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Abstract: Anthropogenic emissions play an important role in air quality forecasting. To improve the
forecasting accuracy, the use of nudging as the data assimilation method, combined with extremely
randomized trees (ExRT) as the machine learning method, was developed and applied to adjust
the anthropogenic emissions in the Community Multiscale Air Quality modeling system (CMAQ).
This nudging–ExRT method can iterate with the forecast and is suitable for linear and nonlinear
emissions. For example, an episode between 15 and 30 January 2019 was simulated for China’s Beijing–
Tianjin–Hebei (BTH) region. For PM2.5, the correlation coefficient of the site averaged concentration
(Ra) increased from 0.85 to 0.94, and the root mean square error (RMSEa) decreased from 24.41 to
9.97 µg/m3. For O3, the Ra increased from 0.75 to 0.81, and the RMSEa decreased from 13.91 to
12.07 µg/m3. These results showed that nudging–ExRT can significantly improve forecasting skills
and can be applied to routine air quality forecasting in the future.

Keywords: emission data assimilation; machine learning; CMAQ; PM2.5 and O3

1. Introduction

The air quality in China has improved rapidly over the past decades due to the
development of action plans for controlling air pollution [1] and the Blue Sky Protection
Campaign [2]. Fine particulate matter (PM2.5) pollution has also followed a decreasing
trend in recent years. However, ozone (O3) pollution has had an increasing tendency since
the 1990s [3–6]. Regional atmospheric environmental problems will damage human health
and affect social harmony and stability. Existing studies have shown that air pollution is
related to increasing mortality and hospitalizations that have been caused by respiratory
and cardiovascular diseases [7–9]. Currently, the cooperative control of PM2.5 and O3 is
becoming increasingly important, and demands a more accurate and efficient operational
forecasting system for both PM2.5 and O3.

Uncertainties in anthropogenic emissions are a major factor that influence forecasting
accuracy. Bottom-up and top-down are the two main methods that can establish an emission
inventory. The bottom-up method mainly uses a series of statistical data, including human
activities, population density, industrial output, road networks, vehicle numbers, and other
emission factors, to calculate the averaged emission inventories over a long period. Many
bottom-up emission inventories have been established in China [10–13]. However, the
problems caused by these uncertainties and a delay of the statistical data in the bottom-up
method are difficult to solve. Therefore, top-down methods are carried out to estimate
the uncertainties in these bottom-up emission inventories and they usually use observed
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data, including ground-based stations and satellite and radar data, to establish real-time
emission inventories.

Many top-down studies on linear emission sources have been carried out [14–17].
Four-dimensional variational (4DVAR) and ensemble Kalman filter (EnKF) are two of
the major methods that are used to establish an inversion model to adjust the emission
inventories. In addition, nudging has been proven to be another method for adjusting these
linear emission sources [18,19]. However, these inversion models for emissions, which
have nonlinear reactions with pollutants and insufficient observation data, such as volatile
organic compounds (VOCs) and NO, still have some limitations that need to be studied [20].
Owing to the lack of VOC observations and the complex O3-VOCs-NOx photochemical
reactions, inversing VOCs from O3 observations has been the subject of numerous research
efforts [21,22]. To solve this problem, Ma et al. used O3 observations and ensemble methods
to update the NOx and VOC state variables and emissions [23,24]. However, this method
costs considerable computing resources and is hard to adapt within operational forecasting.

Machine learning is one of the most popular methods for solving nonlinear problems
and can usually be more effective with the growth of databases, though it has not yet been
adopted for emission data assimilation. The extremely randomized trees (ExRT) method
is a stable and effective method that has been used in air quality forecasting [25–27]. Our
previous CMAQ (Community Multiscale Air Quality) model output statistics study also
proved that ExRT is a better method than multiple linear regression and gradient boosted
regression trees [28]. In this paper, we attempted to adopt ExRT in the nudging method and
adjust the anthropogenic emissions within an operational CMAQ forecasting simulation.
This is an attempt to combine data assimilation and machine learning.

