role in S2L, a comprehensive review
of DA on HSI samples is illustrated in Section 2, which can be referred to by future
S2L-based research on HSIs.

The rest of the paper is organized as follows. The DA of HSI samples and framework
of BYOL are reviewed in Section 2. The proposed methodology of HSIC is presented
in Section 3. Sections 4 and 5 describe the experimental setup and results, respectively.
Section 6 summarizes the research.

2. Background Algorithms

Given the different characteristics of HSI samples to those of natural images, DA
techniques in HSI are usually derived from those used for computer vision, but show a
lot of difference. Consequently, as they are critical to S2L, this section first provides a
comprehensive review of DA techniques in HSI. Afterwards, a detailed introduction of
BYOL is reported on.

2.1. DA of HSI

From the perspective of whether only labels are augmented, we divide DA techniques
of HSI into two categories, i.e., only augment labels and augment samples (see Table 1).
In order to augment labels, both Niu et al. [47] and Feng et al. [48] used consistency of
labels computed by local and global constraints, where the only difference between them
lies in the strategy of global constraint, e.g., spectral angular distances (SADs) and patch
distances, respectively.

Table 1. Illustration of DA techniques for HSI.

Category Ref. Strategy of DA

Only augment labels [47,48] consistency of labels computed by local and global constraints (SAD and patch distances).

Augment
samples

Self-augmentation

[49] add Gaussian noise.

[50] convolutional transformation.

[51] shift the values in each band relatively to the average band value.

[51] multiply PCs by random factors.

[52] spatial random occlusion.

[53,54] rotate and flip.

[55,56] patch cleaning and imputation based on superpixels.

[57] different operations of rotate and flip on two windows.

Mutual augmentation

[58] consistency of labels of pixel-blocks that form a pair.

[59,60] mix-up.

[61] 3D Cutmix and trainable spectral–spatial attention.

[62] weighting of nearest neighbors of central samples in local patch.

[63] clustering of samples in local patch.

[64] swapped replacement of cropped sub-patch.

Synthetic augmentation

[65,66] GAN.

[67] sampled from Gaussian mixture model fitted to each class.

[68] Hapke model.

The augmentation of samples can be further categorized as self-augmentation, mutual
and synthetic augmentation. As the name implies, self-augmentation indicates augmentation
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achieved by operation on each HSI sample itself, such as adding Gaussian noise [49]
and applying convolutional transformation [50] to samples. Nalepa et al. proposed two
ways for DA, i.e., shift the values in each band relative to the average band value and
multiply principal components (PCs) by random factors [51]. Other works explored DA
when samples behave as local patches, such as spatial random occlusion [52], rotate and
flip [53,54], patch cleaning and imputation based on the border between superpixels [55,56].
Derived from the traditional augmentation technique, namely rotate and flip, Acción et al.
applied heterogeneous operations of these two techniques on inner and outer patches [57].

Unlike self-augmentation, mutual augmentation of HSI samples works by exploiting
several samples, e.g., mix-up, borrowed from machine learning literature [59,60], and
consistency of labels of pixel and block that form pairs [58]. Along the lines of mix-up,
Miao et al. applied 3D CutMix and trainable spectral–spatial attention module as DA to
guide the CNN classifier to attend to the discriminative features of HSI [61]. Wang et al.
proposed two strategies of weighting several nearest neighboring samples of the central
sample as its augmentation, i.e., applying different sizes of patches and iteratively applying
them to the new augmented image [62]. Similarly, Shang et al. iteratively augmented
samples by a similar patch clustering strategy integrating Euclidean distance with SAD-
based spatial–spectral metrics [63]. Operating on the level of local patch, Wang et al.
replaced the removed regions with a cropped sub-patch from another sample belonging to
different classes [64].

In addition to self-augmentation and mutual augmentation, synthetic augmentation
works in a more abstract way by exploiting statistics of HSI samples or generative networks.
For instance, Audebert et al. and Nalepa et al. investigated the capability of generative
adversarial networks (GANs) to synthesize consistent labeled spectra [65,66]. Davari et al.
generated synthetic data from a Gaussian mixture model fitted to each class of the training
set [67], whereas Qin et al. incorporated prior knowledge of hyperspectral reflectance
characteristics using the Hapke model for the augmentation of the training set [68].

2.2. BYOL

Figure 2 illustrates the framework of BYOL, composed of online and target networks.
As previously described in Section 1, BYOL employs the addition of a predictor to the
online network and applies an updating strategy of average moving to the target network
to prevent collapsing.

                
( )T x

g h
qf projector encoder predictor 

              
( )T x

f gencoder projector 

detach 

z detach( )z

loss of MSE 

 

gradients 

average moving 

r z

online network 

target network 

r

Figure 2. Illustration of BYOL framework. It minimizes the loss based on mean square error (MSE)
between qθ and detach(z

′

ϑ), where detach(·) means stop-gradient. The parameters of the target
network ϑ are an exponential moving average of θ (parameters of the online network). Once the
training of BYOL is finished, only the online encoder, namely fθ , is kept for further classification or
other downstream tasks.
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Specifically, the online network contains three consecutive components: encoder fθ ,
projector gθ and predictor hθ . The target network holds only encoder fϑ and projector gϑ, having
the same architectures as fθ and gθ , respectively. The parameters of the target network (ϑ)
are the exponential moving averages of those of the online network (θ). By denoting the
momentum coefficient as m, usually set to 0.99 or 0.999, ϑ is updated after each training
epoch as

ϑ← mϑ + (1−m)θ. (1)

Given image set X and two distributions of augmentations, i.e., T and T ′ , two views
of image x ∈ X can be computed by applying the respective augmentations, T ∼ T
and T

′ ∼ T ′ , to image x. From the perspective of network inference, the online network
subsequently generates representation rθ = fθ(T(x)) and projection zθ = gθ(rθ), whereas
the target network outputs representation r

′
ϑ = fϑ(T

′
(x)) and projection z

′
ϑ = gϑ(r

′
ϑ).

Then, the final output of the online network is the prediction of zθ , i.e., qθ = hθ(zθ).
By respectively normalizing qθ and z

′
ϑ as q̄θ and z̄

′
ϑ, the corresponding mean square error

(MSE) is defined as

Lθ,ϑ , ||q̄θ − z̄
′
ϑ||22 = 2− 2 ·

< qθ , z
′
ϑ >

||qθ ||22 · ||z
′
ϑ||22

, (2)

where z
′
ϑ should be detached for stop-gradient. Moreover, two views of x are swapped

to obtain the symmetric loss L′θ,ϑ. With the learning rate η, θ is updated at each training
epoch by performing a stochastic optimization step, as follows:

θ ← optimizer(θ,∇θ(Lθ,ϑ + L
′
θ,ϑ), η). (3)

At the end of training, only the online encoder fθ is kept to compute latent representations.

