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Abstract: This paper presents a novel semi-supervised approach for accurate counting and localiza-
tion of tropical plants in aerial images that can work in new visual domains in which the available
data are not labeled. Our approach uses deep learning and domain adaptation, designed to handle
domain shifts between the training and test data, which is a common challenge in this agricultural
applications. This method uses a source dataset with annotated plants and a target dataset without
annotations and adapts a model trained on the source dataset to the target dataset using unsuper-
vised domain alignment and pseudolabeling. The experimental results show the effectiveness of
this approach for plant counting in aerial images of pineapples under significative domain shift,
achieving a reduction up to 97% in the counting error (1.42 in absolute count) when compared to the
supervised baseline (48.6 in absolute count).

Keywords: deep learning; aerial imagery; precision agriculture; plant detection; domain adaptation;
unsupervised learning; self-supervision; adversarial learning; domain shift; tropical crops

1. Introduction

Precision agriculture relies heavily on the ability to accurately count and locate plants
in crop fields via aerial imagery. This task is crucial in optimizing the use of resources [1],
such as water [2], fertilizers, and pesticides [3], by targeting specific areas and reducing
waste. Furthermore, accurate plant detection can aid in improving crop yields by identi-
fying and addressing issues such as pests or diseases [4]. Additionally, it can minimize
the environmental impact of agriculture by reducing the use of chemicals and the risk of
pollution [5], ultimately enhancing food security and sustainability [6].

However, one of the major challenges in this field is the domain gap between different
crops (even of the same species), as each crop possesses its own distinct characteristics,
such as leaf shape, color, light conditions, or even soil, making it difficult to generalize
plant detection models from one crop to another. Traditional methods of plant detection,
which require manual annotation of images, are both time-consuming and costly due to
the labor-intensive nature of the process, the need for a large number of labels, and the risk
of error and inconsistency. Furthermore, current approaches do not account for the domain
gap, necessitating the generation of a dataset that encompasses all possible domains, thus
increasing the cost significantly.

This study tackles the challenge of accurate plant counting and localization in crop
fields despite domain shifts by introducing a new semi-supervised method. Our approach
represents a breakthrough over previous methods, as it utilizes dot annotations instead of
bounding boxes, thus decreasing the cost of labeling and enabling the use of unlabeled data
from new unseen shifted domains in an unsupervised manner. Our method generalizes
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to new domains by utilizing only unlabeled data. The approach comprises two key mech-
anisms: (1) unsupervised adversarial domain alignment of intermediate features and (2)
self-supervision on the target domain through the inclusion of a novel pseudolabeling loss.

To validate the effectiveness of our system, we conducted several experiments on a
dataset of pineapple crops that we created, which is composed of multiple sub-datasets,
each representing a crop from a distinct geographical region. As depicted in Figure 1, there
is a striking domain shift between datasets due to factors such as lighting conditions, growth
stage, soil type, etc., which makes generalizations from one dataset to another extremely
challenging with traditional fully-supervised methods. To the best of our knowledge,
this research is the first to tackle the problem of plant detection using dot annotations in
a semi-supervised manner while addressing domain shifts. To gauge the impact of our
contributions, we compared the proposed method with a fully-supervised baseline method
that only utilizes the available labels as input. Our approach demonstrates a significant
enhancement in localization and counting accuracy on the target domain.

Figure 1. Domain gap between different crop domains in the pineapple dataset. The images in each
column belong to a different crop domain, characterized by different lighting conditions, plant growth
stages, soil types, and other factors. The significant variations between domains pose a challenge for
traditional fully supervised methods, which struggle to generalize across domains.

In the forthcoming sections, we will first review the related literature in the field of
crop counting and localization from aerial imagery. Following that, we will elaborate on
our proposed approach in detail, including the network architecture and semi-supervised
training procedure. We will then demonstrate the efficacy of our approach through the
results of our experiments, which exhibit its versatility across a diverse range of crops
and conditions. Finally, we will conclude with a discussion of the implications of our
work and potential avenues for future research. Our key contributions include (1) the
introduction of a novel counting method from aerial images using dot annotations, and
its application to precision agriculture, (2) the presentation of an unsupervised domain
adaptation method, which enables the model to leverage information from unlabeled
domains to improve its generalization capabilities, and (3) the proposal of a new research
direction on semi-supervised methods for crop counting robust to domain gaps, to reduce
costs in agriculture.