2. Materials and Methods
2.1. Model and Dataset

The observational data from 255 air quality stations in the Beijing–Tianjin–Hebei (BTH) re-
gion from the China National Environmental Monitoring Center were used
(Figure 1b). The final operational global analysis (FNL) 1◦ × 1◦ data can be downloaded from
https://rda.ucar.edu/datasets/ds083.2/, accessed on 1 March 2020, and they are produced by
the National Centers for Environmental Prediction (NCEP) [29]. An FNL was used in this simu-
lation to initialize the weather research and forecasting model (WRF) [30,31]. The geographical
input data, which provide static geographical data for the WRF preprocessing system (WPS)
input, can be downloaded from https://www2.mmm.ucar.edu/wrf/users/download/get_
sources_wps_geog.html accessed on 15 June 2019. The 2017 emission inventory from the
Multi-resolution Emission Inventory for China (MEIC) was developed and maintained by
Tsinghua University [12], and can be downloaded from http://meicmodel.org/, accessed on
1 February 2022. The MEIC provided the monthly total emissions for the species in differ-
ent mechanisms, and these were used in all of the domains in our study through temporal
allocation, spatial allocation, and speciation.

2.2. Model Configurations

This study applied a WRF-CMAQ modeling system to simulate the variations in PM2.5
and O3. The WRF was developed by the National Center for Atmospheric Research (NCAR)
and the University Corporation for Atmospheric Research (UCAR) [30,31]. WRFv3.7.1
was used to generate the meteorological driver for the air quality simulation. The CMAQ
modeling system is an active open-source development project of the United States Environ-
mental Protection Agency, which consists of a suite of programs for model simulations of
air quality [32]. We used CMAQv5.3.2 [33] to simulate the spatial distribution and temporal
variation of the PM2.5, O3, and NO2 concentrations within the study region between 2 and
30 January 2019. All the simulations were restarted every 24 h, using the last simulation
as the initial conditions and simulated 72 h concentration. There were 3 simulation cycle
spin-ups before 2 January 2019. The boundary conditions of domain 1 and the initial condi-
tions of the first simulation cycle used the mean value of the climate state. The detailed

https://rda.ucar.edu/datasets/ds083.2/
https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
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WRF-CMAQ model configurations are listed in Tables A1 and A2. The model simulation
domain and topographic height are shown in Figure 1.
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2.3. The Combination of Nudging and ExRT

The nudging method [34] has been widely used for improving air quality forecast-
ing [18,19]. The nudging form can be expressed as

∂Pn

∂t
= F(Pn, x, t) + N(Pn, P∗, Q∗ + ∆Qn) (1)

∆Qn+1 = ∆Qn ×
[P∗ − Pn − β(Pn − Pn−1)]

Pn − Pn−1
(2)

Qn+1 = Q∗ + ∆Qn+1 (3)

where Pn is the concentration of the pollution in n iterations, t is the time, F is the array of the
forcing function, N is the nudging terms, P∗ is the concentration of the observations, Q∗ is the
original emission inventories, ∆Qn is the emission innovation vector (the differences between
the original emissions and assimilated emissions), and β is the empirical nudging coefficients.

The nudging used the original emissions (Q∗), observations (P∗), and simulated concen-
trations of the CMAQ (Pn) to calculate the differences between the assimilated and original
emissions (innovations) (∆Qn+1). Then, the assimilated emissions (Qn+1) were calculated
using the emission innovations and original emissions to improve the CMAQ forecasts.

Firstly, the CMAQ predicted the concentration of P1, and the observed concentration of
P∗1 and original emission data of Q1 from the MEIC were used to derive the first emission

innovation vector, ∆Q1, ∆Q1 = β×Q1× [P∗1−P1]
P1

. Then, the new emission Q2 = Q1 + ∆Q1
was used to predict the concentration of P2 using the CMAQ. P1 and P2 were used to estimate
∆Q2 using Equation (2). In this study, the iteration of the nudging went with the simulation
circle, which meant that we only ran one nudging in a single simulation every 24 h.