3. Proposed Methodology

As shown in Figure 3, the proposed N2SSL method consists of four main steps:
(i) pretraining of BYOL, (ii) generation of nearest neighboring pairs (N2Ps), (iii) training of
BYOL based on reliable N2P (RN2P) and (iv) classification. First, given the considerable
computational load of self-supervised learning on all samples of one HSI, a subset of all HSI
samples is randomly selected as the initial training set, i.e., TS = {x1, x2, . . ., xns}, which
is used to pretrain BYOL by applying different augmentations to each sample. Herein,
we opted for simplicity and adopted the main backbone of SSRN as the encoder. Second,
since it is expected to encode the discriminative information of HSI samples in the training
process of BYOL, to facilitate subsequent classification, N2P is generated by using the
Log-Euclidean distance of local covariance (LDLC). When LDLC between samples of TS is
computed, each sample and one of its K-nearest neighboring compose a pair. For better
illustration, the ith nearest neighboring samples and the corresponding HSI samples form
the ith subset of N2P, i.e., N2Pi (i = 1, . . ., K). Third, since there failure in N2P may occur,
i.e., pairs constructed by samples of different classes, the MSE-based loss of N2P, obtained
by the pretrained BYO,L is used to extract RN2P. Conversely, it is believed that training
BYOL by RN2P can facilitate the learning discriminative information, as BYOL is forced
to interact between augmentations of different, but similar, samples, instead of the same
samples. Finally, linear classification, or fine-tuning-based labelling of samples is conducted.
In the following, implementation details of the proposed method are described.
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Figure 3. Illustration of the proposed N2SSL method (Best viewed in color).

3.1. Pretraining of BYOL

Pretraining of BYOL is performed by learning on two augmentations of each sample
in TS. Specifically, the three components of the online network are the SSRN-based encoder
fθ , two networks of multilayer perceptrons (MLPs) working as projector gθ and predictor
hθ , respectively. The target encoder fϑ and projector gϑ share the same architecture as fθ

and gθ , respectively. Figure 4a gives an example of an SSRN-based encoder that extracts
deep features via two residual modules of spectral and spatial feature learning. Please
refer to [7] for details of SSRN. For simple illustration, we herein take a 3-D sample of the
Indian Pines image with 200 bands as an example. The neighboring region of 9 × 9 pixels
surrounding each pixel is considered to be the 3-D sample for the central pixel with the size
of 9 × 9 × 200. The 3-D cube is first convolved by 281 × 1 × 7 spectral kernels (ConvBN1)
with a subsampling stride of (1, 1, 2) to generate 289 × 9 × 97 cubes. Then, the module of
spectral feature learning employs four convolutional layers (ConvBN2) and two identity
mappings to learn the deep spectral features. All of the four convolution kernels share
the same size of 281 × 1 × 7 with padding to keep the same size of output as input.
Subsequently, two convolutional layers (ConvBN3 and ConvBN4) are employed to abstract
spectral and spatial features, respectively. Following ConvBN4, the module of spatial
feature learning uses four successive 3-D convolutional filter banks (ConvBN5), where the
kernels have the same depth as the input 3-D feature volume. Similarly, the outputs of
these filter banks keep the same size as the inputs of the feature cubes. Finally, an average
pooling layer generates a 1× 1× 28 feature vector. When the size of input 3-D cube is fixed,
the only parameter of the SSRN-based encoder is the kernel size of ConvBN3, i.e., the value
of 97 underlined, which is determined by the number of bands. Furthermore, the sizes of
MLP networks of the projectors (gθ and gϑ) and predictor hθ were set to 28-512-128 and
128-512-128, respectively.

Regarding the augmentations used in BYOL, random cropping, followed by resizing
back to the original size, was employed as it has proved to be effective in processing 3-D
HSI samples. Empirically, we conducted experiments related to classification accuracy
with respect to different augmentations. It was found that random cropping, followed by
resizing with sub-vertical flip and with sub-horizontal flip, were enough for the online
and target networks, respectively. Specifically, given one image pair of 9 × 9 × b, where b
is the number of bands, a random spatial patch of each image was selected, with an area
uniformly sampled between 8% and 100% of that of the original image, and an aspect ratio
logarithmically sampled between 3

4 and 4
3 . This patch was then resized to the original size

of 9 × 9 × b using bicubic interpolation. For the optional sub-horizontal and sub-vertical
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flips, a sub-window surrounding the central pixel was randomly set to 3 × 3 to 7 × 7 pixels.
Figure 4b illustrates a conceptual example of these transforms. By applying MSE-based loss
in Equation (2) on augmented TS, pretraining of BYOL was easily achieved in ne1 epochs.
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Figure 4. Illustration of (a) the SSRN-based encoder and (b) DA used in the proposed N2SSL method.

3.2. Generatation of N2P

As mentioned above, two samples from one pair are expected to belong to the same
category for encoding discriminative information for BYOL training. Thus, metrics, or UFE
methods, achieving SOTA performance of computing affinity between HSI samples are
considered to be candidates for the generation of N2P. Among these methods, local covari-
ance matrix representation, exploiting spectral–spatial information, has been successfully
applied to both unsupervised and supervised HSIC [24,25,69]. Compared with SAM and
Euclidean distances, it exploited the similarities and variances of local samples and proved
to be suitable for measuring distances between HSI samples. Consequently, we employed
it for generation of N2P, which computed the Log-Euclidean distances of local covariance
(LDLC) of similar samples.

Particularly, maximum noise fraction (MNF) was first applied to the original HSI to
reduce the dimensionality and suppress noise. Given the window size T, the SAD measure
was used to find the M-1 most similar neighboring samples of the central sample. Then,
these M samples were treated as a local set, i.e., P = {xi (i = 1, . . ., M)}. Then, the covariance
of P was formulated as

CP =
1

M− 1

N

∑
i=1

(xi − µP)(xi − µP)
T, (4)

where µP denotes the mean of samples. As covariance matrices are symmetric positive
definites, they lie on a Riemannian manifold and, thus, Euclidean distance is hardly suitable
for them, whereas LDLC was proposed in [70] to model the differences of covariance
matrices. Given two sets P1 and P2 corresponding to samples x1 and x2, the corresponding
covariance matrices are denoted as CP1 and CP2 , respectively. The LDLC between the two
samples is then defined as

disLDLC(x1, x2) =
0.5× var(v1 − v2)

var(v1) + var(v2)
(5)

where var denotes the vector variance and v = vec(logm(CP) represents the vector of
CM logarithm on the set P. The main parameters are the number of MNF components L,
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the number of neighboring samples M and the window size T, which were set to 20, 25 and
220, respectively.

With the definition of LDLC, the distances among all samples in TS can be computed.
Afterwards, each sample and one of its K-nearest neighboring samples formed the subset
N2Pi (i = 1, . . ., K) and, thus, Kns pairs were generated.

