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Abstract: Due to the frequent and sudden occurrence of urban waterlogging, targeted and rapid risk
monitoring is extremely important for urban management. To improve the efficiency and accuracy of
urban waterlogging monitoring, a real-time determination method of urban waterlogging based on
computer vision technology was proposed in this study. First, city images were collected and then
identified using the ResNet algorithm to determine whether a waterlogging risk existed in the images.
Subsequently, the recognition accuracy was improved by image augmentation and the introduction
of an attention mechanism (SE-ResNet). The experimental results showed that the waterlogging
recognition rate reached 99.50%. In addition, according to the actual water accumulation process, real-
time images of the waterlogging area were obtained, and a threshold method using the inverse weight
of the time interval (T-IWT) was proposed to determine the times of the waterlogging occurrences
from the continuous images. The results showed that the time error of the waterlogging identification
was within 30 s. This study provides an effective method for identifying urban waterlogging risks
in real-time.

Keywords: urban waterlogging; real-time monitoring; computer vision; ResNet

1. Introduction

Conventional urban waterlogging monitoring systems are comprised of water-level
monitoring equipment installed at specific locations to obtain waterlogging depths and de-
termine whether the water level exceeds the warning water level. This equipment includes
devices such as pressure-sensing water level gauges and ultrasonic sensors. However, in
the management of real projects, these water-level monitoring devices are often installed in
drainage wells which are easily damaged by the scouring of rainwater and sewage, as well
as vibrations from passing vehicles. The low utilization rate of the monitoring equipment
and the difficulty of determining the status of the equipment makes it difficult to inspect
the water-level gauge daily. Rather than using water-level gauges that can only obtain
data from a single location, real-time images and videos can effectively visually monitor
urban waterlogging. Although numerous municipal surveillance cameras are installed in
cities and mobile phones offer cost-friendly and increasingly accessible photographs, it is
labor-intensive to manually analyze a large number of street photographs and videos.

With the increase in computing power, computer vision technology [1] has developed
rapidly and has been widely applied in fields such as biomedicine [2–5], autonomous
driving [6–8], commercial systems [9,10], and agriculture [11]. In recent years, computer
vision has also been applied to the prophylaxis and treatment of COVID-19 [12,13]. These
technologies have also been promoted in hydraulic research and urban management.
Remote sensing image scene classification, land use, and land cover changes [14–17]
based on computer vision methods with convolutional neural network (CNN) algorithms
have proven to be effective. In addition, image-based algorithms are also used in flood
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monitoring tasks, such as detecting flooded areas of river channels using different deep
learning image segmentation neural networks [18,19] and observing water levels with deep
learning-based unmanned surveillance.

With the frequent occurrence of urban waterlogging, tentative research on image-
based urban flood monitoring has been carried out, such as a method combining traditional
monitoring with video image estimations of flood areas or water levels [20–22], which used
the single-shot MultiBox detector target detection algorithm to detect the shape of the traffic
bucket in a flood scenario and determine the water depth [23]. In addition, many studies on
flood recognition and segmentation are based on satellite images, for example, U-Net is used
for flood semantic classification [24]. Further, many studies are based on discrete images
or real-time traffic camera photos [25,26], which are of great significance. However, most
of the previous studies have focused on single-image recognition without considering the
continuity of the flooding process and the real-time requirements of recognition. Therefore,
it is still an urgent task to propose a general method for monitoring urban waterlogging
based on computer vision in flooding emergency sites.

This study explored the use of computer vision algorithms to identify urban water-
logging risks through images captured by the public and by monitoring equipment. In
Section 2, a method of flooding detection based on computer vision using FLI is proposed.
In Section 3, two cases for flooding detection with photos from the public and a fixed
camera on a block, respectively, are discussed. In Section 4, the results and contributions of
our method are discussed. Finally, a summary is presented.

2. Methodology
2.1. Computer Vision

The main tasks of image processing with computer vision technology include fea-
ture extraction, segmentation [27], classification [28], recognition [29], and detection [30].
Overall, these technologies aim to bridge the semantic gap.