While there were adequate data, we used all the simulations (the CMAQ-predicted
concentrations) and corresponding emission innovation vectors in the database (which
grew with the simulation circle) to train the ExRT model, and we used the trained ExRT
model and the observations to calculate the prediction emission innovation vector. The
training and prediction of the ExRT model can be expressed as:

[
∆Q1 · · · ∆Qn

]
= Mn


P1,1 · · · Pn,1

...
. . .

...
P1,s . . . Pn,s


 (4)
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∆Qn+1 = Mn


P∗1,1 · · · P∗n,1

...
. . .

...
P∗1,s . . . P∗n,s


 (5)

where Mn is the ExRT model in simulation n, trained in Equation (4) and used in Equation
(5);Pn,s is the simulated concentration of the pollutant s in iteration n; and P∗n,s is the observed
concentration of the pollutant s in iteration n. As for PM2.5, s = 1, the PM2.5 emission
innovations, ∆Qn+1, were calculated using the simulated observed PM2.5 concentration and
the corresponding PM2.5 emission innovations. As for the VOCs, s = 2, the VOC emission
innovations were calculated using the simulated observed O3 and NO2 concentrations and
the corresponding VOC emission innovations. The calculation of NOx was similar to that
of the VOCs.

The extremely randomized trees method was developed by Geurts et al. [35], which
is an improved version of the original decision tree models using the classical top-down
procedure. A nonlinear solution can be found in the basic decision tree models. The entropy
in probability theory is used in a decision tree to measure the uncertainty of information,
and can be calculated as follows:

H(X) = −
n

∑
i=1

p(xi)logb p(xi) (6)

where H(X) is the entropy of X, n is the number of samples, p(xi) is the probability that xi
occurs, and logb p(xi) is the logarithm of p(xi) to base b.

Figure 2 shows the framework of the ExRT, and the construction of the ExRT is
mainly divided into three parts. The first step was the feature selection. The database of
simulations corresponded to the nudging emission innovations in the chronological order
of spatial conversion, unit conversion, and chemical species. The entropy was automatically
calculated and sorted to obtain the selected training samples. The second step was the
modeling of the ExRT. In order to comprehensively train all of the samples and enhance the
independence of the basic regression tree, part of the basic regression tree used all of the
training samples, while the other part used the resampling training samples. If the input
sample passed the given criteria, a leaf node was generated; otherwise, several candidate
attributions were randomly calculated to generate several candidate sample subsets. When
selecting the eigenvalues of the node splitting, the split was according to the attribute with
the highest regression score, until the given criteria were met. The construction process
of the k-times regression tree was repeated to form the ExRT model. The third step was
the prediction, which was based on the ExRT model that was trained in the previous step
and combined with the observations, and finally, the corresponding nudging emission
innovation results were obtained.

The main innovations of the ExRT are as follows: (1) the randomly selected cut points are
transformed into split nodes; and (2) the decision tree is constructed from the whole training
dataset. This means that the ExRT generally does not use random sampling, and that each
decision tree uses the original training samples. The partition points of the eigenvalues are
randomly selected instead of using the most advantageous ones, and the size of the decision
tree will generally be larger than the common random forest. In other words, the variance
of the model is further reduced and the generalization ability, stability, and availability of
the ExRT are better. A comparison of the ExRT, GBRT (gradient boosting regression tree),
and MLS (multiple linear regression) was carried out in our previous MOS (model output
statistics) study [28]. In a study of Xuzhou from 1 January 2016 to 31 March 2016, the WRF-
CMAQ-MOS, using the ExRT, increased the correlation coefficient of the NO2 and O3 from
0.35 and 0.39 to 0.63 and 0.79, and the root mean square error decreased from 0.0346 mg/m3

and 0.0447 mg/m3 to 0.0243 mg/m3 and 0.0367 mg/m3. The scikit-learn machine learning
package in Python was used here to accomplish the ExRT within nudging, and is available at
http://scikit-learn.org/stable/index.html, accessed on 1 February 2022.

http://scikit-learn.org/stable/index.html
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Figure 3 shows the framework of the nudging–ExRT methods that were used for the
emission adjustment in the CMAQ. The nudging method was used to create a database
of the nudging innovation vectors, using simulations of the CMAQ and ground-based
observations. Then, these data were employed to train a machine learning model that
used the ExRT, and to store the relationships between the nudging innovation vectors and
the simulations in the trees. Using the trained machine learning model, the observations
were used again to determine the proper nudging–ExRT innovation vector. The nudging–
ExRT emission inventories were calculated using the original emission inventories and the
nudging–ExRT innovation vector.