3.3. Training of BYOL Based on RN2P

By learning between two views of one sample, pretrained BYOL is expected to learn
the latent semantic representations of HSI samples. Therefore, when two views of different
samples belonging to the same category are fed into BYOL, the corresponding MSE-based
loss is expected to be relatively small. Based on this observation and the truth that the
original N2P can hardly be accurate enough, pretrained BYOL can be used for further
refinement of N2P, i.e., extraction of RN2P. Since N2P is obtained via LDLC-based distances
between nearest neighboring samples, N2Pi is believed to be more reliable than N2Pj
(j > i). Thus, N2Pi (i = 1, . . ., K) was used to extract RN2Pi (i = 1, . . ., K) in order.
Meanwhile, RN2Pi is naturally beneficial to extract RN2Pj (j > i) when it is used to train
BYOL. The strategy is similar to the concept of evolving, i.e., the network learns semantic
representation from easy pairs to hard pairs gradually, which has been applied to several
applications, such as clustering of natural images. Consequently, extracted RN2P was
added to TS to train BYOL for further extracting of RN2P. Once the extraction of RN2P
finished, they were used to train BYOL for ne3 epochs.

In detail, as shown in Figure 5, we constantly computed the MSE-based loss of N2Pj

and extracted pairs with the smallest losses as RN2Pj, according to the ratio, i.e., 1
K . In this

way, RN2Pj contained ns
K pairs and was added to the training set. Then, BYOL was trained

by the new training set with ne2 epochs and used for generation of RN2Pj+1. Thus, when
the iteration process finished, RN2Pj (j = 1, . . ., K) containing ns pairs were used to perform
subsequent training of BYOL for ne3 epochs. The implementation details of the proposed
iterative process are illustrated in Algorithm 1.

1( )T x qonline network

2( )T x
target network 

detach( )z

loss of MSEaverage moving

updated

( 1,..., )i i K=N2P

compute loss of 
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jN2P
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1 2 1j− j
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1j j +
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Step3:

Training of BYOL 

based on RN2P

Pretrained BYOL

Figure 5. Illustration of training BYOL based on RN2P (Best viewed in color).
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Algorithm 1: Training of BYOL based on RN2P.

Input:
pretrained networks and N2P, initial training set: TS, number of epochs: ne2,

number of final epochs: ne3, ratio for extracting RN2P: η = 1
K .

1: Repeats:
2: Compute MSE-based loss of N2Pj.
3: Extract RN2Pj according to η.
4: Train BYOL using TS and RN2Pl (l = 1, . . ., j) for ne2 epochs.
5: j← j + 1.
6: Until all N2Pj is processed.
7: Train BYOL using RN2P for ne3 epochs.
Return: trained BYOL.

3.4. Final Classification

When training of BYOL was over, only the online encoder fθ was kept to compute the
latent representations of both labeled and unlabeled HSI samples. Then, the corresponding
classifier was designed as an MLP network of 28-C, where C was the number of classes. We
regularized the classifier by clipping the logits using a hyperbolic tangent function

tclip(rl) , α · tanh(rl/α), (6)

where α is a positive scalar and rl is the output of the classifier on labeled samples, and by
adding a logit-regularization penalty term in the loss

loss(rl , y) , L(tclip(rl), y) + β · average(tclip(rl)
2), (7)

where L is the cross-entropy function, y denotes the labels of labeled samples, and β is the
regularization parameter. We set α = 20 and β = 1.0e− 2 should be 1.0 ×10−2 as [39].

In the case of linear classification, the parameters of the online encoder are fixed and
only the classifier is trained. Instead, both the online encoder and classifier are trained in
the case of fine-tuning. Finally, the classification map was obtained by the inference of all
samples of HSI.

4. Experimental Datasets and Setup
4.1. Dataset Descriptions

We evaluated the proposed N2SSL method by using three publicly available bench-
mark HSIs, i.e., the University of Pavia (UP), Indian Pines (IP) and Kennedy Space Center
(KSC) scenes. The UP scene is an image collected by the reflective optics spectrographic
image system over the University of Pavia. It contains 103 spectral reflectance bands of
610 × 340 pixels, covering 9 classes of interest. The IP scene is an Indian Pines image
captured by an airborne visible infrared imaging spectrometer (AVRIS), which contains
200 bands of 145× 145 pixels. As seen from Table 2, its 16 different classes represent mostly
different types of vegetation. The KSC scene is an image acquired by the AVIRIS sensor
over the Kennedy Space Center with a spatial resolution of 18 m. It covers 13 classes of
512 × 614 pixels with 176 bands after removing water absorption. Table 2 and Figure 6 report
the quantitative and qualitative ground truths(GTs) of the three scenes, respectively.
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Table 2. Number of samples available for UP, IP and KSC scenes.

UP IP KSC

Class GT Class GT Class GT
Asphalt 6851 Alfalfa 46 Scrub 761
Meadows 18,686 Corn-notill 1428 Willow swamp 243
Gravel 2207 Corn-min 830 CP hammock 256
Trees 3436 Corn 237 Slash pine 252
Metal sheets 1378 G-pasture 483 Oak/Broadleaf 161
Bare soil 5104 G-trees 730 Hardwood 229
Bitumen 1356 G-pasture-m 28 Swamp 105
Bricks 3878 H-windrowed 478 G-march 431
Shadow 1026 Oats 20 Sp-marsh 520

Soybean-n 972 C-marsh 404
Soybean-m 2455 Sa-marsh 419
Soybean-c 593 Mud flats 503
Wheat 205 Water 927
Woods 1265
B-Grass 386
Stone-Steel 93

The colors correspond to the classes in Figure 6.

(a) (c) 

(b) 

Figure 6. Qualitative GT of all the three scenes: (a) UP, (b) IP and (c) KSC (Best viewed in color).

4.2. Experimental Setup
4.2.1. Implementation Details

• Architecture: We used SSRN-based encoders as fθ and fϑ, with kernel sizes of
ConvBN3 set to 49, 97 and 85 for UP, IP and KSC scenes, respectively. The projectors
(gθ and gϑ) and predictor hθ were set to 28-512-128 and 128-512-128 MPL networks
for all scenes, respectively. For the target network, the exponential moving average
parameter was fixed as 0.996 in both pretraining and training process.

• Typical Baseline: To fairly illustrate the improvement brought by learning between
augmentations of RN2P, we employed BYOL that only learnt from augmentations of
the same samples as a baseline in all experiments. From the perspective of N2SSL, we
directly denoted it as SSL for consistency. Since final classification could be achieved by
learning on the frozen features, or fine-tuning the learned encoder, we denoted them
with different subscripts. Specifically, SSL1 and N2SSL1 represent linear classification,
whereas SSL2 and N2SSL2 represent classification via fine-tuning.
Regarding the case of fine-tuning, we chose to fine-tune the online encoder trained on the KSC
scene to both UP and IP scenes due to the following considerations. First, compared
with the UP and IP scenes, the KSC scene had less samples. In other words, the online
encoder was trained on a relatively small HSI, but fine-tuned to large HSIs, which
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is more similar to practical hyperspectral applications. Second, since the number
of bands of the KSC scene was larger than that of the UP scene and smaller than
that of the IP scene, up-sampling and down-sampling of spectral channels had to
be conducted for the UP and IP scenes, respectively. In this way, both operations
of up-sampling and down-sampling were achieved. The combined analysis of both
UP and IP scenes eliminated the effect brought by inevitable up-sampling or down-
sampling of spectral channels, making the results more convincing. Specifically, the
spectral channels of the UP and IP scenes were linearly interpolated to be the same
as the KSC scene. For simplicity, these two cases were denoted as KSC→UP and
KSC→IP, respectively.