2. Related Work
2.1. Crop Monitoring Using Aerial Images

Crop monitoring is a vital aspect of precision agriculture, and with the advent of
deep learning, it has become increasingly efficient and accurate. Unmanned aerial vehicles
(UAVs) have played a crucial role in crop monitoring [7], providing high-resolution images
and enabling fastmonitoring of crops [8]. Using UAVs equipped with different cameras,
such as RGB, thermal, and hyperspectral cameras, has opened up new possibilities for
crop monitoring.

RGB cameras are the most widely used cameras for crop monitoring [9,10], providing
high-resolution images that are useful for identifying plant growth stages, identifying
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pests and diseases, and estimating crop yield. Thermal cameras, on the other hand, can
detect temperature variations in the crop canopy, providing useful information about
plant stress [11] and water uptake [12]. Hyperspectral cameras, which can capture images
across a wide range of wavelengths, can provide detailed information about the chemical
composition of crops, such as chlorophyll content and water content [13].

The utilization of deep learning models in crop monitoring has been widespread,
with object detection and semantic segmentation being the most prevalent approaches.
Research has been conducted utilizing object detection to identify individual plants in
various crops, such as mango [14,15], banana [16] or citrus tree [17,18]. Object detection
models, such as YOLO [19], require input data in the form of large sets of bounding boxes.
While these datasets are relatively inexpensive to acquire, using dot annotations and only
labeling the center of the object can reduce the amount of input data required by half.
In contrast, semantic segmentation approaches enable the segmentation of pixels into
different regions, such as leaves, stems, and background, providing detailed information
about the structure of the crop [20–22]. However, it is worth noting that datasets for
semantic segmentation are very expensive. Generative Adversarial Networks (GANs)
have a broad range of applications in agriculture, including image augmentation and
synthesis, which can enhance model performance and decrease manual labor required for
data preparation. GANs have already been utilized in various agricultural tasks such as
plant health monitoring [23], weeds detection [24], or fruit inspection [25].

2.2. Object Counting from Dot Annotations

The task of accurately counting objects within images can be approached through a
variety of methods, including individual object detection [26], direct count estimation [27],
and the generation of intermediate density maps. Our approach aligns with the method of
individual object detection as proposed by [26], as it allows for the preservation of object
position information. This is achieved by generating a proximity map of each pixel to the
center of the objects, utilizing dot annotations placed near the centers.

Recent advancements in object counting methods have emphasized the utilization of
density map estimation, first introduced by [28]. This approach utilizes linear regression
on SIFT (Scale Invariant Feature Transform) [29] features to estimate the density map of
the desired objects. Subsequent developments in this line include the implementation of
regression forests in place of linear regression [30], modification of the data generation
procedure [31], or the application of postprocessing techniques to eliminate low confidence
detections [32].

The application of convolutional neural networks for the estimation of density maps
was first introduced in [33] as a means of circumventing the need for handcrafted features.
Building upon this concept, the method proposed in [34] incorporates a redundant counting
technique by utilizing square kernels, enabling neurons to count the number of objects
within their receptive field.

Recent progress in object counting has also been made through modifications to neural
network architecture, such as the introduction of upsampling layers for enhanced counting
resolution and improved centroid localization, as proposed by [35]. Additionally, tech-
niques such as those employed by [36,37] address the challenge of varying object sizes by
implementing multiresolution methods. Furthermore, ref. [38] proposed a channel attention
module, adaptable to a wide range of neural networks, that enhances counting accuracy.

Efforts have also been made to address the challenge of errors arising from uniform
background regions in object counting, such as incorporating self-attention modules [39],
background segmentation [40,41], or designing region-based loss functions that specifically
consider background regions [42].

2.3. Unsupervised Domain Adaptation

Unsupervised domain adaptation addresses the challenge of applying a model trained
on a specific source distribution to a related but distinct target distribution. While traditional
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“shallow” domain adaptation methods focus on reweighting source samples and learning a
shared feature space between the source and target datasets [43], the utilization of deep
neural networks (DNNs) in deep domain adaptation has proven to yield more transferable
representations. This is due to the tendency of DNNs to learn highly transferable features
in the lower layers, with decreasing transferability in higher layers. Therefore, the goal of
deep domain adaptation is to leverage this property of DNNs.