Traditional image classification uses a rule-based approach to identify object categories
by hard coding, that is, extracting explicit rules and organizing the human understanding
of objects into codes. Two methods typically fall into this category. The first method is
the bag of words model [31], which uses edge algorithms, such as the Canny algorithm,
to obtain object information and extract local feature regions to describe objects (such
as SIFT), and then it uses clustering algorithms (such as K-means) to select the word in
the bag to describe the image. This method can reduce the dimensions of image data
while avoiding the problem of algorithm failure caused by unfavorable factors, such as
the occlusion of feature points in the global feature method. This approach is effective
for recognizing object categories with relatively stable features. The second method is to
represent the image according to global features [32], that is, to extract frequency features
from an image. This method divides an image into blocks, represents the frequency of
each block, and then uses the frequency as a feature vector to describe the image. The
method is suitable for large scenes such as landscapes and urban buildings. Despite the
advantages of these traditional image classification methods, they still encounter difficulties,
including perspective, illumination, scale, occlusion, deformation, background clutter,
intra-class deformation, and motion blur. Object recognition is difficult for objects with
rich morphological changes, which are greatly affected by changes in perspective scale,
especially objects with severe deformation.

Unlike these traditional methods, machine-learning-based computer vision methods
have proven to be highly effective in the image classification and detection of irregular
objects [33].

2.1.1. Classification Model Based on Deep Learning

As a waterlogging incident has an unstable shape, we considered using deep-learning-
based computer vision algorithms to identify urban waterlogging statuses. The steps of the
image classification method based on deep learning include data set construction, classifier
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design and learning, and classifier decision. The classifier design and decision-making
processes are illustrated in Figure 1.
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As most classification algorithms require vectors as an input, images must first be
converted to vectors. An image can be converted into a vector in two ways: feature-
based representation and pixel-based representation. Feature-based representation mainly
includes global features and local features, whereas pixel-based representation converts the
RGB value corresponding to each pixel into a vector. Pixel-based representation involves
a high number of dimensions. However, algorithm optimization and computing power
improvements have gradually helped to address this problem.

Commonly used models include nearest neighbor models (such as K-nearest neighbor),
Bayesian, linear, support vector machine, neural network, random forest, and AdaBoost
models. In addition, certain models exist in special application environments, such as
SqueezeNet for limited storage resources and MobileNet and ShuffleNet [34,35] for limited
computing resources. Optimization algorithms mainly include first-order algorithms
(gradient descent, stochastic gradient descent, and mini-batch stochastic gradient descent)
and second-order algorithms (Newton’s method, BFGS, and L-BFGS). Common evaluation
indicators include accuracy, error rate, top 1 indicator, and top 5 indicators. Classic neural
network models include AlexNet, ZFNet, VGG, GoogLeNet, ResNet, and Inception, and
ResNet and Inception V4 have the best generalization performance. Therefore, the ResNet
model was used in this study for waterlogging image recognition.

2.1.2. Models

1. ResNet

Typically, as a network layer increases, the gradient of the network disappears or
decreases, increasing the error rate. This phenomenon is called network degradation.
ResNet was first proposed by He [36] and addresses the network degradation problem by
introducing a deep residual learning framework with shortcut connections (Figure 2). The
algorithm has proven to be highly effective for image classification and image segmentation
tasks [37].
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The residual structure establishes a mapping relationship:

H(X) = F(X) + X (1)

where X is the input network, F(X) is the current transformation, and H(X) is the output
network. By introducing the residual structure (shortcut connections), the ResNet algorithm
retains the key information of the previous network layer, enhances the feature information
of interest, avoids the problem of deep network reduction, and solves the performance
degradation problem caused by the deep network.

One explanation for why residual networks perform well in image classification tasks
is that residual networks can be regarded as an integrated model consisting of many
sub-networks (Figure 3).
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2. EfficientNet

The core of EfficientNet is to construct a standardized convolutional network expan-
sion method [38] that can achieve high accuracy and save computational resources, that is,
to optimize the efficiency and accuracy of the network by balancing the three dimensions
of resolution, depth, and width (Figure 4). As seen in Figure 4a is EfficientNet’s baseline
and (b) is the main idea of EfficientNet, which is to comprehensively expand the width,
depth, and resolution of a network.
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3. 3D CNN

A 3D CNN is used for human action recognition [39] based on video classification.
Image classification based on a 2D CNN only considers the feature of a single image, while
a 3D CNN considers the dynamic relationship between consecutive images to capture the
motion information between frames (Figure 5). The value at position (x, y, and z) on jth
feature map in the ith layer is given by:
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4. Other models

MobileNet is based on using depth-wise separable convolutions to reduce a model’s
volume and speed up computation [34], which has proven to be efficient on mobile phones.
DenseNet [40] provides a dense connection that connects each layer to every other layer in
a feed-forward fashion. ViT shows that a pure transformer applied directly to sequences of
image patches performs well for image classification tasks.

