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Abstract: Mapping the spatial and temporal dynamics of tropical herbaceous wetlands is vital for
a wide range of applications. Inundated vegetation can account for over three-quarters of the total
inundated area, yet widely used EO mapping approaches are limited to the detection of open water
bodies. This paper presents a new wetland mapping approach, RadWet, that automatically defines
open water and inundated vegetation training data using a novel mixture of radar, terrain, and
optical imagery. Training data samples are then used to classify serial Sentinel-1 radar imagery
using an ensemble machine learning classification routine, providing information on the spatial
and temporal dynamics of inundation every 12 days at a resolution of 30 m. The approach was
evaluated over the period 2017–2022, covering a range of conditions (dry season to wet season) for
two sites: (1) the Barotseland Floodplain, Zambia (31,172 km2) and (2) the Upper Rupununi Wetlands
in Guyana (11,745 km2). Good agreement was found at both sites using random stratified accuracy
assessment data (n = 28,223) with a median overall accuracy of 89% in Barotseland and 80% in the
Upper Rupununi, outperforming existing approaches. The results revealed fine-scale hydrological
processes driving inundation patterns as well as temporal patterns in seasonal flood pulse timing and
magnitude. Inundated vegetation dominated wet season wetland extent, accounting for a mean 80%
of total inundation. RadWet offers a new way in which tropical wetlands can be routinely monitored
and characterised. This can provide significant benefits for a range of application areas, including
flood hazard management, wetland inventories, monitoring natural greenhouse gas emissions and
disease vector control.

Keywords: Sentinel-1; herbaceous wetlands; machine learning; wetlands; open water; inundated
vegetation; Barotseland; Zambia; Rupununi; Guyana

1. Introduction

Tropical herbaceous wetlands play a vital role in a number of the world’s biggest
ecological challenges: they represent essential ecosystems, supporting high biodiversity of
flora and fauna [1]; act as significant sources and sinks of greenhouse gases [1,2]; govern the
health and wellbeing of large populations that rely on flood recession farming practices [3];
and tropical wetlands can also pose a hazard to local populations, acting as breeding sites
for vector mosquitoes for diseases including malaria and dengue fever [4–11]. Despite
their importance, relatively few attempts have been made to produce a routine, tropical
herbaceous wetlands mapping system capable of assessing the inter- and intra-annual
extent of inundation and the timing and duration of seasonal inundation, all factors which
could exhibit a control on malaria vector transmission [10,11].

Satellite Earth Observation (EO) has the potential to provide timely and accurate
herbaceous wetland maps using freely available datasets over large regional, national, and
even continental scales. Previous attempts at herbaceous wetland mapping, both static and
dynamic maps, have used optical [9,10,12–14] and radar [5,12,15–22] sensing techniques to
varying success.
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Herbaceous wetland mapping techniques using optical EO imagery in tropical areas
are all inherently limited by spatially extensive and persistent cloud cover. This generally
limits the usefulness of optical data in generating operational wetland monitoring tools.
Although wetland maps can be produced successfully, due to cloud cover, they tend to be
single epoch maps [23] or rely on generating monthly or seasonal composites to generate
cloud-free imagery [24].

Radar EO has the advantage of being unaffected by cloud cover and is capable of
imaging both day and night. Consequently, it has been used extensively for operational
floodwater hazard mapping [12,15–19,21,22]. However, its use for monitoring herbaceous
wetlands has received less attention [12,15,20,25–27] despite its potentially important role
in governing globally significant greenhouse gas emissions [28]. Mapping surface water in
wetland environments presents a challenge in that a significant proportion of the inundated
area is likely to be vegetated [5] but will not produce the distinctive low backscatter signal
that makes open water readily mappable.

Inundated vegetation has a more complex interaction with an incident radar pulse
compared to open water, wherein the co-polarised channel has a double-bounce interaction
between underlying water and the vertical structure of the vegetation occurs [5,20,29,30].
This interaction is typically observed in the co-polarised channel and not in the cross-
polarised channel, which is much more sensitive to volume scattering, and, as such, does
not effectively penetrate vegetation due to the de-polarising nature of the vegetation
canopy [20,29].

Radar-based approaches for mapping open water tend to focus on high-magnitude,
low-frequency flood events rather than seasonal inundation. As such, studies have found
success with image differencing approaches, exploring large differences in backscatter
between the dry season and imager during a flood event producing high degrees of
accuracy (97%) [31]. However, such approaches are not able to identify areas of permanent
inundation or the extent of open/vegetated water in the dry season or the transition
between wet and dry periods. Mapping inundation extent throughout the hydrological
year is needed if we are to understand the dynamics of wetland systems in response
to short- and long-term shocks such as periods of drought. Additionally, knowledge of
inundated areas that persist through the dry season represent potentially important habitats
for disease vectors and therefore act as primary targets for vector control initiatives like
larval source management [32,33].

Many floodwater monitoring approaches employ image thresholding to identify areas
of low backscatter within a radar image. Efforts have been made using manually [22]
or automatically [15,16] defined thresholds applied to the image histogram. However,
defining a global threshold in this manner and applying it to the wider scene tends to
result in a high degree of false positives where high backscatter targets in an image tend
to skew an image histogram, often raising the threshold that can separate areas of low
backscatter. To overcome this, split-based thresholding is used that divides the image into
a series of sub-tiles to which automatic histogram thresholding is applied to generate a
number of local thresholds. These local thresholds are then combined to create an accurate
and efficient mapping approach for open water [15,16].

Complex machine learning with automatic generation of training data has been suc-
cessfully implemented in the Barotseland Floodplain by Hardy et al., [5], where a logical
rule base and ancillary datasets were used to successfully map areas of open water and
inundated vegetation (>92%). This approach, however, relies on expert knowledge of wet
and dry season timing and uses a rule base specific to the study site and, therefore, cannot
easily be applied in other locations.

Existing flood monitoring techniques, such as image thresholding and time series
analysis show potential to be modified for the detection of seasonally inundated vegetation
and areas of open water, which could be applied on a scene-by-scene basis to generate
automatically defined training data to be used in a machine learning classifier for use
in wetland monitoring. Although existing image classification techniques exist, there is



Remote Sens. 2023, 15, 1705 3 of 30

no evidence that these techniques can be applied to new areas and produce good results
without in-depth prior knowledge of the study site, which may not always be available.

This study presents a new globally transferrable wetland mapping tool called RadWet
that uses split-based image thresholding, dense time series analysis and logical rules to
automatically generate training data, which is used in a machine learning classification
consensus workflow to accurately map areas of open water and inundated vegetation in
herbaceous wetlands. The RadWet workflow has been specifically developed to be globally
transferrable across study sites, require no prior knowledge of wet/dry season timings,
require no user input or optimisation, and produce accurate results in a timely manner on
consumer-grade hardware allowing the workflow to be widely accessible.

2. Materials and Methods

The wetland mapping approach presented here uses an open-source, python-based
supervised machine learning image classification routine, where training data is generated
automatically and applied to a machine learning ensemble classification routine. The
methodology was built using the freely available python packages (a) RSGISLib [34],
(b) GDAL [35], (c) NumPy [36], (d) SciKit Learn [37], the performance was optimised using
Numba [38], and the built-in python multiprocessing package was used to allow for parallel
processing across multiple CPU cores, designed to run locally on consumer-grade hardware.