One popular approach to deep domain adaptation is the Deep Adaptation Network
(DAN) [44], which utilizes weighting techniques to match the different domain distributions
and improve feature transferability. Additionally, DAN employs an optimal multi-kernel
selection method to reduce domain discrepancy further.

Another approach, Deep CORAL (Deep Correlation Alignment) [45], is an unsuper-
vised method that utilizes a non-linear transformation to align the correlations of layer
activations in DNNs. The use of a non-linear transformation in Deep CORAL enables the
capturing of complex relationships between layers, resulting in improved performance
compared to linear transformations used by other methods.

Deep domain confusion [46] is a technique for creating a representation that is both
semantically meaningful and invariant across different domains. This is achieved by intro-
ducing an adaptation layer into the CNN architecture and implementing an additional loss
function referred to as “domain confusion loss”. This allows the model to learn represen-
tations that are not biased towards any particular domain, making it more generalizable
when applied to new contexts.

Another promising approach is CoGAN (Coupled Generative Adversarial Networks) [47],
which can learn a joint distribution of multi-domain images without requiring tuples of
corresponding images in different domains in the training set. To accomplish this, Co-
GAN uses samples drawn from the marginal distributions and enforces a weight-sharing
constraint to favor the joint distribution solution over the product of marginal distributions.

Finally, the DANN (Domain Adaptive Neural Networks) method [48] works by aug-
menting a feed-forward model with standard layers and a novel gradient reversal layer.
This enables the model to learn deep features that are both specific to the source domain
and applicable to the target domain. The gradient reversal layer promotes adaptation
behavior, allowing for successful transfer across different domains when trained using
standard backpropagation.

3. Method
3.1. Overview

Our proposed method for crop counting and localization from aerial imagery com-
prises two distinct stages: (1) A convolutional neural network (CNN) is utilized to predict
the probability of the presence of the center of each plant in the input image, and (2) a blob
detector is employed to localize each plant.

To address the challenge of domain shifts between different crops, we propose a
semi-supervised training procedure incorporating two key mechanisms: an adversarial
framework and pseudolabeling. In the adversarial framework, we utilize a domain discrim-
inator (Ddom) to learn to differentiate between samples from two datasets that are similar
but diverge due to domain shifts (e.g., different soils, growth stages of plants, lighting
conditions, etc.). This forces the main network only to utilize relevant features that are
present in both domains, aligning the intermediate feature representations of both domains.

However, this approach only focuses on making the domains indistinguishable at the
feature level, which could result in the loss of semantic information in the target data. To
circumvent this, we introduce a pseudolabeling mechanism that reinforces the confident
outputs of the network and prevents forgetting as training progresses. This enables us to
incorporate samples from a different source domain during training in an unsupervised
manner while still preserving the semantic information present in the target domain.
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3.2. Supervised Baseline Model

We adopt the methodology presented in [49] as our supervised baseline. This approach
seeks to achieve the count and localization of objects by dividing the problem into two
primary stages.

Initially, a DNN G maps the input image I to a new image C, representing the probabil-
ity of the presence of the center of an object at each pixel. To aid in this objective, a second
neural network Dimage is utilized to discriminate between ground truth target images and
those generated by G through an adversarial training procedure.

Subsequently, each individual object is detected using the Laplacian of Gaussian
(LoG) [50], enabling the detection of objects that are very close or even overlapping.

The following sections provide a more comprehensive understanding of the baseline
method and the modifications we have made to it. For a thorough overview of the method,
we direct the reader to the original publication [49].

3.2.1. Target Label Construction

The aim of the generator network G is to learn to create a map that shows the proba-
bility of finding the center of an object at each pixel of the image. This is done by defining a
Gaussian map Gm for each pixel x using the following equation.