• Optimization: For rationale of comparison between SSL and N2SSL methods, they
held the same optimization setting for each scene, i.e., batch-size and learning rate
(LR) in Table 3. Note that both of them were empirically determined according to
several trials. In particular, the initial and largest LRs of cosine decay schedule were
1.0× 10−3 and 2.5× 10−2, respectively, with a warm-up period of 10 epochs. The SGD
optimizer with momentum of 0.9 and weight decay of 4.0 × 10−4 was employed.
Moreover, a cosine decay schedule of N2SSL was only applied to the pretraining
and final training processes, whereas for the iterative process of extracting RN2P,
the learning rate remained unchanged. In this way, the dynamic LR of N2SSL was the
same as that of SSL.
For epochs of N2SSL, we empirically set them to ensure computational cost less than
the corresponding SSL method for each scene (see ne1, ne2, ne3 in Table 3). For linear
classification, LR and number of training epochs for the classifier were set to 2.0 × 10−3

and 4000, respectively. For the cases of both KSC→UP and KSC→IP, the LRs for the
encoder and the classifier were set to 2.0 × 10−4 and 2.0 × 10−3, respectively. Both
of them degraded by 2 with a patience of 10 epochs on the decrease of training loss.
The total number of fine-tuning epochs for all scenes was set to 200.

• Specific Parameters of N2SSL: Number of nearest neighboring samples, i.e., K, was set
to 20. The percentages of samples for pretraining were set to 20%, 20% and 40% for
the three scenes, respectively.

Table 3. Learning rate and training epochs of SSL and N2SSL methods for all the scenes.

Dataset Learning Rate Batch Size

Number of Epochs

SSL
N2SSL

ne1 ne2 ne3

UP cosine decay schedule with a
warm-up of 10 epochs.

128 100 40 2 30
IP 32 200 80 4 60

KSC 32 200 80 2 90

4.2.2. Other Baseline Methods

In order to draw a general comparison, UFE , DL-based supervised classification and
self-supervised approaches were employed as baseline methods:

• MSuperPCA [14]: MSuperPCA (https://github.com/junjun-jiang/SuperPCA (ac-
cessed on 15 March 2023)) is a conventional UFE method that applied superpixel-wise
PCA to HSI.

• S3-PCA [15]: S3-PCA (https://github.com/XinweiJiang/S3-PCA (accessed on
15 March 2023)) adopted superpixels-based local reconstruction to filter the HSIs
and used the PCA-based global features as the supplement of local features.

• HybridSN [10]: HybridSN (https://github.com/gokriznastic/HybridSN (accessed on
15 March 2023)) is a state-of-the-art supervised DL method that exploited both 3-D
spectral–spatial features and 2-D abstract-level spatial representation.

https://github.com/junjun-jiang/SuperPCA
https://github.com/XinweiJiang/S3-PCA
https://github.com/gokriznastic/HybridSN
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• SSRN [7]: SSRN (https://github.com/zilongzhong/SSRN (accessed on 15 March
2023)) is a typical residual CNN designed for HSIC and worked as the encoder of
BYOL in our method.

• SSTN [11]: SSTN (https://github.com/zilongzhong/SSTN(accessed on 15 March
2023)) combines spatial attention and spectral association modules to overcome the
constraints of convolution kernels.

• ContrastNet [43]: ContrastNet integrates the popular prototypical contrastive learning
with data augmentations achieved by two different autoencoders, i.e., variational
autoencoder and adversarial autoencoder.

• CL-Transformer [42]: CL-Transformer explores the capability of BYOL-based S2L on
HSIC based on the backbone of the transformer.

• SSCL [44]: SSCL pays more attention to the data preprocessing of HSI and uses
Gaussian noise for augmentation.

• S3FN [45]: S3FN uses feature transformation to obtain two feature descriptions of
the same source data from different views and proposes the spectral–spatial feature
learning network to conduct contrastive learning.

• Self-supervised learning with adaptive distillation (SSAD) [34]: SSAD applies self-
supervised information to train the network by knowledge distillation, where self-
supervised knowledge is the adaptive soft label generated by spatial—spectral simi-
larity measurement.

The typical baseline methods (MSuperPCA, S3-PCA, HybridSN, SSRN and SSTN)
were employed for all three scenes by reproducing the classification via the corresponding
publicly available codes. The parameters of support vector machine in MSuperPCA and
S3-PCA were tuned to achieve the best classification performance. Similarly, for Hybrid,
SSRN, SSTN, SSL and N2SSL, highest accuracies were reported in the training process of
classifiers. Regarding self-supervised methods, we compared both N2SSL1 and N2SSL2
with them under the same setting of labeled samples for each scene. For each setting
of a number of labeled samples, 20 trials of the classification were conducted to report
relatively stable performance. To numerically evaluate the accuracy, overall accuracy (OA),
corresponding average accuracy (AA) and Kappa statistics (K) were used. Furthermore,
the running time consumed per trial was employed to describe the computational load.
All our experiments were conducted using Matlab R2017b and Pytorch on a workstation
equipped with an Intel(R) Xeon(R) Gold 6254 CPU, 16 GB of RAM and a Tesla V100 GPU
with 32-GB memory.

5. Experimental Results
5.1. Results of Linear Classification
5.1.1. Comparison between SSL1 and N2SSL1

Different from the setting of labeled samples for analysis of parameter setting, we
explored more deeply the capability of SSL1 and N2SSL1 for HSIC of three scenes using
various settings of labeled samples, i.e., ranging from 6 to 10 per class for imbalance testing
and ranging from 100 to 600 in total. Note that, for the case of 100 to 600, the number of
labeled samples per class was determined by the relative ratios of different classes. Table 4
reports the mean OAs and the corresponding standard errors. The following observations
were easily obtained.

https://github.com/zilongzhong/SSRN
https://github.com/zilongzhong/SSTN
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Table 4. Comparison of mean OAs obtained by SSL1 and N2SSL1 for all the three scenes with different numbers of labeled samples.