2.1. Study Sites
2.1.1. The Barotseland Floodplain, Western Zambia

The Barotseland Floodplain is an extensive wetland region within western Zambia,
through which the Zambezi River flows in an anabranching form contained within rocky
escarpment to the east and west, shown in Figure 1. The floodplain extends from the
confluence of the Lungwebungu and the Kabompo rivers, stretching 240 km to the south,
with an average width of approximately 30 km and 50 km at its widest point [3,39]. The
provincial capital can be found to the east of the floodplain atop an edge escarpment
approximately 50 m above the elevation of the main Zambezi Channel [3,39]. Flooding lags
behind peak rainfall, where rainfall is greatest in January and reduces to very little or no
rainfall in May [3]. Flood water has been observed to build to a peak around March to April,
receding to a minimum flood level in September and October [3]. The exact timings of the
flooding maxima and minima are highly variable between years [39]; consequently, exact
dates cannot be relied on. The floodplain can generally be considered to be covered with
clay or loamy sediment [3], as well as Kalahari sands [39]. Vegetation within the floodplain
itself consists mainly of common reeds as well as some species of moisture-tolerant shrub,
with some higher sandbanks containing species of fern [40]. Within the floodplain, trees
are uncommon [40]. On top of the eastern escarpment are regions of Dambos, which can be
commonly found around areas of local drainage, usually covered in grasses and reeds that
are either permanently or seasonally inundated [5,40].

The floodplain is primarily inhabited by the semi-nomadic Lozi people, with an
average population density of approximately 17 per km2. They rely on flood-driven
agriculture, fishing, cattle grazing and commercial use of vegetation as their main source of
livelihood [41]. During the wet season, they migrate from the floodplain itself to higher
ground surrounding the floodplain [42]. The largest urban area in the region is the City of
Mongu on the eastern edge of the floodplain atop the eastern escarpment, with a population
of approximately 179,585 (2010 Census), and seasonal flooding is not considered to be a
hazard for the city.
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free-flowing water channels cross the region as well as larger river systems such as the 
Rupununi (a tributary of the Essequibo), Takutu and Ireng (Maú) Rivers, which conflux 
to the west of the main wetlands and are themselves tributaries of the Amazon. The Ru-
pununi wetland region experiences a tropical monsoon and tropical savannah climate 
[47], with a rainy season between April/May to September [44]. During the wet season, 
the region experiences significant inundation [43–46], and the Ireng (Maú) and Rupununi 
rivers become connected through a series of small creeks, notably the Pirara Creek [48].  

Figure 1. Open TopoMap showing the location of the Barotseland Floodplain study site within
western Zambia (highlighted with red square and point), with the main Zambezi Channel highlighted
as well as the Leuna, Lui and Matabele Mulonga tributaries marked.

2.1.2. Rupununi Wetlands, Guyana

The North Rupununi Wetlands are situated within the south-west of Guyana close to
the border with Brazil, with the landscape comprised of low relief, a mixture of seasonally
and permanently inundated wetlands and savannah grassland [43–46] as seen in Figure 2.
Small free-flowing water channels cross the region as well as larger river systems such
as the Rupununi (a tributary of the Essequibo), Takutu and Ireng (Maú) Rivers, which
conflux to the west of the main wetlands and are themselves tributaries of the Amazon.
The Rupununi wetland region experiences a tropical monsoon and tropical savannah
climate [47], with a rainy season between April/May to September [44]. During the wet
season, the region experiences significant inundation [43–46], and the Ireng (Maú) and
Rupununi rivers become connected through a series of small creeks, notably the Pirara
Creek [48].

2.2. Dataset Preparation

RadWet image classification was applied to dual polarised (VV, VH), full resolution
Sentinel-1, Interferometric Wide Swath (IW) ground range detected (GRD) data, acquired
in the ascending orbit direction, downloaded from NASA’s Alaska Satellite Facility (ASF:
https://search.asf.alaska.edu/ accessed on 16 March 2023). Sentinel-1 Data was pre-
processed by (a) application of ESA Orbit file, (b) calibrating to Gamma 0 (γ0), (c) multi-
looking, (d) thermal noise correction, (e) range doppler terrain correction, (f) lee filtering
(5 × 5), and (g) calculation of the Normalised Difference of the Co- and Cross-polarisation
channels (NDPI).

2.2.1. Overview

The novel RadWet approach presented in this paper automatically extracts training
data for open water and inundated vegetation targets, as well as background dry features,

https://search.asf.alaska.edu/
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to be used in a supervised machine learning consensus image classification, shown in
Figure 3.
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Figure 2. Open TopoMap showing the North Rupununi Study Area within Guyana (highlighted
with red square and point) with the Takutu, Ireng and Rupununi Rivers labelled. Areas of Wetland
are not currently depicted on Open TopoMap data.

Training data for open water (OW) and inundated vegetation (IV) are extracted from
separate masks and generated based on the general assumption that OW pixels will have
a relatively low backscatter response, and IV will be relatively high. The generation of
these low backscatter and high backscatter masks is described in Section 2.2.2. Training
data targets are generated using a series of rules described in Section 2.2.4 applied to the
relevant high or low backscatter masks utilising time series metrics These training data are
supplied to the consensus classification approach and run over 25 replicates to produce a
final classified product.

2.2.2. Low/High Backscatter Image Masks

The generation of the per-scene low/high backscatter mask is done using split-based
thresholding (SBT) pioneered by Martinis et al. [15,16]. The SBT approach applied in
this study is summarised graphically in Figure 4, and the processing steps are outlined
as pseudo-code in Figure 5. Here, the input Sentinel-1 scene is split into n numbers
(approximately 813,908 tiles for a typical scene covering the Barotseland Floodplain) of
20 × 20-pixel sub-tiles. A sub-tile can only be considered suitable for analysis where
both low/high backscatter classes are present (i.e., a boundary is crossed). In this respect,
sub-tiles with homogenous backscatter are rejected.
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wetland mapping.
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Sentinel-1 observation, (b) split tile variability based on sub-tile cv and r Euclidean distance to
−
cv and

−
r , (c) visual description of a homogenous sub-tile showing cv and r with the boundary of 3 Standard

Deviations from
−
cv and

−
r , and histogram of VV backscatter values, (d) candidate heterogenous

sub-tiles used for threshold calculation, (e) candidate heterogenous sub-tile covering a class boundary
of open water and dry background land cover, a histogram of VV backscatter values are included as
well as subsequent split-based threshold.

To do this, the following metrics are calculated per sub-tile: coefficient of variance
(cv); the ratio (r) between the mean sub-tile pixel backscatter and the global mean pixel
backscatter of the Sentinel-1 scene. These metrics are then summarised across all sub-tiles
as a mean, i.e., cv and r. For each sub-tile, the cv and r are plotted alongside

−
cv and

−
r .

As illustrated in Figure 4c, where a sub-tile’s cv and r fall within (measured by Eu-

clidean distance) three standard deviations of
−
cv and

−
r , then a sub-tile is labelled as

homogenous and rejected. Conversely, where a sub-tile’s cv and r fall outside three stan-

dard deviations of
−
cv and

−
r (e.g., Figure 4e), then it is considered suitably heterogeneous

and carried forward for analysis. This is illustrated graphically in Figure 4b with sub-tiles
(represented by pixels) being coloured red where their variance is less than three standard

deviations of
−
cv and

−
r (i.e., low variance, homogenous) or coloured blue where their variance

is greater than three standard deviations of
−
cv and

−
r (i.e., high variance, heterogeneous).