Gm(x, P) = e−
DT(x,P)2

2σ2 (1)

where P is the set of point annotations in the image, and σ is a configurable parameter that
determines the width of the blobs in the map. To calculate Gm, we need first to calculate
the distance transform DT of the annotation set:

DT(x, P) = miny∈Pdist(x, y) (2)

This map represents the distance of each pixel x to the closest point y from the anno-
tated set P. We use the Euclidean distance to calculate the distances:

dist(x, y) =
√
(xi − yi)2 + (xj − yj)2 (3)

To avoid detecting objects that are too close together as a single one, we emphasize
the frontiers between objects by setting the values of those pixels to 0. This is done using
the following equation:

T(x, P) =
{

0 ∃px∃py, |dist(x, px)− dist(x, pY)| ≤ td
Gm(x, P) otherwise

(4)

where td is a distance threshold that determines the thickness of the frontiers, and px
and py are annotations in P. After conducting a series of experiments, it was determined
empirically that a threshold of 2 was the most effective value. Therefore, this threshold was
set for all experiments. The use of these frontiers encourages the neural network to learn to
divide objects that are too close together into different blobs, making detection easier.

3.2.2. Network Architecture

The baseline method uses a generative adversarial network (GAN) architecture to
avoid blurry results when minimizing the Euclidean distance between pairs of pixels [51].
The GAN consists of two networks: a generator G that learns to map input images to
intermediate representations and a discriminator Dimage that learns to distinguish between
the generated outputs from G and the ground truth. The generator and discriminator
compete with each other in an adversarial fashion, with the generator trying to produce
outputs that are indistinguishable from the ground truth and the discriminator trying
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to identify the generated outputs accurately. This competition drives both networks to
improve, ultimately resulting in more accurate center maps.

We use a modified Up-net [49] architecture as the generator network. This design is
based on the work presented in [52] and combines the advantages of U-net [53], and fully
convolutional networks (FCNs) [54]. U-nets are effective at extracting rich semantic features
at the bottleneck layer and recovering high-frequency information at higher layers using
skip connections, while FCNs use skip connections to propagate information throughout
the network without increasing the total number of parameters. By combining these
two approaches, our modified U-net architecture can extract useful features from the
input image and reconstruct it accurately without significantly increasing the number of
parameters in the network. The architecture is shown in Figure 2

Figure 2. Selected Up-Net architecture [49] for the generator network. The network has 4 main
parts, (1) the encoding path generates rich features to represent the input image, decreasing the
resolution, (2) the bottleneck layer, (3) the decoding path increases the resolution of the generated
features and generates the final output, (4) the skip connections provide high spatial resolution to the
decoding path. Each convolutional block is composed of three convolutions (with kernel size 3, each
one followed by a Batch Normalization layer [55] and with ReLU activation). Green arrows depict
the upsampling layers, which are composed of a first bicubic upsampling of the feature maps that
doubles the resolution and is followed by a convolutional layer that halves the number of channels,
Batch Normalization and ReLU activation.

The discriminator architecture follows the PatchGAN [51] design, as outlined in
Table 1. By analyzing patches of the input image rather than the entire image, the network
can lower computational costs and improve efficiency.

Inspired by the work of Ganin et al. [48], we added a gradient reversal layer (GRL)
between the generator and the discriminator. This change allows us to train both networks
jointly in the same forward pass, reducing the training complexity and computational costs
while maintaining opposing objectives in each network. As proposed in [48], we scale the
gradients flowing from the discriminator to the generator inversely proportional to the
current training step to overcome the early instabilities of adversarial training. Figure 3
provides a visual overview of the training procedure.

During training, the generator and discriminator networks are optimized using a
combination of adversarial and reconstruction losses (Equations (5) and (6)). The adversar-
ial loss is used to encourage the generator to produce outputs that are indistinguishable
from the ground truth, while the reconstruction loss is used to encourage the generator
to reconstruct the input image accurately. We adopted a least square GAN [56] objective.
These losses are combined and used to update the weights of the generator and discrimi-
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nator networks, ultimately leading to more accurate results. The parameter λAdv acts as a
weighting factor between both loss terms.

LBaseline(G, Dimage) = Lsupervised(G) + λAdvLAdv(G, Dimage)

with Lsupervised(G) = Ex,y[||y− G(x)||1]
(5)

LAdv(G, Dimage) = Ex,y
[
||1− Dimage(y)||2

]
+Ex,y

[
|| − 1− Dimage(G(x))||2

]
(6)

Table 1. The architecture of the discriminator used in our model is presented in this table. We employ
LeakyReLU activation functions in all layers except for the output layer, which uses the hyperbolic
tangent function. With a stride of 32 pixels, this discriminator can effectively analyze and distinguish
structures of up to that size.