Train# 6 7 8 9 10 100 200 300 400 500 600

UP SSL1 92.014 ± 3.80 92.691 ± 3.27 93.716 ± 3.07 93.681 ± 3.04 94.536 ± 2.86 97.448 ± 0.94 98.589 ± 0.46 98.938 ± 0.33 99.112 ± 0.24 99.205 ± 0.21 99.268 ± 0.19
N2SSL1 89.909 ± 4.16 91.070 ± 3.54 91.706 ± 3.56 92.169 ± 3.38 92.795 ± 3.15 97.123 ± 1.08 98.769 ± 0.49 99.203 ± 0.28 99.304 ± 0.18 99.416 ± 0.18 99.487 ± 0.15

IP SSL1 83.440 ± 3.10 84.863 ± 3.04 86.046 ± 3.10 87.087 ± 2.72 88.832 ± 2.69 89.716 ± 2.14 94.207 ± 1.12 95.781 ± 0.62 96.284 ± 0.61 96.776 ± 0.53 97.135 ± 0.41
N2SSL1 86.250 ± 3.36 87.223 ± 2.99 88.003 ± 3.03 89.359 ± 2.05 90.742 ± 2.19 92.025 ± 1.80 95.490 ± 0.96 96.486 ± 0.51 97.046 ± 0.45 97.392 ± 0.35 97.697 ± 0.26

KSC SSL1 95.348 ± 2.23 95.851 ± 1.79 96.536 ± 1.35 96.859 ± 1.26 97.238 ± 1.08 96.004 ± 1.57 98.097 ± 0.56 98.698 ± 0.38 98.976 ± 0.25 99.133 ± 0.20 99.229 ± 0.23
N2SSL1 95.546 ± 2.45 96.055 ± 1.86 96.617 ± 1.34 96.873 ± 1.14 97.287 ± 1.03 96.326 ± 1.59 98.243 ± 0.58 98.872 ± 0.43 99.199 ± 0.27 99.415 ± 0.24 99.478 ± 0.23
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(1) The increasing trend of mean OAs confirmed that 20 trials were enough to achieve
stable results. Moreover, standard errors of OAs for small numbers of labeled samples
appeared to be higher.

(2) SSL1 easily yielded better performance than N2SSL1 for the UP scene when the number
of labeled samples ranged from 6 to 10 per class, or equaled 100 in total. In particular,
when numbers of labeled samples were 10 per class and 100 in total, the accuracies
achieved by SSL1 were 94.536% and 97.488%, respectively, 1.741% and 0.325% higher
than that of N2SSL1. Since 10 per class meant 90 in total for the UP scene, it could be
roughly concluded that the N2SSL1 method was more sensitive than the SSL1 method
to imbalances between labeled and testing samples of each class. When comparing
the results of the KSC scene, using 8 per class and 100 in total, a similar conclusion
was observed.

(3) The mean OAs of N2SSL1 for the IP and KSC scenes with various numbers of la-
beled samples were in the range of 86.250–97.697% and 95.546–99.478%, respectively,
which was always higher than those of SSL1, i.e., in the range of 83.440–97.135% and
95.348–99.229%, respectively. A similar trend was found for the UP scene when there
were no less than 200 labeled samples.

One may notice that the superiority of N2SSL1 over SSL1 became more apparent in the
IP scene. To give a qualitative comparison, Figure 7 illustrates the t-distributed stochastic
neighbor embedding (t-SNE) feature visualization of frozen deep features of the online
encoder for the IP scene (C5, C7, C10 and C15). Compared with SSL1, it is clear that better
separation between classes was achieved with the learned features by N2SSL1, such as
“Soybean-n” (C10) and “B-Grass” (C15) in ellipses, “G-pasture” (C5) and “G-pasture-m”
(C7) in rectangles. Consequently, interacting between nearest neighboring samples in
N2SSL1 facilitated the online encoder in learning more discriminative features.

(a) (b) 

Figure 7. Comparison of t-SNE feature visualization of IP samples (C5, C7, C10 and C15) obtained by
(a) SSL1 and (b) N2SSL1 (Best viewed in color).

5.1.2. Comparison with SOTA UFE and DL Methods

Tables 5–7 report the mean quantitative evaluation of different methods in terms of
individual class accuracies, OA, AA, K and running time using 200 labeled samples for the
UP, IP and KSC scenes, respectively. The following observations can be easily drawn:

(1) Among these seven methods, N2SSL1 achieved the best classification accuracies,
with mean OA 0.18%, 1.28% and 0.14% higher than those of SSL1 for the UP, IP
and KSC scenes, respectively. Meanwhile, the running time of the N2SSL1 method
averaged 5.14 min less than that of the SSL1 method.
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(2) Looking at individual accuracy of each class, N2SSL1 delivered the best performance
for most classes of the three scenes. As shown in Figure 7 and as stated above, t-SNE
computed by N2SSL1 of “Stone-Steel” (C16) and “Soybean-c” (C12), “Soybean-n”
(C10) and “B-Grass” (C15) in the IP scene showed better separation. In particular,
the same quantitative results can be found in Table 6, i.e., accuracies of C10, C12, C15
and C16 were 2.01%, 2.14%, 3.70% and 1.10% higher than those achieved by SSL1,
respectively (see the underlined accuracies).

(3) HybridSN was inferior to other methods, resulting in the lowest mean OAs of 81.94%
and 80.52% for the IP and KSC scenes, respectively, whereas MSuperPCA delivered
the worst accuracy for the UP scene with a mean OA of 89.92%.

(4) Compared with SSRN that shares the same architecture with SSL1 and N2SSL1, large
improvements on OA, AA and K were found for all scenes, validating the success
of self-supervised learning on nearest neighboring samples. In particular, mean
OAs achieved by N2SSL1 averaged 2.32%, 6.32% and 2.67% higher for the three
scenes, respectively.

(5) Compared with SSTN based on framework of Transformer, CNN-based N2SSL1 still
held an advantage on accuracies for all scenes. However, the corresponding running
time was also higher than that of SSTN.

(6) Regarding computational time, conventional methods (MSuperPCA and S3PCA) took
the least time for all scenes, whereas SSL1 and N2SSL1 required much more time, due
to the training of BYOL.

Table 5. Classification results of SOTA methods, SSL1 and N2SSL1 by selecting 200 training samples
on the UP scene.

No. Train# Test# MSuperPCA S3PCA HybridSN SSRN SSTN SSL1 N2SSL1

C1 31 6600 94.92 96.51 89.40 97.34 97.92 99.56 98.43
C2 88 18,561 99.09 99.43 98.96 98.57 99.58 99.92 99.92
C3 10 2089 82.28 93.99 77.50 81.36 88.61 92.46 95.30
C4 13 3051 49.68 76.99 77.67 94.69 91.89 94.27 96.97
C5 8 1337 81.22 99.19 99.45 99.71 99.40 99.97 99.99
C6 23 5006 87.65 97.40 96.42 95.13 98.52 99.21 99.69
C7 9 1321 94.97 93.71 95.84 96.36 97.21 99.85 99.98
C8 14 3668 91.49 97.16 77.74 94.01 93.03 95.80 95.46
C9 4 943 32.78 89.97 37.22 99.48 95.39 97.00 96.44

All
OA (%) 89.92 ± 1.51 96.27 ± 0.60 91.32 ± 1.29 96.45 ± 0.92 97.37 ± 0.52 98.59 ± 0.46 98.77 ± 0.49
AA (%) 79.34 ± 4.45 93.82 ± 1.15 83.36 ± 2.10 95.18 ± 1.13 95.73 ± 1.03 97.56 ± 0.69 98.02 ± 0.64
K (%) 86.25 ± 2.13 95.02 ± 0.81 88.45 ± 1.71 95.29 ± 1.21 96.51 ± 0.69 98.13 ± 0.61 98.37 ± 0.65

Time (min) 2.10 2.97 5.95 27.32 16.88 38.16 33.87

The best results are reported in bold.