Heterogeneous sub-tiles (graphically illustrated in Figure 4d) then undergo Otsu
thresholding to determine a threshold between high and low backscatter pixels (Figure 4e),
resulting in a list of threshold values for all heterogenous sub-tiles. This list is refined by
selecting only those values that are less than the global mean of the Sentinel-1 scene. A
global low backscatter threshold is generated for the scene based on the median of this
refined list. The list of thresholds for all heterogenous sub-tiles can be further refined to
select values greater than the global mean of the Sentinel-1 scene; calculating the median
of this refined list provides a very high backscatter threshold. Areas of low backscatter
containing areas of open water would be defined where the VV backscatter is less than the
low backscatter threshold returned by the split-based thresholding.
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It was found through initial visual assessment that the very high backscatter threshold
was able to discriminate areas of very strong double-bounce backscatter, indicating inun-
dated vegetation. However, the threshold was almost always too high to detect areas of
inundated vegetation where the double-bounce backscatter interaction was present but less
distinct. Consequently, it was decided to define the high backscatter image mask where the
VV backscatter was greater than the low backscatter threshold. This would then include
areas of inundated vegetation where the signature double-bounce backscatter interaction is
present but weak.

2.2.3. Time Series Metrics

A set of rules are applied to a range of metrics (shown in Table 1) to automatically
generate training data from the low and high backscatter masks, which were computed for
each study site using the Google Earth Engine cloud computing platform [25], using the
whole Sentinel-1 time series (2014–2021) in the ascending direction and exported as single
band files to be used locally in the classification process.

Table 1. Summary of ancillary datasets used to assist Sentinel-1 image classification. All datasets
were produced in Google Earth Engine [49] and exported as GeoTiff files for local processing.

Dataset Sensor/Data Time
Period Unit Reference

NDPI Mean

Sentinel-1 2014–2021 Backscatter dB N/A

NDPI Std Dev

VV Mean

VV Std Dev

VH Mean

VH Std Dev
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Table 1. Cont.

Dataset Sensor/Data Time
Period Unit Reference

TropWet
Water

Occurrence
Landsat 5,7,8 2000–2020 Percentage

Occurrence
[24]

TropWet
Flat Bare Sand

Occurrence

Slope Angle

WWF
Hydrologically

Conditioned
DEM

N/A Degrees [50]

Due to the complex nature of the interaction of inundated vegetation and an inci-
dent radar pulse, it is difficult to delineate training data for inundated vegetation using
single image acquisitions [19,51]. Seasonally or ephemerally inundated-vegetation pixels
typically experience a relatively high degree of variation in backscatter throughout the
hydrological year. This characteristic can be summarised by analysing the time series in
backscatter response.

Specifically, inundated vegetation is known to exhibit a double-bounce backscatter
mechanism under certain conditions. This mechanism manifests itself in a relatively large
difference in backscatter between the VV and VH [5,19,20,29], which can be characterised
using the Normalised Difference Polarisation Index (NDPI) [52].

NDPI =
(VV − VH)

(VV + VH)
(1)

Conceptually, NDPI values for pixels that inundate every year will be significantly
more variable than those that tend to remain dry. Therefore, by selecting pixels that are
temporally dynamic in NDPI, we can isolate areas of inundated vegetation from dry land
cover classes. Additionally, this approach can also separate inundated vegetation from
urban areas that also exhibit a double-bounce backscatter response but will tend not to vary
significantly over the hydrological year.

Additionally, the variation in a pixel’s backscatter response over time can be sum-
marised using the Z-score metric.

Originally developed by Tsyganskaya et al. [19], the Z-Score image is a metric by
which backscatter values in a specific Sentinel-1 observation of interest can be normalised
and compared across the time series [19] and is calculated per scene using the following
equation applied to each polarisation, and the NDPI:

Z − Score =
(

y0s1 − µ
)

/σ (2)

where:

µ is the per-pixel time series mean;
σ is the pixel time series standard deviation;
y0

S1 is the Gamma Nought corrected backscatter pixel values for that particular Sentinel-1
observation.

The concept of Z-score images in this context was originally developed to highlight
low-frequency, high-magnitude flood events, where pixels show a significant deviation
from their normal time series values and are consequently not ideally suited to explicitly
detect highly dynamic seasonally flooded vegetation. Despite this, Z-Score images can
inform whether a pixel has increased or decreased in backscatter response relative to the
time series aiding the detection rather than explicitly defining areas of inundated vegetation.
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Open water and flat dry sand have very similar backscatter responses due to their
smooth texture (and low dielectric properties in the case of dry sand), leading to almost
identical low backscatter values. As such, ancillary data time series metrics (Table 1) are
needed to separate these two land cover classes.

Here, the Tropical Wetland Mapping Tool (TropWet V8-Modified) [24] is used as a
means of separating these similar classes. TropWet is a free-to-use Google Earth Engine-
based platform for mapping wetlands using spectral unmixing of Landsat imagery into
per-pixel fractions of water, vegetation and bare sand/soil. In this instance, a modified
version of TropWet was used to generate % occurrence of (i) water and (ii) sand over the
period 2000–2020 to give a long time series indication of the locations of permanent water
and flat bare earth, which are subsequently used alongside radar backscatter imagery to
define training data for areas of open water and sand/bare earth.

NASA’s GRACE and GRACE-FO [53,54] mission data were used as a means of esti-
mating a study area’s hydrological condition based on the mass anomaly, which is used
as a proxy for the degree of soil wetness or surface water extent within an area. Refer-
ences [53,54] expressed as an index between 0 (dry) and 1 (wet) per month. The GRACE
index, in this instance, is used in conjunction with TropWet-derived open water occurrence
to indicate dry season conditions; therefore, a low backscatter pixel is more likely to be a dry
feature rather than open water (Figure 6). Accounting for hydrological conditions in this
manner to refine open water/dry flat sand delineation has been implemented elsewhere [5],
but by using GRACE, the user does not need any a priori knowledge of the hydrological
conditions of an area that is required in the case of Hardy et al. [5].
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Figure 6. NASA GRACE and GRACE-FO (2000–2020) monthly crutinized gravity anomaly expressed
as water equivalent thickness. (a) Monthly crutinized water equivalent thickness over the Barotseland
Floodplain, with expected periods of high and low inundation timings defined by [5]. (b) Monthly
crutinized water equivalent thickness over the North Rupununi Wetlands, with expected periods of
high and low inundation timings defined by [44,46].

Figure 6 demonstrates the concept of the GRACE index and is indicative of reported
periods of high and low inundation for the Barotseland Floodplain and North Rupununi
Wetlands as defined in the literature by [5] and [44,46], respectively. During periods of
increased inundation, the GRACE index value also increases, reducing back down after
peak inundation, supporting the assumption that the interannual GRACE mass anomaly is
responding to changes €n soil moisture and water inundation. The GRACE index value, as
presented in Figure 6, is used as part of a dynamic rule base described in Section 2.2.4 for the
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detection of Open Surface Water rather than attempts to categorise Sentinel-1 observations
into wet or dry season scenes.

2.2.4. Training Data Generation

A globally transferable rule base (i.e., the rules can be applied to a Sentinel-1 scene for
any time of the year) is applied to the Sentinel-1 observations as well as the time series met-
rics crutinized in Table 2) to generate training data masks for the following classes: (a) Open
Water (OW), (b) Flat Bare Earth (FBE), (c) Inundated Vegetation (IV), (d) Background Land
Cover (B), and€) Dense Vegetation (DV) on a local consumer-grade computer.

Table 2. Summary of thematic classes used in the Sentinel-1 image classification along with a detailed
description of the rule base applied to generate classification training data.