Different models are applicable to different tasks and different types of hardware [17].
Considering that urban waterlogging identification is mainly carried out at mobile work-
stations, ResNet, EfficientNet, and a 3D CNN were used as the models in this study.

2.1.3. Attention

Attention mechanisms [41] originated from the study of the principles of human vision.
The human visual system generates different acuities for different pieces of information in
an image. The human visual system efficiently uses visual processing resources by focusing
on important areas and ignoring unimportant information.

In this study, squeeze-excitation (an SE-block) was used to build a channel attention
model that explicitly modeled the interdependencies between the feature channels. Specifi-
cally, the importance of each feature channel was automatically obtained through learning.
Then, according to the degree of importance, the network used global information to selec-
tively enhance the beneficial feature channels and suppress the useless feature channels.
Adaptive feature channel calibration was thereby achieved.

The structure of ResNet with an SE-block (SE-ResNet) is illustrated in Figure 6.
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2.1.4. Data Augmentation

The simulation performance of deep neural networks directly depends on the dataset
quantity and quality. In general, the larger the scale and the higher the quality of the
dataset, the higher the generalization of the model. Therefore, a large amount of training
data is required to ensure a good model performance to obtain ideal results. However, in
practical engineering, the collected data seldom cover all scenarios. For example, different
pictures of a particular scene may have various picture effects due to different lighting con-
ditions. Hence, when training the model, data augmentation in lighting is required. Data
augmentation [42] is an important approach to increasing the diversity of training samples
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and enlarging datasets, and it helps to increase the amount of relevant data, improve model
robustness, prevent the model from learning undesired models, and avoid overfitting.

Common and effective image data augmentation methods include flipping, shifting, ro-
tating, random cropping, color jittering, and random noise introduction. These approaches
are suitable for smaller datasets and can effectively increase the number of images.

In addition, the early stop method is also an important means for solving the over-
fitting problem. It is a callback to specifics where parameters such as accuracy or loss
should be judged by rules at the beginning and end of each epoch to determine whether
the model should be stopped.

2.2. Threshold Method of the Time Interval Inverse Weight

Compared with the waterlogging features in published photos, an urban waterlogging
process detected by an urban camera monitoring system is continuous and gradual, leading
to extremely complex factors affecting the determination results in actual scenarios. When
rainfall reaches a certain level, the real scene transitions from non-flooding to flooding. The
result may be unreliable during this period, regardless of whether the image is recognized
manually or through a computer vision algorithm.

To solve this problem, we proposed a threshold method of the inverse weight of the
time interval (T-IWT). This method converts the problem of determining whether the image
is negative (non-flooding) or positive (flooding) at each moment into seeking the critical
time closest to the actual waterlogging occurrence.

By analyzing and scoring the judgments of the previous moments, the flood likelihood
index (FLI) is obtained. The first time at which the FLI exceeds the threshold is regarded
as the critical time when the waterlogging occurs.

The FLI is defined as:

FLI =

n
∑

i=1
St−iλt−i

n
∑

i=1
λt−i

(3)

The inverse interval weight (IIW) is calculated as follows:

λt−i =
1
i

(4)

The inverse average weight (IAW) is calculated as follows:

λt−i =
1
n

(5)

The inverse time-step weight (ITW) is calculated as follows:

λt−i =
1⌊

i
m

⌋
+ 1

(6)

For continuous scenes, the time error ε is used as the evaluation index of recognition
accuracy, as follows:

ε = tA − tI (7)

Descriptions of the parameters are summarized in Table 1.



Remote Sens. 2023, 15, 1696 8 of 18

Table 1. Descriptions of the parameters.