In the operational forecast of the emission data assimilation in the CMAQ simu-
lation, we used nudging to calculate the hourly emission innovation vector between
2 and 14 January 2019, and created a database of the observations, simulations, and inno-
vation vectors. Iterative nudging was performed every 24 h using all of the databases from
the previous iterations to assimilate the emissions, and then used the assimilated emissions
in the CMAQ to simulate the next 72 h of the pollutant concentrations. Then, we performed
nudging (Nud) and nudging–ExRT (NudEx) experiments to adjust the anthropogenic
emissions of the PM2.5, VOCs, and NOx between 15 and 30 January 2019. The proportion of
the components did not change for PM2.5, VOCs, or NOx after the data assimilation. All the
simulations of the PM2.5, O3, and NO2, and the innovation vectors of the emission database
were used to train the machine learning model every 24 h. Finally, the machine learning
model was used with the previous 72 h of observations to obtain the NudEx innovation
vector for the next simulation. All the CMAQ simulations, including NODA (the CMAQ
simulations without data assimilation), Nud, and NudEx, were restarted every 24 h, using
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the last simulation as their initial conditions. It should be noted that Nud could only use the
database of O3 to adjust the emission of the VOCs, and that NudEx could use the databases
of O3 and NO2 in the ExRT to adjust the emissions of the VOCs. As shown in Equations (1),
(2), (4) and (5), the simulated concentration of the Pn and the emission innovation of ∆Qn
were in a one-to-one correspondence for a pollutant species in Nud, and the VOC emission
innovations were calculated by using the simulated observed O3 and NO2 concentrations
and the corresponding VOC emission innovations in the NudEx.
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3. Results
3.1. Anthropogenic Emission Adjustment

Figure 4 shows the daily change comparison in the NODA, Nud, and NudEx experi-
ments of the PM2.5, O3, and NO2 concentrations and the PM2.5, VOC, and NOx emission
inventories. The data in Figure 3 were calculated using the average of the 255 station
locations in the BTH region and the 15 days between 15 and 30 January 2019. In Figure 3a,
the daily change in the PM2.5 in the Nud and NudEx was closer to the observation than that
of the NODA; meanwhile, the NudEx was closest around the leak at approximately 10 LST
(Local Standard Time, UTC+8). In Figure 3b, the daily change in the O3 of the NudEx was
closest to the observation around the leak at approximately 15 LST. The results expressed
that the daily change in the NudEx emissions could better simulate the concentrations of
PM2.5 and O3. All of the times used in this paper are expressed in LST.

Figure 5 shows the PM2.5, VOC, and NOx differences between the NODA, Nud,
and NudEx emissions in the CMAQ as the hourly average of 15–30 January 2019. For
the emission sources of PM2.5, the Nud reduced the emissions in Beijing and southern
Hebei, and increased the emissions in western Shanxi, southeastern Liaoning, and western
Shandong. The NudEx reduced the emissions in Beijing, southern Hebei, and northern
Shandong. The largest differences between the Nud and NudEx were in Shandong and
Liaoning. For the emission sources of the VOCs, Nud and NudEx both had an increasing
tendency around Beijing, Tianjin, and Shijiazhuang. However, the NudEx had a larger
adjustment in Beijing and a smaller adjustment in Tianjin and Shijiazhuang. For the
emission sources of NOx, Nud and NudEx both had a decreasing tendency around Beijing
and Tianjin, and had an increasing tendency in northeastern Hebei. The emissions of PM2.5,
VOCs, and NOx in the NODA, Nud, and NudEx experiments can be found in Figure A1.
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Figure 5. The PM2.5, VOCs, and NOx differences between the NODA, Nud, and NudEx emis-
sions in the CMAQ as the hourly average of 15–30 January 2019: (a) Nud−NODA of PM2.5;
(b) NudEx−NODA of PM2.5; (c) NudEx−Nud of PM2.5; (d) Nud−NODA of VOCs;
(e) NudEx−NODA of VOCs; (f) NudEx−Nud of VOCs; (g) Nud−NODA of NOx; (h) NudEx−NODA
of NOx; and (i) NudEx−Nud of PM2.5.
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3.2. Emission Data Assimilation Results