Class Name Expected Land Cover Image Used Training Data Generation Rules

Open Water
(OW)

Open Surface Water
Low Backscatter Image TropWet Water Occurrence > 90%Completed Flooded

Vegetation

Flat Bare Earth
(FBE)

Flat Dry Sand
Low Backscatter Image

TropWet Sand Occurrence > 50%

Flat Low Texture Bare Earth TropWet Water Occurrence <
(100 × (1 GRACE Index)

Inundated
Vegetation

(IV)

Flood Inundated Vegetation

High Backscatter Image

NDPI Time Series Variance > 95th
Percentile

Z-Score < −2

Aquatic Vegetation
VH < SBT High Backscatter

Threshold
Slope < 5◦

Background
Land Cover

(B)

Dry Herbaceous Vegetation
High Backscatter Image NDPI Variance < 95th PercentileTrees

Urban Areas

Dense
Vegetation

(DV)

Dense Vegetation
High Backscatter Image VH > SBT VH ThresholdWet Sand (High Dielectric

Constant)

The low backscatter mask is used for generating OW and FBE training data. For
OW, pixels are where the TropWet Water Occurrence layer (2000–2020) is greater than
90%. Visual sensitivity analysis showed that using a higher % occurrence threshold (i.e.,
95% and 100%) was too restrictive, with just a relatively small number of permanently
inundated features being available, particularly for Upper Rupununi where the trunk
river is relatively narrow (~30 m wide), leading to a relatively small and unrepresentative
training data sample. Conversely, using a lower threshold (i.e., 70% or 80%) led to the
inclusion of areas which are prone to drying out and therefore led to an overestimation of
OW in the dry season.

Separating OW from FBE is a key challenge in mapping inundation, particularly in
areas with flat dry sand, typically found in tropical wetlands during the dry season [5,17].
Here, FBE training samples are defined (applied to the low backscatter mask) using a
combination of TropWet % Sand Occurrence (2000–2020), TropWet % Water Occurrence
(2000–2020), and the GRACE index giving both (i) an indication of a pixel’s propensity
for being bare sand and (ii) a measure of the hydrological conditions of the Sentinel-1
scene. To enable this combined ruleset, the GRACE index is inverted and scaled from
0–100, i.e., 100 × (1 − GRACE index), to match the scale of the TropWet Occurrence metrics.
Specifically, FBE training samples are selected where TropWet Sand Occurrence > 50% and
where TropWet Water Occurrence < crutinizeised-inverted GRACE index. In doing so,
pixels that have a low backscatter in the dry season that historically tend to be classed as
sand by TropWet will be labelled as FBE. Conversely, low backscatter pixels in the wet
season are likely to be inundated rather than dry sand and therefore are labelled as OW.
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IV training samples were defined using the high backscatter image. As described
earlier (Section 2.2.3), the underlying assumption is that the backscatter of these areas is char-
acteristically variable over time, as defined by the NDPI time series variance and Z-score.
Specifically, IV training samples are defined where the NDPI time series variance > the
95th percentile, where the Z-score is <−2, where the VH backscatter < the high backscatter
SBT-defined threshold (described in Section 2.2.3) and, finally, where the slope angle < 5◦.

The 95th percentile was used to isolate the most variable pixels with high backscatter in
the VV band but lower backscatter in the VH channel, typical of IV targets [5,19,20,29,51,55].
Visual sensitivity analysis using lower values resulted in an overestimation of IV training
data as vegetated areas will also tend to be relatively variable over time, with backscatter
increasing as vegetation canopies become denser, increasing the degree of volumetric
scattering. Additionally, the NDPI metric is more sensitive to double-bounce backscatter;
therefore, it is able to better discriminate between the volumetric scattering of vegetation
canopies over dry soils and the double-bounce backscatter associated with IV [52].

During initial testing, confusion was found between IV and DV features with a
particularly high canopy density, resulting in high-volume backscattering in both the
VV and VH channels. This was resolved by applying the SBT-derived threshold to the VH
channel to isolate those pixels that exhibit a very high backscatter resulting from volumetric
scattering associated with vegetation canopies, labelling them as DV training samples.

The remaining pixels, denoted ”y a ’eneral Background land cover class, were extracted
from the high backscatter mask where their NDPI variance <95th percentile. This works on
the basis that pixels characterised as having low variability to backscatter over time are
unlikely to be IV or areas of DV.

2.3. Image Classification

Final image classification was carried out using an Object-Based approach. Objects
were generated separately for the low and high backscatter masks based on a stack of VV,
VH and NDPI bands per Sentinel-1 scene using the Shepherd Segmentation algorithm [56],
with a minimum of 15 pixels per object. Subsequent objects were populated with the
mean and standard deviation for the VV, VH and NDPI bands, as well as terrain slope
in Table 1. These datasets include terrain-based derivatives that have previously been
shown to improve wetland classification accuracy by accounting for simple hydrological
principles [5,24,57].

The low and high backscatter segmen€ed images are classi€ied independently using a
consensus approach [5,58] which has been shown to improve the classification performance
and computational efficiency when classifying wetland land cover classes. A total of
25 replicate classifications are made per scene for both low and high backscatter regions
using 500 randomly selected training samples per class at each iteration. An object is
assigned to a class when €here is >70% agreement; e.g., if the clas€ifier identifies an object
as being OW more than 18 times out of 25, then it is considered OW. If this 70% agreement
threshold is not met, then an object is deemed to be too uncertain and assumed to be
background land cover. The machine learning classifier Extra Random Trees (eRT) was
parameterised using the approach described below in Section 2.4.

For the low backscatter image, OW and FBE training masks are used to train a binary
eRT classifier. For the high backscatter image, IV, B and DV training masks are used to
train a multiclass eRT classifier. The resulting DV class is collapsed into the B land cover
class to form a universal “dry” thematic class. These two separate classified outputs are
then combined to create a single classified output product (OW, FBE, IV and B) for the
input Sentinel-1 scene. This routine was applied to each scene in the archive for both the
Barotseland Floodplain (totalling 142 scenes) and the Upper Rupununi Wetlands (totalling
141 Scenes).
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2.4. Classifier Parameterisation

Automatically generating training data using the rule base described above in Section 2.2.4
and outlined in Table 2. creates a considerable number of training samples for each class.

For example, when applied to the Barotseland study site, the median number of
training samples per class for a scene was: (a) OW: 27,627, (b) FBE: 19,454, (c) IV: 3667,
(d) DV: 130,288, and (e) B: 7,158,836. With a training dataset this large, it can be com-
putationally demanding to optimise the classification parameters using random forest
machine learning approaches. Although boosted classification algorithms exist, such as
XGBoost, testing showed that computational demand was unfeasible, despite implement-
ing GPU hardware acceleration. To resolve this issue, randomly sampling the training
data (500 samples per class) and a classification census approach over 25 classification
replicates were implemented. This both reduced the per classification training and pre-
diction time (compared to a single classification using all of the automatically generated
training data) whilst maintaining the use of the large training dataset produced through
the automated procedure.

Each classification replicate optimises algorithm hyperparameters on the randomly
selected sample of training data through a grid search of possible parameters shown in
Table 3, along with the frequency that each parameter was used in classification and the
mode classification hyperparameters.

Table 3. Extra Random Forest hyperparameters used in grid search selection for each classification
replicate. The count of each hyperparameter used in each classification replicates over the accuracy
assessment scenes is included as well as the most commonly used classification hyperparameters.