Parameter Description

S The model judgment result (no waterlogging risk/negative is recorded as 0, and
the waterlogging risk/active is recorded as 1)

n The backtracking time
t The time of determination
λ The weight
m The number of image frames in a unit time interval⌊

i
m

⌋
The rounded-down result of i

m

tA The actual time of waterlogging

tI
The time of the waterlogging occurrence obtained by the threshold method of the
inverse weight of the time interval

3. Case Study
3.1. Case 1: Waterlogging Recognition for Public Image Data

The dataset for this case comprised publicly available images. Through Google, Baidu,
and other search engines, keywords such as “waterlogging” and “flooding” were searched,
and pictures of waterlogging on public websites were obtained. Non-flooding photographs
of cities were obtained by using search keywords such as “street” and “boulevard.” The
dataset in this case was formed through manual screening.

Overall, the dataset comprised 2245 (Figures 7–9) street-view photographs of cities.
There were 1107 photographs without floods, which were labeled as Category 0, and there
were 1118 photographs with floods, which were labeled as Category 1.
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In these datasets, 298 images without floods and 298 images with floods were set as
the validation datasets. The remaining 809 photos without floods and 820 photos with
floods were used as the training datasets.

In addition, to improve the accuracy of the model, data enhancement methods, such
as flip, sub-set, and random noise addition, were used to increase the number of training
sets. By augmenting the dataset, 9802 training-set photographs were obtained, including
4771 photographs without floods and 5031 with floods.

3.2. Case 2: Waterlogging Recognition for Actual Scenarios
3.2.1. Experimental Setup

Fuzhou, the capital of Fujian Province, is located on the southeastern coast of China
(26◦08′N, 119◦28′E). In the experiment, a camera was installed at an overpass above
(Figure 10) the road and aimed at the overflowing municipal pipe network inspection
well to obtain a video stream. The picture resolution was 2560 × 1440, with 96 dots per
inch, and the frame rate of the camera was 25 frames per second.
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tain a video stream. The picture resolution was 2560 × 1440, with 96 dots per inch, and the 
frame rate of the camera was 25 frames per second. 
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The camera captured video footage from 4:00 on 17 May 2021 to 12:00 on 19 May 2021.
During this period, from 20:00 to 22:44 on 17 May and from 16:58 on 18 May to 5:04 on 19
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May, the actual scene had flooding. The video stream from 4:00 to 10:00 on 17 May was
used as the data source of the non-flooding samples in the training dataset, and the video
streams from 20:30 to 22:30 on 17 May and from 0:00 to 4:00 on 19 May were used as data
sources for the flooding samples in the training dataset. The video stream from 15:00 to
18:30 on 18 May was used as the data source of the validation dataset, and the moment at
16:58 was used as the critical time to distinguish between the scenes with or without floods.

The video stream was captured at a frequency of one frame every 5 s. A total of 8640
training dataset images were obtained, and 4320 images were labeled as with or without
floods. A total of 2520 validation dataset images were obtained, and 1416 of these were
labeled as without floods and 1104 were labeled as with floods.

The SE-ResNet model was trained to perform this task.

3.2.2. Training Model

To determine whether an image depicts flooding, an image recognition algorithm is
conventionally used to determine whether an image obtained for a particular moment is
under flood risk. However, this method does not produce ideal results in actual recognition
work. The simulation results of this study showed that the scene recognition accuracy did
not achieve the expected effect for image classification at a single moment (Figure 11), and
the overall recognition accuracy was 91.6%. The accuracy of the model was low, especially
for the period before the waterlogging occurred. Meanwhile, the recognition results of
the model showed irregular positive results. However, in a real waterlogging scene, the
process from no waterlogging to waterlogging is transitional, and the sudden appearance
and disappearance of waterlogging is rare.
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Figure 11. Result of image recognition using SE-ResNet: 1 denotes a positive recognition result (a risk
of waterlogging exists) and 0 denotes a negative recognition result (no risk of waterlogging exists).

Further analysis of the distribution characteristics of the research validation set pre-
diction results showed that when the degree of waterlogging in the prediction set image
was extremely low (15:00–15:45) or high (17:15–18:30), the recognition accuracy of the
model reached 100%. Therefore, it is crucial to determine a reasonable critical time for
distinguishing waterlogging situations in actual scenarios.