Layer Input Channels Output Channels Kernel Size Stride Activation

Conv2D 1 64 4 2 LeakyReLU(0.2)
BatchNormalization

Dropout
Conv2D 64 128 4 2 LeakyReLU(0.2)

BatchNormalization
Dropout
Conv2D 128 256 4 2 LeakyReLU(0.2)

BatchNormalization
Dropout
Conv2D 256 512 4 2 LeakyReLU(0.2)

BatchNormalization
Dropout
Conv2D 512 512 4 2 LeakyReLU(0.2)

BatchNormalization
Dropout
Conv2D 512 256 4 1 LeakyReLU(0.2)

BatchNormalization
Conv2D 256 1 4 1 Tanh

Figure 3. The baseline method uses two neural networks, G and Dimage, which are trained together
in an adversarial manner. G attempts to map input images to center maps, while Dimage tries to
distinguish between ground truth and generated outputs. The gradient reversal layer (GRL) allows
both networks to be trained together, even though they have opposing objectives, by reversing the
sign of the gradient and scaling it when it flows from Dimage to G. This allows the networks to be
trained in a single pass.

3.3. Semi-Supervised Training under Domain Distribution Shifts

In this work, we aim to address the challenge of domain shift and improve the
generalization of a base model by incorporating unlabeled data from the target domain into
the training process. To achieve this, we propose a novel approach that combines two key
mechanisms: adversarial alignment of intermediate features between the two domains and
pseudo-labeling of the target domain data. Our adversarial alignment strategy involves
training a neural network to perform a task while also learning domain-invariant features
through an adversarial training process. This helps the model generalize better to the



Remote Sens. 2023, 15, 1700 8 of 17

target domain by learning common features across both domains. Our pseudo-labeling
approach involves using the model’s own predictions as labels for the target domain data,
thereby preserving the richness and meaning of the target domain features and allowing
the model to capture the unique characteristics of the target domain. By combining these
two mechanisms, we can improve the performance of the base model on the target domain,
enabling it to generalize to new domains.

3.3.1. Multilevel Adversarial Domain Align

To improve the generalization of our base model to the target domain, we draw
inspiration from the DANN method [48]. This method involves training a secondary neural
network, called the domain discriminator (Ddomain), to distinguish between samples from
the source and target domains based on the intermediate feature representation produced
by the main network. The main network is then trained in an adversarial manner, using
the gradients from the domain classification loss to update the network weights and force
the encoder path to extract features that are invariant across domains.

However, in our case, we are using a U-Net-like architecture with skip connections.
Enforcing feature invariance at a single point (e.g., at the bottleneck layer) is insufficient
for aligning the feature spaces of the two domains due to the flow of information between
different levels of the network-enabled by the skip connections. To address this issue, we
propose a new multilevel domain discriminator that takes as input the features at each skip
connection level, aligning the domains at each level and ensuring that all features used by
the decoder path are aligned.

Our multilevel discriminator architecture consists of four discriminator blocks and a
final block, as illustrated in Figure 4. Each discriminator block takes as input the features
at the current level, as well as the output of the previous block (except for the first block).
This hierarchical representation of the features allows the network to extract and combine
features at each skip connection level, enabling more effective alignment of the feature
spaces of the two domains. The final block of the discriminator aggregates all of this
information and uses it to determine, at the patch level, whether the features are from the
source or target domain, following the PatchGan architecture proposed in [51]. Additionally,
we have added residual connections [57] to improve the propagation of gradients and
facilitate the training process.

We denote the domain label d as an indicator, with d = −1 indicating that a sample is
drawn from the source domain and d = 1 indicating that it is drawn from the target domain.

To train the domain discriminator, we follow the Least Squares Generative Adversarial
Network (LSGAN) [56] objective, which leads to the following loss term:

LDomain(E, DDomain) = Ex, y[||d− DDomain(E(x))||2] (7)

Here, E represents the encoder part of the generator network G, as shown in Figure 2.
The domain discriminator DDomain takes as input the intermediate feature representation at
all skip levels produced by the encoder E and produces a prediction of the domain label d
for that sample.
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Figure 4. Multilevel discriminator architecture. This design aims to adapt features at various levels
( f0 − f3). The architecture consists of five main blocks, with the first four blocks taking as input the
features at the current skip connection level and the output of the previous block. The last block is
used to determine whether the features come from a source or target sample. We use a Gradient
Reversal layer at each input. It is important to note that each discriminator block includes a residual
skip connection.