Barotseland Floodplain—Open Water

Parameter Search Range Selected Values (Count) Mode Values

Bootstrap (True, False) True (3640) True
Max Depth (8,10,15) 8 (61), 10 (168), 15 (3411) 15

Min Samples Leaf (4,6,8) 4 (3500), 6 (112), 8 (28) 4
Min Samples Split (2,5,10) 10 (1560) 10

Number Estimators (10,20,50,100,250,500) 10 (61), 20 (272), 50 (594),
250 (922), 500 (993) 10

Barotseland Floodplain—Inundated Vegetation

Parameter Search Range Selected Values (Count) Mode Values

Bootstrap (True, False) True (3692) True

Max Depth (8,10,15) 8 (1297), 10 (1335),
15 (1060) 10

Min Samples Leaf (4,6,8) 4 (3388), 6 (227), 8 (77) 4
Min Samples Split (2,5,10) 10 (1302) 10

Number Estimators (10,20,50,100,250,500) 10 (45), 20 (324), 50 (755),
250 (925), 500 (738) 250

Upper Rupununi—Open Water

Parameter Search Range Selected Values (Count) Mode Values

Bootstrap (True, False) True (3825) True

Max Depth (8,10,15) 8 (1120), 10 (1321),
15(1384) 15

Min Samples Leaf (4,6,8) 4 (3126), 6 (456), 8 (243) 4
Min Samples Split (2,5,10) 10 (1418) 10

Number Estimators (10,20,50,100,250,500) 10 (277), 20 (580), 50 (860),
250 (682), 500 (640) 50



Remote Sens. 2023, 15, 1705 14 of 30

Table 3. Cont.

Upper Rupununi—Inundated Vegetation

Parameter Search Range Selected Values (Count) Mode Values

Bootstrap (True, False) True (4025) True
Max Depth (8,10,15) 8 (11), 10 (463), 15(3551) 15

Min Samples Leaf (4,6,8) 4 (4022), 6 (3) 4
Min Samples Split (2,5,10) 10 (1524) 10

Number Estimators (10,20,50,100,250,500) 10 (4), 20 (65), 50 (421),
250 (1216), 500 (1499) 500

2.5. Accuracy Assessment

Validation of the classification products was made using a mixture of Landsat-8,
Sentinel-2 and Planet Labs PlanetScope optical imagery where cloud cover permitted.
This was supported by field observations made during the 2019 wet season and dry
season in Barotseland (Zambia) and a year-round field campaign from 2020–2021 in Upper
Rupununi (Guyana). In both locations, information on the presence of water, vegetation
cover characteristics, photos and locations were recorded. There were insufficient data
points to conduct an accuracy assessment using the field data alone; therefore, this data was
used to inform the interpretation of optical satellite imagery in determining ground truth.

In total, 17 scenes for Barotseland and 9 scenes for Upper Rupununi were validated.
The selected scenes covered a range of hydrological conditions at both sites, including
the dry season, wet season, post-wet season and the period of draw-up preceding the
peak of the wet season. Accuracy assessment points were randomly allocated within each
validation scene. A total of 28,223 points were scrutinised: 20,240 over Barotseland and
8,094 over Upper Rupununi.

Standard accuracy assessment metrics were generated, including overall accuracy,
F1 score, kappa and individual F1 scores for the open water, inundated vegetation and
background land cover classes. Following Murray et al. [59,60] and Bunting et al. [61],
bootstrapping of accuracy assessment points was used to determine confidence intervals
for the accuracy assessment metrics.

The RadWet classification performance was compared against two versions of the
Hardy et al., [5] automatic wetland classification approach using (i) a segmentation with
a minimum of 15 pixels per cluster (matching RadWet Minimum Mapping unit), (ii) a
segmentation with a minimum of 100 pixels per cluster (the original used in the Hardy et al.
approach [5]), and (iii) a modification of RadWet where training data is supplied using
manually digitised features using the RegionGrow QGIS Plugin [62] instead of using the
rule base outlined in Table 2, with all other aspects of the workflow the same. It was
considered essential to test the new RadWet approach against existing wetland mapping
techniques presented in the literature, as well as compare its performance against a human-
defined classification to assess the validity of the automatic training data generation.
Pairwise t-tests were performed to determine whether RadWet represented a significant
improvement in wetland classification performance.

Sensitivity analysis was used to evaluate the influence of the number of classification
replicates used and the % agreement with the mode on classification performance for
Barotseland. Additionally, the computational demand (time and memory) was quantified
to evaluate RadWet against manually derived training classification, the Hardy et al. [5].
approach, as well as running RadWet as a single-threaded procedure, as opposed to the
multi-threaded procedure that RadWet uses.

3. Results

Figures 7 and 8 show examples of RadWet classified outputs for the Barotseland
Floodplain, western Zambia, for the wet season (19 April 2020) and dry season (28 August
2018), respectively. Sub-map figures (Figure 7(b1–b3)) demonstrate the ability of RadWet to
characterise fine-scale hydrological features, such as anabranches, inundated paleochannels
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and scroll bar sequences leading to the formation of oxbow lakes and disconnected channels.
During the wet season, the area surrounding the main trunk channel becomes inundated,
leading to extensive inundated vegetation (Figure 7(b1–b3)) that subsequently dries out in
the dry season (Figure 8(b1–b3)).
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Figure 7. Example of RadWet wet season classified output over the Barotseland Floodplain dated 19
April 2020 (a). Subset figures represent the RadWet classified output, at representative locations includ-
ing Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical image. Specifically,
(b1–b3) is a section of the main Zambezi channel and surrounding river features; (c1–c3) represents
dambo features atop the eastern escarpment; and (d1–d3) is the location of the in-flow of the Leuna
floodplain into the main Barotseland Floodplain.

Outside of the Barotseland Floodplain, the eastern escarpment is characterised by the
presence of ‘dambo’ features: areas of topographic lows that are vegetated and filled with
water and usually permanently inundated (Figure 7(c1–c3) and Figure 8(c1–c3)). These
features are detected by RadWet in both the wet and the dry season imagery, although they
are more distinct during the wet season, during which increased surface water availability
leads to an increased double-bounce backscatter interaction. Conversely, as flood water
recedes in the dry season, the relative proportion of vegetation above the water’s surface
increases, thus increasing the contribution of volume scattering and reducing the ability to
detect any inundated vegetation.

Examples of RadWet classified products for north Rupununi, Guyana, are shown in
Figures 9 and 10 for the 2020 wet season and dry season, respectively. Figures 9(b1–b3)
and 10(b1–b3) demonstrate the ability of RadWet to map that Lake Amuku is characterised
by extensive inundated vegetation in both the wet and, to some extent, in the dry season
and, therefore, would not be detected using other low backscatter-based water detection
approaches. During the wet season, the Ireng and Takutu river channels are clearly depicted,
but during the dry season, these features become disconnected. This is a result of the
channel width contracting to a width that is generally smaller than the RadWet minimum
mapping unit. A pixel-based approach may improve the minimum mapping unit.
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Figure 8. Example of RadWet dry season classified output over the Barotseland Floodplain dated
28 August 2018 (a). Subset figures represent the RadWet classified output, at representative lo-
cations including Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical
image. Specifically, (b1–b3) is a section of the main Zambezi channel and surrounding river features;
(c1–c3) represents dambo features atop the eastern escarpment; and (d1–d3) is the location of the
in-flow of the Leuna floodplain into the main Barotseland Floodplain.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 32 
 

 