4. Results and Discussion
4.1. Results of Case 1

Figure 12 shows the accuracy and loss curve of each model with increasing numbers
of epochs. The results showed that the model performance increased with the increasing
numbers of training epochs and datasets.
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When the number of training datasets was 800, the recognition accuracy of both the
ResNet and SE-ResNet models on the validation datasets reached 93%, and no significant
difference existed between the models in the index of the highest accuracy. Meanwhile,
Figure 13 shows that the numbers of epochs were 6, 22, and 71 when ResNet reached 70%,
80%, and 90% accuracy, respectively, and the numbers of epochs were 1, 9, and 41 when
SE-ResNet reached corresponding accuracies, respectively. Thus, compared with ResNet,
SE-ResNet achieved higher accuracy with fewer training epochs. Similar to SE-Resnet,
EfficientNet achieved higher accuracy faster than ResNet on fewer data sets, but the highest
accuracy was still limited by the amount of data. With 800 training datasets, EfficientNet
achieved 80% and 90% levels of accuracy at the 9th and 36th epochs, respectively, which
was close to half of the number of training rounds required by ResNet, but the best accuracy
was not significantly improved. With 4000 training datasets, EfficientNet could also achieve
more than 99.5% accuracy, which was close to the accuracy achieved by SE-ResNet (Table 2).
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Table 2. Highest recognition accuracy of each model and the corresponding number of epochs.

Highest Accuracy Best Number of Epochs

ResNet-800 93.46% 286
ResNet-3000 94.30% 72
ResNet-4000 99.83% 201

SE-ResNet-800 94.30% 214
SE-ResNet-4000 99.50% 83

Efficient-800 94.52% 208
Efficient-4000 99.52% 70

As the amount of training data increased, the recognition accuracy of the model
gradually increased, and the number of epochs that achieved the same recognition rate
gradually decreased. When the number of training datasets reached the order of 4000, the
accuracy of the model for both the training and validation datasets stably reached 99.5%.

Therefore, the following conclusions were drawn. First, models that introduced an at-
tention mechanism could achieve higher accuracy with a smaller number of training epochs.
Second, the number of training datasets determined the upper limit of the recognition
accuracy of the model.

4.2. Results of Case 2

Figure 14 shows the waterlogging process recorded by a camera and the recognition
results of the models. At 16:58, obvious waterlogging appeared in the image. At 16:56, the
model incorrectly judged the result to be positive. However, using the threshold method
of the inverse weight of the time interval, the recognition results were delayed to varying
degrees compared with the actual time.

The results (Figure 15) showed that the error was negatively correlated with the
threshold and backtracking time. The judgment errors of all modes were greater than 2000s
when the backtracking time was less than 1 min or the threshold was less than 0.7, and
when the threshold was greater than 0.9 and the backtracking time was greater than 3
min, the errors were all less than 200 s. A possible cause of this is that there were local
dense positive judgment results based on the SE-ResNet model around a certain time
period, and the current time results were assigned an excessively high weight when the
backtracking time was set to be too short, and the low threshold made it easier for the FLI
to reach criticality.



Remote Sens. 2023, 15, 1696 13 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 14. Waterlogging images in real scenes. P denotes a positive result and N denotes a nega-
tive result. 

The results (Figure 15) showed that the error was negatively correlated with the 
threshold and backtracking time. The judgment errors of all modes were greater than 
2000s when the backtracking time was less than 1 min or the threshold was less than 0.7, 
and when the threshold was greater than 0.9 and the backtracking time was greater than 
3 min, the errors were all less than 200 s. A possible cause of this is that there were local 
dense positive judgment results based on the SE-ResNet model around a certain time pe-
riod, and the current time results were assigned an excessively high weight when the 
backtracking time was set to be too short, and the low threshold made it easier for the 
FLI  to reach criticality. 

 
Figure 15. Errors corresponding to the FLI obtained by the different methods. 

In addition, compared with the IIW, the backtracking time constraints of the IAW 
and ITW were less rigorous. For the IIW, the error time was less than 10 s only when the 
backtracking time was greater than 2 min and the threshold was set to 0.9, which was 

Figure 14. Waterlogging images in real scenes. P denotes a positive result and N denotes a negative
result.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 14. Waterlogging images in real scenes. P denotes a positive result and N denotes a nega-
tive result. 

The results (Figure 15) showed that the error was negatively correlated with the 
threshold and backtracking time. The judgment errors of all modes were greater than 
2000s when the backtracking time was less than 1 min or the threshold was less than 0.7, 
and when the threshold was greater than 0.9 and the backtracking time was greater than 
3 min, the errors were all less than 200 s. A possible cause of this is that there were local 
dense positive judgment results based on the SE-ResNet model around a certain time pe-
riod, and the current time results were assigned an excessively high weight when the 
backtracking time was set to be too short, and the low threshold made it easier for the 
FLI  to reach criticality. 