3.3.2. Selective Confidence Pseudolabeling

While adversarial alignment can ensure the statistical alignment of intermediate
features, it does not guarantee semantic alignment. As a result, it is possible that the
resulting intermediate representations in the target domain, while conforming to the same
data distribution as the source domain, may not be useful for detecting plants.

To address this issue, we observed that at the early stages of training, when the
network is not fully adapted to the source domain, it outputs some highly confident
predictions that are accurate. However, as training progresses, the network becomes better
suited to the provided data and forgets these confident outputs, resulting in an inability
to detect any of the plants in the target data. To capitalize on this phenomenon, we have
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developed a selective confidence pseudolabeling technique to avoid forgetting these early
accurate outputs.

To compute the pseudolabel, we first gather the confident coordinates. This is achieved
by smoothing the network output, ŷ, with a Gaussian filter and then identifying local
maxima in the output. We only consider highly confident outputs with two thresholds:
an adaptive threshold tadaptive, set at 0.9 of the maximum value of the current output, and
a hard absolute threshold tabsolute, typically set at 0.5. Additionally, we filter out maxima
that are too close together using a threshold tdistance, set at 2σ, where σ is a configurable
parameter determining the size of the blobs in the baseline method. The pseudolabel is
then computed using only these dot annotations, similar to the baseline method.

Since the network does not detect all objects at the beginning of training, we do not
want to train the network using negative pseudolabels. To address this, we mask the loss
in pixels where the pseudolabel is less than a threshold tmask, typically set at 0.2. Finally,
we compute the loss between ŷ and the pseudolabel ˜y using an L2 (MSE) loss.

To further improve the robustness of our approach, we use an adaptive scaling term,
βscale, to multiply the loss term. This term is scheduled to be very small at the beginning
of training and gradually increases as training progresses. This helps to better gather
confident pseudolabels as the network becomes more confident.

Overall, our masked selective confidence pseudolabeling approach allows us to lever-
age the confident outputs of the network at the early stages of training and avoid forgetting
these outputs as training progresses. This helps to improve the semantic alignment of the
intermediate representations in the target domain and improves the ability of the network
to detect plants in the target data.

Lpseudolabel(G) =

{
0 ˜y < tmask
βscaleEx, y[||(E(x))− ˜y||2] otherwise

(8)

Being ˜y the pseudolabel generated by Algorithm 1.

Algorithm 1 Proposed selective confidence pseudolabeling

1: procedure COMPUTEPSEUDOLABEL(ŷ)
2: ŷsmooth ← MedianFilter(ŷ)
3: M← FindLocalMaxima(ŷsmooth)
4: P̂← FilterMaxima(M, tadaptive = 0.9, tabsolute = 0.5)
5: P̂← FilterCloseMaxima(P̂, tdistance = 2σ)
6: ˜y← T(P̂)
7: return ˜y
8: end procedure

4. Results

In the following section, we present the results obtained from validating our proposed
method.

4.1. Experimental Setup

All the proposed method is implemented using the frameworks Pytorch [58] and
Pytorch Lightning [59]. The GPU used for training has been an Nvidia GeForce RTX 2080
Ti. For training all networks, we use Adam [60] optimizer with a 0.0001 learning rate.

To increase the generalization capabilities of the model, we use RandAugment [61]
with 3 steps in all tests.

Dataset

In this study, we employ an aerial imagery dataset of pineapple crops from various
geographical regions to demonstrate the effectiveness of our proposed method in han-
dling domain shifts. The dataset comprises a diverse set of images that exhibit significant
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variations in lighting conditions, plant growth stage, soil type, and other factors. It com-
prises several sub-datasets, each belonging to a crop from a different geographical area, as
illustrated in Figure 1.

The images in the dataset were labeled using dot annotations, which mark the center
of each plant. In total, the dataset comprises 2944 images, with a total of 33,280 plants. The
images have a resolution of 256 × 256 pixels and are in the RGB color space.

To evaluate the effectiveness of our proposed method, we divided the dataset into
three domain folds: A, B, and C. Each fold corresponds to a single crop with distinct
characteristics. This enabled us to assess the generalization ability of our method across
different domains. Folds A and B are roughly the same size, with 1408 and 1280 images,
respectively, while fold C contains only 256 images. This imbalanced distribution allows us
to test the robustness of our method against uneven domain sizes.