 
Figure 9. Example of RadWet wet season classified output over the North Rupununi dated 2 October 
2020 (a). Subset figures represent the RadWet classified output, at representative locations including 
Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical image. Specifically, 
(b1–b3) covers a section ofAmoko Lake; (c1–c3) shows the Irend River, including agricultural land 
anmd seasonally inundated savannah; and (d1–d3) is the location of the confluence of the Takutu 
and Irend Rivers 

 
Figure 10. Example of RadWet dry season classified output over the North Rupununi dated 28 
March 2017 (a). Subset figures represent the RadWet classified output, at representative locations 
including Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical image. Spe-
cifically, (b1–b3) covers a section ofAmoko Lake; (c1–c3) shows the Irend River, including agricul-
tural land anmd seasonally inundated savannah; and (d1–d3) is the location of the confluence of the 
Takutu and Irend Rivers 

Figure 9. Example of RadWet wet season classified output over the North Rupununi dated 2 October
2020 (a). Subset figures represent the RadWet classified output, at representative locations including
Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical image. Specifically,
(b1–b3) covers a section ofAmoko Lake; (c1–c3) shows the Irend River, including agricultural land
anmd seasonally inundated savannah; and (d1–d3) is the location of the confluence of the Takutu
and Irend Rivers.
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Figure 10. Example of RadWet dry season classified output over the North Rupununi dated 28 March
2017 (a). Subset figures represent the RadWet classified output, at representative locations including
Sentinel-1 imagery used for the classification, and reference Sentinel-2 optical image. Specifically,
(b1–b3) covers a section ofAmoko Lake; (c1–c3) shows the Irend River, including agricultural land
anmd seasonally inundated savannah; and (d1–d3) is the location of the confluence of the Takutu
and Irend Rivers.

3.1. Classification Accuracy Assessment

RadWet demonstrated a good level of agreement with optical validation data, with
an overall classification accuracy of 88.68% (95th CI: 88.64–88.72) in Barotseland (Table 4),
significantly outperforming the other three classification approaches tested (p < 0.01), the
closest being the Hardy et al. [5] approach with an overall accuracy of 84.27% (95th CI:
84.2–84.3). RadWet achieved high classification for all classes with F1 scores of (i) 0.92 for
OW, (ii) 0.828 for IV, and (iii) 0.902 for B, giving a macro F1 score of 0.88, and a test sample
weighted macro F1 score of 0.86. In comparison to the other three approaches, the main
improvements made by RadWet were in the classification of IV. This represents a 19% and
11% improvement over the F1 scores achieved with manually defined training data and the
Hardy et al. [5] approach.

Despite the improvements made in the classification of IV, this class demonstrated
the lowest accuracy scores for RadWet. Specifically, the producer’s accuracy scores were
consistently higher (median 21% higher) than the user’s accuracy scores indicating a general
trend of under-classification. False negatives occurred over areas of inundated vegetation
where the canopy is sufficiently dense to exhibit volumetric scattering and is, therefore,
indistinguishable from dry vegetation (for example, see Figure 11).
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in the Sentinel-1 Observation. 

When transferred to the Rupununi Wetlands, RadWet also performed well with a 
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cantly (p < 0.01) outperforming the other three classification approaches tested (closest 
was manually defined training data approach with a median overall accuracy of 79.39%, 
95th CI: 79.13–79.64). Similar to Barotseland, RadWet performed best in detecting open 
water with an F1 score of 0.855 (95th CI: 0.854–0.856), with inundated vegetation returning 
an F1 score of 0.791 (95th CI: 0.789–0.792) and background land cover returning an F1 
score of 0.771 (95th CI: 0.769–0.772). The classification approach using manually defined 
training data achieved a very high level of accuracy for OW (median F1 0.98), significantly 
higher than the automatically defined training data approaches, including RadWet. This 
reflects the ability of the human operator to distinguish between areas of open water and 
other low backscatter landscape features that were included as training data in RadWet 
and the Hardy et al. [5] approaches, leading to over-classification of OW (Figure 12), par-
ticularly in the dry season when channels are relatively narrow (~15 m), often falling be-
low the minimum mapping unit. In terms of classifying IV, the user’s accuracy scores were 

Figure 11. (a) Landsat 8 composite (False Colour: NIR, SWIR1, Red), (b) Sentinel-1 Observation (False
Colour: VV, VH, NDPI) and (c) RadWet output product dated 8 October 2017 showing a section of
the Lui river within the Barotseland Floodplain where inundated vegetation can be observed within
the Landsat 8 composite, but the typical red/orange double-bounce signature is not present in the
Sentinel-1 Observation.

When transferred to the Rupununi Wetlands, RadWet also performed well with a
median overall accuracy of 80.15% (95th CI: 80.06–80.234) (Table 5), narrowly but signifi-
cantly (p < 0.01) outperforming the other three classification approaches tested (closest was
manually defined training data approach with a median overall accuracy of 79.39%, 95th
CI: 79.13–79.64). Similar to Barotseland, RadWet performed best in detecting open water
with an F1 score of 0.855 (95th CI: 0.854–0.856), with inundated vegetation returning an F1
score of 0.791 (95th CI: 0.789–0.792) and background land cover returning an F1 score of
0.771 (95th CI: 0.769–0.772). The classification approach using manually defined training
data achieved a very high level of accuracy for OW (median F1 0.98), significantly higher
than the automatically defined training data approaches, including RadWet. This reflects
the ability of the human operator to distinguish between areas of open water and other
low backscatter landscape features that were included as training data in RadWet and the
Hardy et al. [5] approaches, leading to over-classification of OW (Figure 12), particularly
in the dry season when channels are relatively narrow (~15 m), often falling below the
minimum mapping unit. In terms of classifying IV, the user’s accuracy scores were very
low (ranging from a median of 42.2–35.7%) for the two Hardy et al. [5] approaches and the
manually defined training data approach, compared to a median of 75.8% for RadWet.
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Table 4. Summary of Barotseland Floodplain classification accuracy assessment results.

Classification Method
Overall

Accuracy
(%)

Kappa

Open Water Inundated Vegetation Dry Background
Land Cover

Macro
F1

Score

Weighted
Average

F1

U
sers

Producers

F1

U
sers

Producers

F1

U
sers

Producers

F1

RadWet

Median 88.675 0.804 87.809 96.267 0.918 75.644 91.561 0.828 95.497 85.522 0.902 0.883 0.885

95th
Confidence
Interval

88.635–
88.717

0.803–
0.804

87.700–
87.916

96.205–
96.328

0.918–
0.919

75.526–
75.754

91.479–
91.637

0.828–
0.829

95.460–
95.536

85.464–
85.586

0.902–
0.903

0.883–
0.884

0.885–
0.886

Manually
Defined

Classification

Median 82.432 0.699 93.165 93.165 0.941 59.566 83.184 0.694 91.262 79.039 0.847 0.828 0.818

95th
Confidence
Interval

82.379–
82.485

0.699–
0.700

93.084–
93.247

93.084
–93.247

0.941–
0.942

59.429–
59.692

83.065–
3.299

0.693–
0.695

91.210–
91.314

78.965–
79.108

0.847–
0.848

0.827–
0.828

0.817–
0.818

Hardy et al. [5]
(15 Pixels Min

Per Cluster)

Median 84.270 0.727 83.396 92.489 0.877 64.944 91.065 0.758 95.554 79.920 0.870 0.835 0.838

95th
Confidence
Interval

84.222–
84.319

0.727–
0.728

83.274–
83.525

92.394–
92.589

0.876–
0.878

64.823–
65.062

90.983–
91.156

0.757–
0.759

95.517–
95.595

79.851–
79.987

0.870–
0.871

0.835–
0.836

0.837–
0.838

Hardy et al. [5]
(100 Pixels Min

Per Cluster)

Median 84.715 0.734 86.809 92.855 0.897 61.980 93.858 0.747 96.958 79.821 0.876 0.840 0.841

95th
Confidence
Interval

84.668–
84.765

0.734–
0.735

86.701–
86.920

92.759–
92.945

0.897–
0.898

61.855–
62.100

93.784–
93.931

0.746–
0.748

96.925–
96.989

79.752–
79.891

0.875–
0.876

0.839–
0.840

0.840–
0.841

Table 5. Summary of accuracy assessment statistics for the Rupununi Wetlands in Guyana.