Table 6. Classification results of SOTA methods, SSL1 and N2SSL1 by selecting 200 training samples
on the IP scene.

No. Train# Test# MSuperPCA S3PCA HybridSN SSRN SSTN SSL1 N2SSL1

C1 2 44 0.00 5.00 72.61 81.82 82.16 87.50 91.82
C2 27 1401 88.72 90.68 72.76 81.41 92.16 92.18 93.47
C3 19 811 90.33 92.52 71.58 87.02 93.97 93.98 93.63
C4 4 233 42.73 53.76 42.73 72.21 82.30 76.22 74.08
C5 9 474 93.07 93.63 76.61 88.34 87.69 90.37 89.92
C6 14 716 97.16 97.19 95.09 95.44 96.89 94.16 99.27
C7 2 26 0.00 0.00 97.12 97.88 98.08 99.62 98.08
C8 10 468 99.73 100.00 99.85 97.30 99.81 99.86 99.96
C9 3 17 99.12 91.18 99.41 99.41 98.53 97.65 98.82
C10 24 948 93.11 94.10 82.26 88.82 90.78 92.42 94.49
C11 41 2414 97.92 96.09 86.89 91.07 94.93 95.41 96.23
C12 14 579 84.61 85.63 67.25 83.02 93.15 94.05 96.18
C13 4 201 99.50 99.18 92.46 97.99 98.48 96.99 99.03
C14 18 1247 99.27 97.68 93.62 97.67 98.46 98.91 99.82
C15 7 379 91.99 92.68 69.63 75.84 86.81 91.33 95.03
C16 2 91 2.47 2.58 72.31 95.11 89.34 94.89 95.99
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Table 6. Cont.

No. Train# Test# MSuperPCA S3PCA HybridSN SSRN SSTN SSL1 N2SSL1

All
OA (%) 91.76 ± 1.08 92.05 ± 1.97 81.94 ± 1.64 89.17 ± 1.51 93.81 ± 0.85 94.21 ± 1.12 95.49 ± 0.96
AA (%) 73.73 ± 1.26 74.49 ± 3.03 80.76 ± 2.26 89.40 ± 2.19 92.72 ± 1.18 93.47 ± 1.15 94.74 ± 1.05
K (%) 90.52 ± 1.24 90.90 ± 2.24 79.36 ± 1.87 87.64 ± 1.73 92.95 ± 0.97 93.39 ± 1.27 94.86 ± 1.09

Time (min) 0.90 0.13 1.59 15.10 6.38 48.05 39.07

The best results are reported in bold.

Table 7. Classification results of SOTA methods, SSL1 and N2SSL1 by selecting 200 training samples
on the KSC scene.

No. Train# Test# MSuperPCA S3PCA HybridSN SSRN SSTN SSL1 N2SSL1

C1 29 732 98.29 99.60 88.90 98.01 99.82 99.93 100.00
C2 9 234 94.55 91.90 57.80 91.39 93.91 95.28 94.10
C3 10 246 92.09 94.86 76.10 98.25 96.36 99.19 99.72
C4 10 242 92.71 93.24 51.43 76.96 83.35 92.64 92.93
C5 6 155 89.29 88.52 76.06 78.84 65.29 79.87 82.03
C6 9 220 93.73 80.89 72.39 85.32 95.93 97.70 99.91
C7 4 101 100.00 90.64 61.58 95.69 86.49 90.69 94.70
C8 17 414 95.00 98.56 84.96 96.63 97.79 99.19 98.66
C9 20 500 99.76 99.56 89.17 98.79 99.35 99.74 98.69
C10 16 388 92.11 86.48 60.05 95.66 98.87 99.83 99.39
C11 16 403 99.35 99.64 76.59 98.76 98.81 99.93 100.00
C12 19 484 96.59 96.02 77.35 96.73 96.43 97.37 98.22
C13 35 892 98.71 98.39 99.13 99.99 100.00 100.00 100.00

All
OA (%) 96.49 ± 0.74 95.69 ± 0.90 80.52 ± 3.14 95.57 ± 1.05 96.41 ± 1.43 98.10 ± 0.56 98.24 ± 0.58
AA (%) 95.55 ± 1.01 93.72 ± 2.04 74.73 ± 3.80 93.15 ± 1.64 93.26 ± 2.50 96.26 ± 1.04 96.80 ± 1.06
K (%) 96.09 ± 0.82 95.20 ± 1.01 78.24 ± 3.52 95.07 ± 1.17 96.00 ± 1.60 97.88 ± 0.62 98.04 ± 0.64

Time (min) 1.55 5.36 2.92 8.85 5.01 39.75 37.60

The best results are reported in bold.

In order to qualitatively display the mean classification maps, the average accuracy
of each sample in the HSI was computed and then transformed to intensity. For example,
when the average accuracy over 20 trials was 100%, its intensity was set as 1. On the other
hand, the intensity was set as 0 if the sample was never correctly classified. Figures 8–10
provide a comparison of maps of mean classification accuracies for the UP, IP and KSC
scenes, respectively. Compared with SSRN [Figures 8a–10a], the improvement in local
classification of N2SSL1 was easily observed [Figures 8b–10b]. The “Gravel” (C3) samples
(see the rectangular box) and “Bare soil” (C6) samples (see the ellipse) of the UP scene,
“Soybean-n” (C10) samples (see the rectangular box) and “G-trees” (C6) samples (see the
circle) of the IP scene, “Slash pine” (C4) samples (see the circle) of the KSC scene were
better classified by N2SSL1 than by both SSL1 and SSRN.

Figure 8. Comparison of maps of classification accuracies for the UP scene: (a) SSRN, (b) SSL1 and
(c) N2SSL1 (Best viewed in color).
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Figure 9. Comparison of maps of classification accuracies for the IP scene: (a) SSRN, (b) SSL1 and
(c) N2SSL1 (Best viewed in color).

Figure 10. Comparison of maps of classification accuracies for the KSC scene: (a) SSRN, (b) SSL1 and
(c) N2SSL1 (Best viewed in color).

5.2. Results of Fine-Tuning
5.2.1. Comparison with SSRN and SSTN

From the results of linear classification, we generally found that, although SOTA
classification accuracy was reached by N2SSL1, the corresponding running time was much
more than those of SSRN and SSTN, which train the network from scratch. Consequently,
experiments on fine-tuning were performed to compare classification performance between
training from scratch and online encoder. Specifically, the online encoder was trained by
using the KSC scene using 60% of all samples in both SSL2 and N2SSL2. All other settings
of parameters were the same as SSL1 and N2SSL1, respectively. Tables 8 and 9 and Figure 11
report the mean OAs and running times of SSRN, SSTN, SSL2 and N2SSL2, respectively,
with numbers of labeled samples ranging from 100 to 600 for both KSC→UP and KSC→IP
cases. Note that we only compared N2SSL2 with SSRN and SSTN as SSRN shares the same
network architecture, whereas SSTN is based on a totally different network framework,
i.e., Transformer.