Furthermore, we have gathered a separate dataset specifically for testing the domain
generalization abilities of our system. This dataset comprises data from 9 distinct domains
(from different geographical areas), each with a unique set of characteristics, such as color,
soil type, illumination, etc. To ensure a thorough evaluation, we have gathered a total
of 4224 images across all domains, reserving 64 from each domain for testing purposes.
Although the test dataset is balanced, the training dataset is strongly unbalanced across
domains, with domains represented as low as 3% while others account for 20% of the
representation, conforming to an additional challenge. In total, this dataset comprises
45,782 plants. Figure 5 depicts a sample of the dataset.

Figure 5. Sample of the General Domain dataset depicting 9 diverse domains with unequal representation.
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4.2. Experiments

In this study, we aimed to investigate the impact of each component of our proposed
method for domain adaptation in aerial images of pineapple crops. To evaluate the per-
formance of our method, we selected the relative Mean Absolute Error (rMAE) of crop
count estimates as the evaluation metric. The rMAE is defined as the ratio of the absolute
error to the true count (presented in percentage). For each trial, we randomly selected 70%
of the dataset for training and validation and used the remaining images as the test set.
To estimate the mean and standard deviation of the rMAE, we repeated this procedure
ten times.

4.2.1. Ablation Study

We conducted an ablation study to understand the individual contributions of each
component of our method to the final performance. Our ablation study consisted of
five experimental trials in which we systematically introduced and removed components
of our method. The results of the ablation study are presented in Table 2. The first
experiment employed the baseline method without any additional modifications. In the
second experiment, we introduced the adversarial domain alignment mechanism and
observed an improvement in performance on the target domain. However, we encountered
convergence issues when training both discriminators simultaneously, so in the third
experiment, we disabled the adversarial branch of the baseline method to investigate
its impact. The fourth experiment examined the pseudo-labeling approach without any
domain alignment, and we observed that the pseudo-labeling approach relies on accurate
and confident network outputs. Without domain alignment, the model began to reinforce
incorrect pseudo-labels, leading to a significant decrease in performance. Finally, in the fifth
experiment, we incorporated both pseudo-labeling and domain alignment mechanisms
and observed a significant reduction in error.

Table 2. Ablation study results, showing the impact of each component of our proposed method
on rMAE.

Lsupervised Ladv Ldomain Lpseudolabel rMAE (%)

X X 59.39± 21.31
X X X 24.63± 19.55
X X 12.32± 7.29
X X 27.42± 23.75
X X X 2.44± 1.54

4.2.2. Domain Adaptation Experiments

We also evaluated the domain adaptation capabilities of our method by testing the
adaptation from one source domain to another. For this evaluation, we utilized datasets
A, B, and C and compared the results of our proposed approach to those of two fully-
supervised methods: a baseline method that can only access source domain labels and an
oracle method that had access to both source and target domain labels. The oracle method
aims to provide an expected behavior of the model when all the labels are provided, giving
a sense of the magnitude of the performance increase. Table 3 summarizes the results of
our domain adaptation experiments. The results illustrate that our method consistently
demonstrates proficiency in adapting between domains, resulting in a mean reduction in
error up to 97%. However, there was a single instance (when the source dataset was the
smallest one) where the reduction in error was limited to 10% only. Nonetheless, when
our method successfully performed the adaptation, the error margins were closely aligned
with those of the oracle method.
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Table 3. Results of our unsupervised domain adaptation approach in rMAE (%). Each row shows
the results of the models trained with one source dataset and tested on another one. The final
column represents the performance of a fully supervised model with access to both source and target
domain labels.

Experiment Baseline Our Method Oracle

A→ B 59.39± 21.31 2.44± 1.54 2.39± 1.12
A→ C 56.93± 24.53 5.94± 11.45 6.43± 1.35
B→ A 48.60± 16.43 1.42± 2.97 1.39± 1.73
B→ C 87.12± 16.77 6.24± 4.59 3.44± 2.65
C → A 91.79± 15.31 7.85± 4.90 1.42± 1.76
C → B 82.95± 14.19 74.85± 12.60 2.16± 1.92

4.2.3. Domain Generalization Experiments

To measure the ability of our method to generalize across various domains at the same
time, we performed experiments that evaluated its performance on the whole domain
generalization dataset, each time with a different source domain A, B, and C. The results
of these experiments are summarized in Table 4. Our findings indicate that while our
unsupervised approach consistently outperforms the supervised baseline, achieving a
mean reduction in error of 61%, there is still room for improvement in this setting if we
compare the results obtained with the oracle.