Figure 6 shows the PM2.5 and O3 concentrations using the NODA, Nud, and NudEx
emission inventories as the average of 15–30 January 2019. For PM2.5, the nudging methods
could decrease the differences throughout the region, and NudEx had a better performance.
For O3, owing to the fact that the Nud method was unable to deal with the nonlinear
reaction of O3-VOCs-NOx, it had an even worse performance than NODA in the emission
data assimilation of the VOCs. NudEx used machine learning methods and an increasing
database to build a machine learning model of the observation, simulation, and emission
innovations every 24 h. This machine learning model could partly replace the O3-VOCs-
NOx nonlinear reactions in the emission data assimilation, using the existing O3 and NO2
observations to invert the emissions of the VOCs. These results showed that the nudging–
ExRT method could improve the spatial accuracy of PM2.5 and O3 in the CMAQ. The
concentrations of PM2.5 and O3 in the observations and the NODA, Nud, and NudEx
experiments can be found in Figure A2.
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Figure 6. The PM2.5 and O3 concentration differences using the NODA, Nud, and NudEx emission
inventories and observations as the average of 15–30 January 2019: (a) NODA−observation of PM2.5;
(b) Nud−observation of PM2.5; (c) NudEx−observation of PM2.5; (d) NODA−observation of O3;
(e) Nud−observation of O3; and (f) NudEx−observation of O3.

To assess the performance of the NODA CMAQ simulation and the Nud and NudEx
emission data assimilation results, the simulated PM2.5 and O3 concentrations were com-
pared to the observations from the 255 air quality stations from the China National Environ-
mental Monitoring Center. The hourly averaged spatial correlation coefficient (Rs), hourly
averaged spatial root mean squared error (RMSEs), hourly averaged spatial normalized
mean bias (NMBs), hourly averaged spatial normalized mean error (NMBs), correlation
coefficient of the site averaged concentration (Ra), root mean squared error of the site
averaged concentration (RMSEa), normalized mean bias of the site averaged concentration
(NMBa), and the normalized mean error of the site averaged concentration (NMEa) were
used to validate the results. These statistical parameters were divided into two different
types: spatial (Rs, RMSEs, NMBs, and NMBs) and temporal (Ra, RMSEa, NMBa, and
NMEa). The spatial statistics first calculated the statistical parameters for the 255 stations
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for each hour, and then calculated the average of these parameters. The temporal statistics
first calculated the average for the 255 stations, and then used the averaged concentration
to calculate the statistical parameters.

Rs(t) =
∑m

s=1

(
C(t, s)− C(t, s)

)(
C0(t, s)− C0(t, s)

)
√

∑m
s=1

(
C(t, s)− C(t, s)

)2
√

m
∑

s=1

(
C0(t, s)− C0(t, s)

)2
(7)

RMSEs(t) =

√
∑m

s=1(C(t, s)− C0(t, s))2

m− 1
(8)

NMBs(t) = ∑m
s=1(C(t, s)− C0(t, s))

∑m
s=1 C0(t, s)

× 100% (9)

NMEs(t) = ∑m
s=1|C(t, s)− C0(t, s)|

∑m
s=1 C0(t, s)

× 100% (10)

Ra =
∑n

t=1

(
Ca(t)− Ca(t)

)(
C0a(t)− C0a(t, m)

)
√

∑n
t=1

(
Ca(t)− Ca(t)

)2
√

∑n
t=1

(
C0a(t)− C0a(t, m)