Classification Method
Overall

Accuracy
(%)

Kappa

Open Water Inundated Vegetation Dry Background
Land Cover

Macro
F1

Score

Weighted
Average

F1

U
sers

Producers

F1

U
sers

Producers

F1

U
sers

Producers

F1

RadWet

Median 80.147 0.699 81.450 89.991 0.855 75.812 82.613 0.791 82.525 72.270 0.771 0.805 0.803

95th
Confidence
Interval

80.063–
80.236

0.697–
0.700

81.297–
81.600

89.874–9
0.114

0.854–
0.856

75.654–
75.974

82.458–
82.761

0.789–
0.792

82.381–
82.656

72.121–
72.418

0.769–
0.772

0.805–
0.806

0.802–
0.804
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Table 5. Cont.

Classification Method
Overall

Accuracy
(%)

Kappa

Open Water Inundated Vegetation Dry Background
Land Cover

Macro
F1

Score

Weighted
Average

F1

U
sers

Producers

F1

U
sers

Producers

F1

U
sers

Producers

F1

Manually
Defined

Classification

Median 79.389 0.689 98.791 96.173 0.975 52.352 81.555 0.637 85.709 66.095 0.746 0.786 0.787

95th
Confidence
Interval

79.130–
79.641

0.685–
0.692

98.678–
98.908

95.973–
96.370

0.974–
0.976

51.802–
52.918

81.035–
82.076

0.633–
0.642

85.344–
86.069

65.640–
66.534

0.743–
0.750

0.784–
0.789

0.784–
0.789

Hardy et al. [5]
(15 Pixels Min

Per Cluster)

Median 77.721 0.660 91.536 89.789 0.907 53.698 82.221 0.650 85.572 67.977 0.758 0.771 0.771

95th
Confidence
Interval

77.632–
77.810

0.658–
0.661

91.434–
91.645

89.671–
89.903

0.906 –
0.907

53.498–
53.894

82.040–
82.422

0.648–
0.651

85.453–
85.709

67.826–
68.111

0.757–
0.759

0.770–
0.772

0.770–
0.772

Hardy et al. [5]
(100 Pixels Min

Per Cluster)

Median 76.403 0.637 92.135 91.085 0.916 42.244 86.603 0.568 90.716 64.981 0.757 0.747 0.749

95th
Confidence
Interval

76.305–
76.493

0.636–
0.639

92.021–
92.237

90.978–
91.190

0.915–
0.917

42.055–
42.436

86.414–
86.800

0.566–
0.570

90.620–
90.822

64.839–
65.121

0.756–
0.758

0.746–
0.748

0.748–
0.750



Remote Sens. 2023, 15, 1705 21 of 30

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 32 
 

 

very low (ranging from a median of 42.2–35.7%) for the two Hardy et al. [5] approaches 
and the manually defined training data approach, compared to a median of 75.8% for 
RadWet.  

 
Figure 12. (a) PlanetLabs composite (False Colour: NIR, SWIR1, Red) [63], (b) Sentinel-1 Observation 
(False Colour: VV, VH, NDPI) and (c) RadWet output product dated 29 February 2020 showing a 
section of the Ireng river within the Rupununi Wetlands Region in Guyana where the Sentinel-1 
Observation shows very low backscatter in the northeast, much lower than that of the Ireng river 
but is shown not to be open water in the PlanetLabs composite. 

Figure 12. (a) PlanetLabs composite (False Colour: NIR, SWIR1, Red) [63], (b) Sentinel-1 Observation
(False Colour: VV, VH, NDPI) and (c) RadWet output product dated 29 February 2020 showing a
section of the Ireng river within the Rupununi Wetlands Region in Guyana where the Sentinel-1
Observation shows very low backscatter in the northeast, much lower than that of the Ireng river but
is shown not to be open water in the PlanetLabs composite.

3.2. Sensitivity Analysis

Generally, classification performance decreases with an increase in % agreement with
the classification mode, with the weighted average F1 score decreasing from 0.88 at 50%
agreement to 0.84 at 100% agreement, as seen in Figure 13a. This is mainly driven by the
performance of the inundated vegetation class that demonstrates a marked decrease in
the F1 score where agreement with the mode is >90%. The backscatter characteristics of
this class are not well constrained due to the variation in vegetation type, canopy density
and inundation conditions, alongside the similarity with many ‘dry’ land cover types
such as non-inundated vegetation. By increasing the % mode agreement, we can increase
the confidence in pixels positively identified as inundated vegetation, but, in doing so, a
significant degree of false negatives occurs as we restrict the classifier’s ability to sample
from the full range of training data generated.
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(b) classification accuracy for each class and the weighted average F1 score for the classification as
the number of replicates increases.
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The overall classification performance is improved by carrying out replicate classifica-
tions and following the consensus approach to labelling pixels seen in Figure 13b. Beyond
10 replicates, there is no difference in the overall performance of RadWet. However, after
20 replicates, the F1 score for inundated vegetation stabilizes; therefore, this represents
the optimum number of replicates to achieve an acute classification whilst minimising
computational demand.

3.3. Wetland Dynamics

By applying RadWet over contiguous Sentinel-1 observations (142 images in total), the
fine-scale temporal dynamics in inundation extent can be determined for the Barotseland
Floodplain (142 images) (Figure 14a). This can be used to monitor the timing, magnitude
and duration of individual wet seasons, here, denoted by the rate of change in inundation
extent, where derivative values greater than the 95th or less than the 5th percentile indicate
the start and conclusion of wet seasons (Figure 14b).
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Figure 14. (a) RadWet detected total wetted area, inundated vegetation, and open water extent
between Jan 2017 to December 2021 (142 observations) for the Barotseland Floodplain, Zambia.
(b) Rate of change derivative of the total wetted area, with wet season timings indicated.

Inundation tends to peak on the 8th of March (median date, Std Dev: 9 days). Peak
inundation tends to occur 72 days (median, Std Dev: 7 days) after the initial onset of
inundation, with the wet season persisting for a median of 156 days. The peak extent for
the 2019 wet season was 1500 km2, 70% smaller than the mean of the other four years
(~5000 km2), indicating a period of significant drought for the people of Barotseland.

The inundation extent is dominated by inundated vegetation, which accounts for an
average of 80% of the total inundated area in the wet season and 51% in the dry season.

Patterns in inundation extent are less distinct in Upper Rupununi due to the complex
hydrological mechanisms that govern the area resulting from contributions from both the
Amazon and Essequibo basins. As a consequence, the wet season duration ranges from 180
to 288 (Median: 192 days, Std Dev: 55 days) days over the five-year study period. Peak
extent tends to occur on 16th July but varies from year to year (Std Dev: 22 days). Similar
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to Barotseland, inundated vegetation dominates (89% in the wet season, 83% in the dry
season) overall inundation extent seen in Figure 15.
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increase in surrounding the main Zambezi channel.  