Table 4. Results on domain generalization of our approach in rMAE (%). We show the results of the
generalized dataset training with just one source dataset in each column. The final row depicts the
performance of a fully supervised model with access to all labels.

Source Baseline Our Method Oracle

A 58.65± 26.71 21.61± 11.27 3.43± 4.56
B 70.19± 25.18 25.73± 15.20 2.97± 9.17
C 68.97± 37.27 29.46± 17.49 5.37± 5.74

5. Discussion

In this study, we present a novel semi-supervised approach for precise plant counting
in aerial images of crop fields, which effectively addresses the challenge of domain shift
between training and test data commonly faced in agricultural applications. Our method
integrates deep learning and domain adaptation techniques to adapt a model trained on
a labeled source dataset to an unlabeled target dataset through unsupervised domain
alignment and pseudo-labeling. This makes our approach highly desirable for real-world
applications where labeled data may be scarce.

The experimental results show that our approach excels in handling significant do-
main shifts in a one-to-one adaptation setting, reducing error by up to 97% compared to
a supervised baseline, remaining very competitive with respect to an oracle model with
access to all labels. However, the reliance on a confidence-based pseudolabeling approach
can fail when the domain gap is significant. In such cases, false positive pseudolabels
can cause the model to diverge in the target domain, leading to an inability to recover.
To overcome this limitation, developing mechanisms to detect such cases could be ben-
eficial. In the domain generalization setting, our approach reduces error by an average
of 61%, but there is still room for improvement as the gap with respect to oracle remains
large. The confidence-based pseudolabeling approach can lead to early, confident outputs
dominating the adaptation, resulting in the underrepresentation of domains with large
distances from the main domain. To address this, redesigning the adversarial framework to
consider multiple target domains or creating subdomains in an unsupervised manner could
detect underperforming domains and increase the weight of such domains to alleviate the
underrepresentation issue.
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Future work in this field could address the limitations identified in this study. One
approach could be to enhance the pseudolabeling mechanism to ensure more accurate label
predictions and prevent model divergence in the target domain. This could be achieved by
implementing voting systems for pseudolabels or incorporating a history of pseudolabels.
Another area for improvement is the adaptation framework, which could be modified to
consider multiple target subdomains to handle diverse domains better.

Additionally, developing unsupervised techniques for early stopping and hyperpa-
rameter tuning would be beneficial, as these mechanisms currently rely on access to target
validation data. The current method also requires retraining from scratch for every new do-
main and access to the source dataset. To overcome these limitations, exploring source-free
retraining methods that only require access to target data samples and developing online
domain adaptation techniques to adapt to new domains without the need for retraining
continuously would be valuable avenues for future research. Another possible avenue
for future research is to improve the performance of the proposed model to enable its
deployment onboard for online inspection, as its current real-time capabilities are limited
when using a desktop GPU.

6. Conclusions

In conclusion, our novel semi-supervised approach is a significant improvement for
plant counting in aerial images of tropical crops. It effectively addresses the challenge
of domain shift by combining deep learning and domain adaptation techniques through
unsupervised domain alignment and pseudo-labeling. The results of our experiments
demonstrate the potential of our approach in reducing error up to 97% compared to a
supervised baseline and remaining competitive with respect to an oracle model with access
to all labels.

Our approach can potentially improve efficiency and sustainability in the agricultural
sector, reducing the cost of crop monitoring and minimizing the use of resources such
as water, fertilizers, and pesticides. However, some limitations must be addressed, such
as the reliance on confidence-based pseudolabeling and the need for retraining for each
new domain.

The findings of this paper provide a solid foundation for further research and have
the potential to have a significant positive impact on the efficiency and sustainability
of agricultural operations. To facilitate building upon our work and encourage further
research in this area, we are releasing the code used in this paper. The code can be accessed
at https://github.com/cvar-upm/tropical_plant_counting_UDA.
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