 
Figure 15. Errors corresponding to the FLI obtained by the different methods. 

In addition, compared with the IIW, the backtracking time constraints of the IAW 
and ITW were less rigorous. For the IIW, the error time was less than 10 s only when the 
backtracking time was greater than 2 min and the threshold was set to 0.9, which was 

Figure 15. Errors corresponding to the FLI obtained by the different methods.

In addition, compared with the IIW, the backtracking time constraints of the IAW
and ITW were less rigorous. For the IIW, the error time was less than 10 s only when the
backtracking time was greater than 2 min and the threshold was set to 0.9, which was
more than 30 min under the other threshold and backtracking time settings. On the other
hand, it was indicated that the response to waterlogging identification was rapid when the
parameters of the IIW were reasonably set.

However, when the error was less than 5 min, the result of the IAW (Figures 16 and 17)
tended to be more delayed than that of the ITW. For example, when the threshold was set
to 0.8 and the backtracking time was set to 3 min, the error of the IAW was 25 s, while
that of the ITW was -5 s. It is worth noting that when the threshold was 0.9 and the
backtracking time was 2 min, the time errors of both methods were less than 30 s (25 s and
15 s, respectively).



Remote Sens. 2023, 15, 1696 14 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

more than 30 min under the other threshold and backtracking time settings. On the other 
hand, it was indicated that the response to waterlogging identification was rapid when 
the parameters of the IIW were reasonably set. 

However, when the error was less than 5 min, the result of the IAW (Figures 16 and 
17) tended to be more delayed than that of the ITW. For example, when the threshold was 
set to 0.8 and the backtracking time was set to 3 min, the error of the IAW was 25 s, while 
that of the ITW was -5 s. It is worth noting that when the threshold was 0.9 and the back-
tracking time was 2 min, the time errors of both methods were less than 30 s (25 s and 15 
s, respectively). 

For example, as shown in Figure 16, when the IIW was used as the evaluation basis 
for waterlogging recognition, the FLI  curve oscillated sharply during the waterlogging 
process. This phenomenon occurred because the evaluation weight of the IIW on the im-
age recognition results near each moment was relatively large, and the sensitivity to the 
recognition results of the waterlogging scenes was relatively strong. The evaluation 
weight of the single preceding moment accounted for 21.36% of the total evaluation 
weight, whereas the evaluation weight of the previous 12 moments (1 min) accounted for 
52.35%. Hence, after rainfall, the index frequently appeared in 60% to 80% of the results 
and quickly decreased to below 50%. In addition, at 17:02, the index decreased once to 
80%, which was lower than the threshold, and the scene was mistakenly determined as a 
non-flooding scene. Therefore, the use of the IIW for waterlogging recognition has the 
shortcomings of instability and low accuracy. However, the IIW method responds faster 
to flooding scenarios, with nearly no time error. 

 
Figure 16. The FLI curve with the IIW. 

 
Figure 17. The FLI curve with the IAW. 

When the IAW was used as the evaluation basis for waterlogging identification, as 
shown in Figure 15, the FLI  curve exhibited a gentle trend during the waterlogging 
process. The IAW evenly assigned weights to all images within the first 5 min; hence, the 

0

1 Actual  Threshold  IIW

0.8

1.0

16:50 16:55 17:00 17:05 17:10 17:15

80%

100%

 A
ct

ua
l

15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30

0%

20%

40%

60%

80%

100%

Time

FL
I

0

1 Actual  Threshold  IAW 

0.8

1.0

16:50 16:55 17:00 17:05 17:10 17:15

80%

100%

 A
ct

ua
l

15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30

0%

20%

40%

60%

80%

100%

Time

FL
I

Figure 16. The FLI curve with the IIW.
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Figure 17. The FLI curve with the IAW.