Table 8. Overall accuracies obtained by SOTA-supervised methods, SSL2 and N2SSL2 on the case of
KSC→UP.

Train# 100 200 300 400 500 600

SSRN 91.71 ± 1.27 96.45 ± 0.92 97.96 ± 0.39 98.50 ± 0.33 98.86 ± 0.28 99.07 ± 0.23
SSTN 95.10 ± 1.08 97.37 ± 0.52 98.23 ± 0.37 98.60 ± 0.19 98.75 ± 0.18 98.89 ± 0.13
SSL2 94.75 ± 1.34 97.32 ± 0.84 98.35 ± 0.45 98.79 ± 0.36 99.05 ± 0.29 99.25 ± 0.17

N2SSL2 95.67 ± 0.98 97.74 ± 0.68 98.53 ± 0.40 98.84 ± 0.25 99.09 ± 0.25 99.26 ± 0.20

The best results are reported in bold.

Table 9. Overall accuracies obtained by SOTA supervised methods, SSL2 and N2SSL2 on the case of
KSC→IP.

Train# 100 200 300 400 500 600

SSRN 82.62 ± 3.16 89.17 ± 1.51 92.90 ± 1.07 94.94 ± 0.91 96.49 ± 0.50 97.04 ± 0.32
SSTN 88.42 ± 1.51 93.81 ± 0.85 95.72 ± 0.60 96.61 ± 0.66 97.14 ± 0.54) 97.56 ± 0.33
SSL2 85.89 ± 2.09 93.28 ± 1.09 95.51 ± 0.69 96.65 ± 0.77 97.48 ± 0.53 97.82 ± 0.40)

N2SSL2 85.68 ± 2.07 93.28 ± 0.93 95.41 ± 0.74 96.70 ± 0.68 97.51 ± 0.50 97.89 ± 0.38

The best results are reported in bold.
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(a) (b) 

Figure 11. Comparison of running time by N2SSL2 and SOTA-supervised methods on both cases
with different number of labeled samples: (a) KSC→UP and (b) KSC→IP. The bars in red boxes
represent running time of N2SSL2 under the same setting of labeled samples (Best viewed in color).

The following observations were clear:

(1) Sharing the same architecture of network, SSRN always achieved inferior classification
accuracy than both SSL2 and N2SSL2, directly validating the merits of training from
an online encoder trained on the KSC scene. Numerically, the accuracies achieved by
N2SSL2 were about 0.19–3.96% and 0.85–4.11% higher than SSRN for the KSC→UP
and KSC→IP cases, respectively.

(2) In most settings of labeled samples, N2SSL2 outperformed SSL2 in terms of mean OA,
yielding a marginal, yet obvious, improvement and it roughly proved that learning
between nearest samples also facilitated fine-tuning.

(3) Among all the four methods, N2SSL2 gave the highest classification accuracies with
different numbers of labeled samples for the KSC→UP case. However, SSTN reached
better performance than N2SSL2 when labeled samples were less than 300 for the
KSC→IP case.

(4) Regarding running time, SSL2 and N2SSL2 took almost the same times for the two
cases, which were much smaller than those of SSRN and SSTN. Consequently, it
can be concluded that N2SSL2 always outperformed SSRN in both accuracy and
running time.

5.2.2. Analysis of Iterative Process

In order to give an intuitive evaluation of the effect of the trained encoder by using the
KSC scene on classification accuracy of the UP and IP scenes, mean training loss and mean
OAs in the training process of the four methods are reported in Figure 12. The following
observations are pertinent:

(1) The accuracies obtained by SSL2 and N2SSL2 were larger than those of SSRN and
SSTN at the beginning stage, and also increased faster, reaching plateaus at about the
50th and 70th epochs for the KSC→UP and KSC→IP cases, respectively. They also
behaved more stably in the whole training process.

(2) SSRN converged faster than both SSL2 and N2SSL2, whereas SSTN required about
200 epochs to converge. This phenomenon was consistent with the characteristics
of Transformer-based networks that usually require more training samples and run-
ning time.

(3) Although SSTN achieved better accuracy than N2SSL2 (see 93.81% vs. 93.28% in
Table 9), the mean OA of SSTN in the training process was not only smaller but also
more unstable than that of N2SSL2. One can deduce that the accuracy of SSTN in the
same epoch over 20 trials had a large difference, which identified instablity. Moreover,
this instablity reflected the requirement of validation set in the practical task of HSIC.
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(a) (b) 

Figure 12. Illustration of mean training loss and mean accuracy in the iterative process over 20 trials
by SSL2, N2SSL2, SSRN and SSTN for the (a) KSC→UP and (b) KSC→IP cases. The number of
labeled samples were set to 200 (Best viewed in color).

5.3. Comparison with SOTA Self-Supervised Methods

Given the application of self-supervised learning on HSIC, we compared the perfor-
mance of both N2SSL1 and N2SSL2 with SOTA self-supervised HSIC methods for the UP
and IP scenes, in terms of OA, AA, K and running time. To generate fair comparison,
we just reported the results in the original work and conducted classification with the
same setting of labeled samples. From Tables 10 and 11, one may notice that N2SSL2
gave the best performance for all settings of labeled samples of each scene. An obvi-
ous decrease in running time was achieved by N2SSL2, in comparison with S3FN and
ContrastNet. Meanwhile, when the labeled samples were limited, i.e., only 10 per class,
N2SSL1 always delivered the best results. Thus, we can easily conclude that the proposed
N2SSL1 method outperformed SOTA self-supervised methods with limited labeled sam-
ples, whereas N2SSL2 showed more advantage in both accuracy and running time with
more labeled samples being available.

Table 10. CLassification results of the UP scene obtained by SOTA self-supervised methods
and N2SSL.

Method Envir. Train#
OA (%) AA (%) K (%) Running Time (min)

H N2SSL1 N2SSL2 H N2SSL1 N2SSL2 H N2SSL1 N2SSL2 H N2SSL1 N2SSL2

SSAD RTX2080 Ti 10 86.80 92.79 87.61 88.80 96.12 93.45 83.40 90.71 84.24 - 32.93 4.96

S3FN Tesla V100/32 GB 5% 98.81 99.77 99.88 98.27 99.56 99.79 98.42 99.69 99.84 26.98 36.41 20.13

SSCL GTX 1060/16 GB
10%

97.21
99.85 99.97

96.00
99.70 99.93

96.30
99.80 99.96

-
39.26 36.09CL_Transformer Titan-RTX 98.67 96.59 - -

ContrastNet GTX 1080/16 GB 99.46 98.83 - 63.43

The best results are reported in bold.

Table 11. CLassification results of the IP scene obtained by SOTA self-supervised methods and N2SSL.