)2
(11)

RMSEa =

√
∑n

t=1(Ca(t)− C0a(t))2

n− 1
(12)

NMBa =
∑n

t=1(Ca(t)− C0a(t))
∑n

t=1 C0a(t)
× 100% (13)

NMEa =
∑n

t=1|Ca(t)− C0a(t)|
∑n

t=1 C0a(t)
× 100% (14)

Here, C(n,m) is the simulated concentration matrix of n hours and m stations, C0(n,m)
is the observed concentration matrix of n hours and m stations, Rs(t) is the spatial corre-
lation coefficient at time t, and Rs = 1

n ∑n
t=1 Rs(t). Similarly, RMSEs = 1

n ∑n
t=1 RMSEs(t),

NMBs = 1
n ∑n

t=1 NMBs(t), and NMEs = 1
n ∑n

t=1 NMEs(t). Ca(t) and C0a(t) are the site-
averaged simulated and observed concentrations, respectively, and Ca(t) = 1

m ∑m
s=1 C(t, s)

and C0a(t) = 1
m ∑m

s=1 C0(t, s).
Figure 7 and Table 1 show the assessments of PM2.5 and O3 in the NODA, Nud, and

NudEx simulations. For PM2.5, all the assessments of the PM2.5 were improved in the Nud
experiments and were better in the NudEx. For O3, the assessments of the O3 showed
that the Nud decreased the correlation coefficient and increased the root mean squared
error, which meant the Nud made the simulation worse. The reason for this was that
the Nud reckoned without the nonlinear reactions of O3-VOCs-NOx and only considered
the direct reaction between O3 and the VOCs. All the assessments, except the Rs of the
NudEx, showed a better performance for O3, and the NudEx could partly take the place of
nonlinear reactions. The Rs of the O3 in the NudEx decreased mainly because the low Rs at
night were caused by the low O3 concentration after the assimilation. These results showed
that the nudging–ExRT method could improve both the temporal and spatial accuracy of
PM2.5 and O3 in the CMAQ.
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Figure 7. The PM2.5 and O3 comparison of the observations and simulations using NODA, Nud,
and NudEx emission inventories in BTH between 15 and 30 January 2019: (a) concentration of the
spatially averaged PM2.5; (b) concentration of the spatially averaged O3; (c) Rs of PM2.5; (d) Rs of O3;
(e) RMSEs of PM2.5; and (f) RMSEs of O3.
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Table 1. Assessment of PM2.5 and O3 in the NODA, Nud, and NudEx simulations.

PM2.5 O3

NODA Nud NudEx NODA Nud NudEx

Rs 0.47 0.54 0.54 0.33 0.16 0.28
RMSEs
(µg/m3)

56.44 38.23 32.2 24.6 36.61 19.51

NMBs 29% −4% 9% −21% 19% −9%
NMEs 67% 44% 47% 72% 92% 74%

Ra 0.85 0.91 0.94 0.75 0.81 0.81
RMSEa
(µg/m3) 24.41 10.59 9.97 13.91 14.86 12.07

NMBa 28% −6% 8% −23% 17% −8%
NMEa 32% 13% 13% 33% 31% 31%

Using the assessment data of the PM2.5 and O3, Figure 8 shows a Taylor diagram of the
hourly averaged spatial and site-averaged PM2.5 and O3 comparison of the observations
and simulations, using the NODA, Nud, and NudEx emission inventories in China between
15 and 30 January 2019. The scattered points in the Taylor chart represent the simulations
using different emissions, the radiation line represents the correlation coefficient, and the
horizontal and vertical axes represent the normalized standard deviation. These results
directly point out that NudEx had more significant improvements than Nud.
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4. Conclusions

In this paper, we established an efficient and extensible data assimilation method
that was combined with machine learning to adjust the anthropogenic emissions in the
CMAQ. The framework of nudging–ExRT was efficient, and the key point is that we only
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performed one iteration in every forecast and used all the data in the increasing database
to build the machine learning model. In the experiment of this paper, a total of four Linux
servers that were connected through optical fiber were used. Each server had two Intel
(R) Xeon (R) E5-2620 v4 16-core CPUs, a total of 128 cores, 16 G of memory, 6 T of storage
space, and 100 T of separate shared disk storage. It only took approximately half an hour
before the forecasting and could be widely used for operational forecasting. The framework
is extensible for adoption by other air quality models, because it only uses changeable
emission sources and their corresponding simulations. The data assimilation and machine
learning methods are both changeable and can be better extended in the future.