For example, as shown in Figure 16, when the IIW was used as the evaluation basis
for waterlogging recognition, the FLI curve oscillated sharply during the waterlogging
process. This phenomenon occurred because the evaluation weight of the IIW on the
image recognition results near each moment was relatively large, and the sensitivity to
the recognition results of the waterlogging scenes was relatively strong. The evaluation
weight of the single preceding moment accounted for 21.36% of the total evaluation weight,
whereas the evaluation weight of the previous 12 moments (1 min) accounted for 52.35%.
Hence, after rainfall, the index frequently appeared in 60% to 80% of the results and quickly
decreased to below 50%. In addition, at 17:02, the index decreased once to 80%, which
was lower than the threshold, and the scene was mistakenly determined as a non-flooding
scene. Therefore, the use of the IIW for waterlogging recognition has the shortcomings
of instability and low accuracy. However, the IIW method responds faster to flooding
scenarios, with nearly no time error.

When the IAW was used as the evaluation basis for waterlogging identification, as
shown in Figure 15, the FLI curve exhibited a gentle trend during the waterlogging process.
The IAW evenly assigned weights to all images within the first 5 min; hence, the images
within the discriminant range showed no significant differences in the impacts of the
recognition results. Before the occurrence of waterlogging, although some images were
positive, the FLI was always lower than 75%, and after the occurrence of waterlogging,
some images were negative but no obvious decrease or shock occurred. However, the IAW
method showed a higher delay in recognizing the occurrence of waterlogging, and the time
error of the recognition was 190 s later than the actual time.
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As the evaluation basis for waterlogging identification, the ITW simultaneously con-
sidered the stability and timeliness of the judgment. As shown in Figure 18, the FLI curve
with the ITW was relatively flat. The ITW divided the images into five levels at intervals of
1 min and assigned weights that were positively correlated with the time interval. Before
the occurrence of waterlogging, the FLI was lower than 80%, and after the occurrence of
waterlogging, although some images were judged as negative, the FLI only fluctuated
slightly and did not fall below the threshold. Moreover, the delay in the ITW method in
recognizing the occurrence of waterlogging scenes was within an acceptable range, and the
time error was only 90 s later than the actual waterlogging occurrence time.
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Figure 18. The FLI curve with the ITW.

However, the following unresolved issues should be noted in future research. On the
one hand, the impact of adverse conditions such as camera vibration and changing light
conditions on detection accuracy should be studied. On the other hand, the flood disaster
of a single block has been studied, and the widely applicable detection method is crucial
but not yet resolved.

In addition, a 3D CNN was used for comparison (Figure 19), referring to a dataset
(UCF101) and previous case study [43]. The video training dataset included 180 videos
with flooding water and 176 videos without flooding water. The duration of each video was
10 s and the number of training epochs was 150. The results showed that the accuracy of the
waterlogging video classification based on the 3D CNN of the training set was only 67.3%.
The reason for the unsatisfactory results may have been that the dynamic change in the
water was not significant (approximately 3% of the pixels changed every 10 min), while the
dynamic change in the other non-target objects (such as vehicles and pedestrians) was too
violent. The model was more inclined to capture the dominant dynamic change and could
not pay attention to the dynamic characteristics of the research object (water). Therefore, it
will be an important task to improve the recognition accuracy of the 3D CNN model for
objects with unclear dynamic characteristics under a complex and dynamic background in
the future.
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Figure 19. Video classification using the 3D CNN.

5. Conclusions

This study aimed to address the problems of unclear identification and perception
of urban waterlogging. Hence, a waterlogging identification method based on computer
vision technology was proposed in this study. Waterlogged and non-waterlogged images
were used as the input dataset, and a deep neural network (a ResNet model) was built
and trained. An attention mechanism was introduced into the model while the data were
augmented, improving the model’s accuracy. In terms of actual waterlogging scenes, a
threshold method of the inverse weight of the time interval (T-IWT) was proposed to
determine the occurrence time of waterlogging. The main conclusions of this study are
as follows:

1. For the task of waterlogging identification in public image datasets, data augmentation
can effectively improve the model’s recognition accuracy. When the number of train-
ing datasets reaches 4000, the model’s accuracy can be stabilized to more than 99%.

2. Compared with the ResNet model, the SE-ResNet model with an attention mechanism
achieves higher recognition accuracy with a smaller number of training epochs.

3. For the actual waterlogging scene recognition task, the T-IWT method can effectively
achieve waterlogging recognition. Among the flood-likelihood-index definition meth-
ods, the inverse average weight (IAW) method and the inverse time-step weight (ITW)
method can achieve stable identification, with a model identification response time
control falling within 30 s.
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