Method Envir. Train#
OA (%) AA (%) K (%) Running Time (min)

H N2SSL1 N2SSL2 H N2SSL1 N2SSL2 H N2SSL1 N2SSL2 H N2SSL1 N2SSL2

SSAD RTX2080 Ti 10 84.30 90.74 84.79 87.80 94.65 91.74 79.90 89.50 82.79 - 38.56 2.44

CL_Transformer Titan-RTX 10% 96.78 98.34 99.08 95.64 97.46 98.48 - 98.11 98.95 - 40.09 8.83ContrastNet GTX 1080/16 GB 97.08 91.78 - 34.76

S3FN Tesla V100/32 GB 15% 98.91 98.73 99.52 98.46 98.04 99.30 98.76 98.55 99.45 5.74 40.77 12.72

The best results are reported in bold.
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6. Discussion

We further discuss the optical parameter setting by performing several experiments
based on linear classification (SSL1 and N2SSL1), as the frozen deep features generated by
the online encoder can directly reflect whether more discriminative information is learnt
by N2SSL1.

6.1. Data Augmentation

We first performed an experiment to analyze the effects of the following data augmen-
tations on the classification performance of SSL1:

• random cropping: a random spatial patch of each 3-D cube was selected, with an area
uniformly sampled between 8% and 100% of the original cube, and an aspect ratio
logarithmically sampled between 3

4 and 4
3 . This patch was then resized to the original

spatial size of 9 × 9 using bicubic interpolation.
• horizontal/vertical flip: spatial flip of 3-D cube.
• sub-horizontal/vertical flip: spatial flip sub-window of 3-D cube with sub-window

size randomly set to 3 × 3 to 7 × 7 pixels.
• rotation: spatial rotation of 3-D cube with randomly selected angle (0-π) followed by

resize to original size by bilinear interpolation.
• sub-rotation: spatial rotation of 3-D sub-window similar to rotation. The sub-window

size was randomly set to 3 × 3 to 7 × 7 pixels.
• pixel erasing: a random spatial patch of each 3-D cube was erased, with an area

uniformly sampled between 1
81 and 16

81 of the original cube, and an aspect ratio loga-
rithmically sampled between 0.3 and 3.3.

Figure 13 gives the detailed implementation of augmentations for online and target
networks. For simple and valid quantitative analysis, we only employed the mean OAs
of the UP scene over 20 trials by SSL1 to evaluate different configurations. In detail, 20%
of all samples and 5 labeled samples per class were randomly selected for training BYOL
and linear classification in each trial. The number of training epochs and LR were set as
those in Table 3. Unsurprisingly, random cropping brought the strongest baseline OAs of
84.3%. The combination of cropping+sub-horizontal flip and cropping+sub-vertical flip
held the largest improvement of mean OA against augmentation of single cropping, with a
margin of 3.65%. Interestingly, several settings of augmentations degraded the classification
performance, such as cropping+sub-horizontal flip vs. cropping+sub-rotation. The main
reason behind the phenomenon may be that too strong augmentations were enforced and,
thus, convergence could hardly be reached. We leave this as a future work of self-supervised
HSIC. Thus, we employed cropping+sub-horizontal flip and cropping+sub-vertical flip in
the experiments.

Figure 13. Comparison of mean OAs of UP scene achieved by SSL1 using 5 labeled samples per class
under different configurations of DA (Best viewed in color).
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6.2. Percentage of Samples for Pretraining and Parameter K

Apparently, percentage of samples for training BYOL is a critical parameter of both
SSL and N2SSL, whereas parameter K directly decides the affinity used in N2SSL. Figure 14
reports mean OAs of SSL1 and N2SSL1 methods under different settings of both percentage
of pretraining samples and parameters K for all scenes, where red rectangles represent
mean OAs of SSL1 method. The number of labeled samples were set to 200 in total for each
scene. The following observations were made:

(1) Roughly, more pretraining samples resulted in better performance for both methods across
all scenes and settings. When the pretraining samples were too few, i.e., 10% for the UP
and IP scenes, SSL1 yielded 2.15% and 6.38% lower mean OAs than using 30% and 25%
for pretraining of both scenes, respectively. Thus, within the acceptance of computational
cost, more pretraining samples are expected for better classification performance.

(2) For the IP scene, N2SSL1 always behaved better than SSL1, with improvement of
mean OA ranging from 0.59% to 1.93%. When percentage of pretraining samples
was relatively large, i.e., 20% and 50% for UP and KSC scene, respectively, the same
advantage of N2SSL1 was observed across different values of parameter K, further
validating the merits brought by large numbers of pretraining samples.

(3) When looking at the performance of N2SSL1 more clearly, with relatively more pre-
training samples, i.e., more than 20% for the UP and IP scenes, and 40% for the KSC
scene, the parameter K set to 20 reached more stable performance. Specifically, N2SSL1
with K set to 5 and 15 performed worse than SSL1 for the KSC scene, whereas mean
OA brought by N2SSL1 across the three scenes with K set to 10 was less than that
of N2SSL1 with K set to 20. Thus, the value of parameter K was set to 20 in the
following experiments.

Along the line of results in Figure 14 and with parameter K fixed as 20, Figure 15 reports
on the comparison of performance obtained by SSL1 and N2SSL1 in terms of classification
accuracy and running time for all scenes using different percentages of pretraining samples
and 200 labeled samples. Obviously, larger numbers of samples generally produced higher
accuracies with more running time. Moreover, N2SSL1 always took less running time than
SSL1 under the same configuration of pretraining samples, reaching higher accuracies in
most cases. The main rationale lay at the setting of training epochs of N2SSL1 in Table 3.
Thus, when N2SSL1 was conducted on relatively more pretraining samples, i.e., more than
20% for the UP and IP scenes, 40% for the KSC scene, the advantages of N2SSL1 on accuracy
and computational load were highlighted. Consequently, in order to reduce the running
time as much as possible, percentages of pretraining samples for the UP, IP and KSC scenes
were set to 20%, 20% and 40%, respectively.

(a) (b) (c) 

Figure 14. The effects of learning between nearest neighboring samples under different values of
parameter K for three scenes: (a) UP, (b) IP and (c) KSC. The bars in red rectangles give mean OAs
achieved by SSL1 under the same setting of pretraining samples (Best viewed in color).
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(a) (b) (c) 

Figure 15. Classification accuracies and running time of SSL1 and N2SSL1 with different percentages
of samples for pretraining on three scenes: (a) UP, (b) IP and (c) KSC (Best viewed in color).

7. Conclusions

This paper addressed the issue of HSIC based on the framework of BYOL and SSRN.
Differing from conventional BYOL, that interacts between augmentations of the same sam-
ples, the proposed N2SSL method successfully encoded more discriminative information
via pre-computed affinity of the HSI samples. Comprehensive experiments on both linear
classification and fine-tuning with various settings of labeled samples exhaustively vali-
dated its superiority over conventional BYOL and SOTA self-supervised methods designed
for HSIC.

As future development, the proposed N2SSL method can be extended in the following
aspects: (1) self-supervised learning on a Transformer-based network may bring more
improvement than SSRN-based BYOL; (2) Augmentations of HSI samples should be more
explored, which may result in further improvement of the classification accuracy.
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