The results proved that the nudging method without the ExRT could improve the
forecasting accuracy in linear emission sources, but could not eliminate nonlinear errors,
and that the nudging–ExRT method, based on ensemble methods and probability theory,
could significantly improve both the linear and nonlinear emission sources. We used O3
observations and simulations to adjust the VOC emissions in the Nud experiment. The
nudging method attributed all of the errors in O3 to the VOCs, which was wrong, since it
only considered the direct reaction between O3 and the VOCs. In the NudEx experiment,
the machine learning model of the VOCs was established using O3 and NO2 observations
and simulations. The ExRT model used the database to create the nonlinear relationships
between the O3 and NO2 simulations and the VOC emissions, which could replace the real
reactions. The reactions of the O3-VOCs-NOx in the CMAQ can be found in a study by
Sarwar et al. [36].

This attempt to combine data assimilation and machine learning has proven to be
a good way to invert both linear and nonlinear anthropogenic emission sources. In our
experiments from 15 to 30 January 2019, in the BTH region of China, for the PM2.5, the Rs
increased from 0.47 to 0.54, the RMSEs decreased from 56.44 µg/m3 to 32.20 µg/m3, the
Ra increased from 0.85 to 0.94, and the RMSEa decreased from 24.41 µg/m3 to 9.97 µg/m3.
For the O3, the Rs decreased from 0.33 to 0.28, the RMSEs decreased from 24.60 µg/m3 to
19.51 µg/m3, the Ra increased from 0.75 to 0.81, and the RMSEa decreased from 13.91 µg/m3

to 12.07 µg/m3. These results showed that the nudging–ExRT method could improve both
the temporal and spatial accuracy of the PM2.5 and O3 in the CMAQ.

The results of the nudging–ExRT show good prospects for combining data assimila-
tion and machine learning. This study can help researchers to gain more knowledge on
the relationship between nonlinear emission sources and pollution. The accuracy of the
operational air quality model can benefit from this framework and its extension.
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2022. CMAQv5.3.2 can be downloaded openly from https://github.com/USEPA/CMAQ/archive/5.
3.2.zip, accessed on 1 September 2021. The scikit-learn machine learning package in Python was used
here to accomplish ExRT in Nudging and is available at http://scikit-learn.org/stable/index.html,
accessed on 1 February 2022.
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Table A1. WRF simulation configurations.

WRFv3.7.1

Simulation period 3–30 January 2019
Vertical resolution 33 Vertical levels

Microphysics scheme WSM 3-class simple ice scheme [37]
Boundary layer scheme YSU scheme [38]

Surface layer scheme MM5 scheme [39]
Land-surface scheme Unified Noah land-surface model [40]

Longwave radiation scheme rrtm scheme [41]
Shortwave radiation scheme Dudhia scheme [42]

Grid-nudging fdda on
Domain center 39.1248◦N, 116.5657◦E

Domain id 1 2 3
Domain size 64 × 75 69 × 81 102 × 96

Starting IJ-indices from the parent
domain × (30, 19) (38, 23)

Horizontal resolution 81 km 27 km 9 km

Table A2. CMAQ simulation configurations.

CMAQv5.3.2

Horizontal advection Yamo [32]
Vertical advection WRF

Horizontal diffusion Multiscale
Vertical diffusion ACM2

Deposition M3Dry [43]
Chemistry solver EBI
Aerosol module AERO7 [44]
Cloud module ACM [45]

Mechanism cb6r3_ae7_aq [44,46]
Domain ID 1 2 3

Domain size 62 × 73 67 × 79 100 × 94
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