Figure 15. (a) RadWet detected total wetted area, inundated vegetation, and open water extent
between Jan 2017 to December 2021 (142 observations) for the Rupununi Floodplain, Guyana. (b) Rate
of change derivative of the total wetted area, with wet season timings indicated.

Alongside temporal dynamics, RadWet is able to depict fine-scale spatial dynamics in
inundation extent. A median wet season extent raster was generated for the Barotseland
Floodplain to represent the typical inundation extent for the period 2017–2021. This was
used to generate annual wet season maps of the deviation in extent from the typical extent
(Figure 16). Annual deviations in extent from the median extent indicate that the Luena
Floodplain region, in the northeast of the study area, experiences a great deal of variation,
experiencing a ~40% decrease in inundation occurrence during the 2019 drought and a
~30% increase in inundation occurrence during 2017, the wettest wet season recorded over
the 2017–2021 study period. Additionally, the 2018 and 2021 wet seasons experienced an
increase in surrounding the main Zambezi channel.

Similarly, the Upper Rupununi wetlands indicated a great deal of spatial variation in
extent (Figure 17), deviating ±40% in % inundation occurrence over the period 2017–2021,
however, specific patterns were less pronounced.
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(d) 2019, (e) 2020, (f) 2021.
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Figure 17. (a) Median % wet season inundation occurrence for the Upper Rupununi wetlands over
the period 2017–2021 and subsequent % deviation in inundation occurrence annually: (b) 2017,
(c) 2018, (d) 2019, (e) 2020, (f) 2021.

4. Discussion

Using a fully automated approach applied to Sentinel-1 C-band radar imagery, RadWet
is able to map both open water and inundated vegetation within herbaceous wetlands with
a high degree of accuracy. This represents an improvement over the only other existing
automated inundation mapping approach, demonstrated through paired testing [5]. Addi-
tionally, RadWet has the benefit of not requiring any a priori information about the timing of
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wet and dry seasons, used in other studies to correct for false positive classification of open
water over flat dry sandy areas through the use of ancillary information from the GRACE
and GRACE-FO mission [64] to defined seasonal hydrological conditions. Moreover, we
were able to demonstrate the transferability of RadWet to two independent wetlands (Barot-
seland in Zambia and Upper Rupununi in Guyana), representing a significant step forward
in our ability to automatically map wetland inundation dynamics.

RadWet employs a novel consensus-based approach to image classification by itera-
tively sampling input training data and repeat classifications. We were able to demonstrate
a reliable classification after a relatively small number of iterations (n = 25). This efficient
approach is implemented in a multi-threaded processing environment, thereby increasing
the suitability of RadWet for scaling up as part of broader-scale wetland monitoring pro-
grammes. In this respect, RadWet may offer a solution to generating wetland inventories at
regional or national scales: products that are cited as a deficiency by the Ramsar Convention
for the protection of wetlands [65].

4.1. Areas for Development

RadWet is able to detect inundation in herbaceous vegetation due to the double-bounce
backscatter mechanism in C-band Sentinel-1 imagery. However, as the vegetation canopy
becomes denser, volumetric scattering dominates, leading to little or no signal from the
water’s surface below [5,19,20,29,51]. This was apparent at both study sites where field
observations, alongside high-resolution optical Planet imagery, indicated the presence
of water underneath herbaceous vegetation canopies, but the Sentinel-1 image lacked
any discernible difference from non-inundated vegetation targets. Due to these physical
backscatter mechanisms, any approach that relies on Sentinel-1 backscatter, including
RadWet, will underestimate the extent of inundation.

To overcome this limitation, future work should focus on the integration of longer
wavelength radar systems such as L-band. Longer wavelengths have a greater degree of
penetration into vegetation canopies than the C-band, increasing the signal from the surface
below. To this effect, there have been examples of the use of an L-band ALOS PALSAR for
mapping inundation underneath tree canopies in the Amazon [66,67]. Although RadWet
was developed for use with Sentinel-1, it can readily be applied to other radar image
datasets, including ALOS PALSAR. This is because RadWet automatically defines training
data based on the backscatter interaction characteristics of inundated targets, character-
istics that remain consistent across radar platforms, with the only variable being radar
wavelength. Consequently, applying RadWet to longer wavelength sensors would detect
areas of flooded forest or swamp rather than herbaceous inundated vegetation.

4.2. Broader Implications

Currently, the most widely used flood mapping techniques [15,16,18,52,57,68] and
surface water mapping approaches (e.g., Global Surface Water: [25]) lack the ability to
map inundated vegetation. Our results support the findings presented by Hardy et al. [5],
demonstrating that the inundation extent in tropical herbaceous wetlands is dominated
by inundated vegetation in both the Barotseland and Upper Rupununi wetlands. This
underlines the importance of mapping both inundated vegetation and open water if services
are to provide accurate maps of floodwater inundation in these environments.

The ability to map inundated vegetation carries significance for a number of applica-
tion areas. Tropical wetlands are known to be globally significant sources of greenhouse
gas emissions [69–71], accounting for an estimated 20% of global CH4 emissions, with
inundated vegetation being a key driver behind emission rates [28]. Yet, across the globe,
wetland extent and dynamics are poorly quantified and are cited as a key source of uncer-
tainty in greenhouse gas emission modelling [69–72]. Indeed, models such as WETCHARTS
rely on static wetland extent products such as GlobCover and Global Lakes and Wetlands
Database (GLWD) [73]. RadWet offers a potential solution for improving methane emission
estimates by providing precise and timely updates on wetland extent.
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Recent efforts have demonstrated the use of the CYGNSS signal to estimate inundation,
providing monthly inundation maps at a resolution of approximately 1.1 km [71]. In
contrast, RadWet is able to provide inundation extent maps with a minimum mapping unit
of approximately 30 m at a timestep of 12 days (dependent on Sentinel-1 status: note 2021
failure of the Sentinel-1b satellite affecting image availability). This resolution is critical to
understanding the hydrological drivers behind inundation dynamics [74]. In this study,
we demonstrate RadWet’s ability to resolve hydrological features such as anabranches,
inundated paleochannels, scroll bars and oxbow lakes, features that are unlikely to be
detected at mapping units greater than 30 m.

Unlike other radar-based flood mapping approaches [31,44,75,76], RadWet is able
to map inundation in dry conditions, with no significant difference between the wet
season and dry season accuracy in Barotseland (p = 0.15) and in the Rupununi Wetlands
(p = 0.043). This offers benefits for applications in public health as dry season water sources,
particularly those inundated with vegetation, can provide important refuge habitats for
disease vectors such as malarial mosquitoes [32,77]. RadWet has the potential to map these
habitats providing geographic targets for malaria control interventions. Additionally, this
means that inundation extent can be mapped throughout the year, capturing intra-annual
dynamics that can provide value for application areas such as safeguarding livelihoods.
For instance, in the Barotseland Floodplain, RadWet was able to identify the ENSO-linked
drought event in 2019 [78] with broad implications for the people across the broader
southern African continent who depend on the floodplain ecology, including a shortage of
forage for grazing animals [79].

5. Conclusions

RadWet represents an improved means of mapping both open water and inundated
vegetation within herbaceous wetland environments. RadWet is an efficient, fully au-
tomated approach using freely available data and software and is therefore suitable for
routine wetland monitoring programs at large scales. Being mainly driven by serial Sentinel-
1 observations, RadWet can depict fine spatial and temporal inundation dynamics with
implications for a range of applications, including improving greenhouse gas emissions
from natural wetlands.
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