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Abstract: Light detection and ranging (LiDAR) has been a tool of choice for 3D dense point cloud re-
constructions of forest canopy over the past two decades, but advances in computer vision techniques,
such as structure from motion (SfM) photogrammetry, have transformed 2D digital aerial imagery
into a powerful, inexpensive and highly available alternative. Canopy modelling is complex and
affected by a wide range of inputs. While studies have found dense point cloud reconstructions to be
accurate, there is no standard approach to comparing outputs or assessing accuracy. Modelling is
particularly challenging in native eucalypt forests, where the canopy displays abrupt vertical changes
and highly varied relief. This study first investigated whether a remotely sensed LiDAR dense point
cloud reconstruction of a native eucalypt forest completely reproduced canopy cover and accurately
predicted tree heights. A further comparison was made with a photogrammetric reconstruction
based solely on near-infrared (NIR) imagery to gain some insight into the contribution of the NIR
spectral band to the 3D SfM reconstruction of native dry eucalypt open forest. The reconstructions did
not produce comparable canopy height models and neither reconstruction completely reproduced
canopy cover nor accurately predicted tree heights. Nonetheless, the LiDAR product was more
representative of the eucalypt canopy than SfM-NIR. The SfM-NIR results were strongly affected by
an absence of data in many locations, which was related to low canopy penetration by the passive
optical sensor and sub-optimal feature matching in the photogrammetric pre-processing pipeline. To
further investigate the contribution of NIR, future studies could combine NIR imagery captured at
multiple solar elevations. A variety of photogrammetric pre-processing settings should continue to
be explored in an effort to optimise image feature matching.

Keywords: canopy; drone; eucalyptus; forest structure; lidar; NIR; photogrammetry; remote sensing;
UAV

1. Introduction

Information about forest structure is essential for those tasked with managing forests
and their ecosystem functions [1]. Forest structure describes the spatial arrangement of a
forest’s components, including the abundance and distribution of vegetation elements, both
vertically and horizontally [2]. Accurate mapping and quantification of components such as
the canopy and shrub cover are essential to environmental monitoring, with applications as
varied as hydrological modelling, fire and biodiversity management and carbon storage [3,4].
Gathering sufficient data in the field can be impractical [5] as ground surveys can be limited,
both spatially and temporally, by access and resource constraints [6]. As a result, structural
analyses increasingly utilise small, unmanned aerial vehicles (UAVs) [1]. UAVs allow data to
be remotely gathered from otherwise inaccessible areas [7]. They are also cheaper and more
available than satellite and manned airborne platforms [2] and offer enhanced operational
flexibility [8]. Continual development in remote sensing technologies, in combination with
the uptake of UAVs, has revolutionised the collection of high-resolution data and transformed
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our ability to map and assess forest attributes [2,9], although results vary among the different
platforms and methods [10].

Remote sensing may be passive or active. Passive sensors detect reflected solar
radiation [11] and include digital multispectral and hyperspectral cameras [8] that generate
two-dimensional (2D) images within narrow, discrete spectral bands [12]. Active sensors
emit their own light [11]. The most commonly used active sensors are light detection
and ranging (LiDAR) systems [6]. LiDAR systems emit laser pulses which are reflected
back from an object or surface and detected upon return [13]. Range measurements are
calculated with the LiDAR sensor based on the time-in-flight between emission and return
of the pulse [2]. These measurements locate scanned objects in three-dimensional (3D)
space [11] and generate 3D point clouds that are spatially accurate representations of the
objects’ shapes [9].

For the past two decades, LiDAR has been the tool of choice for mapping vertical canopy
structures and estimating the structural attributes of forests [9,14,15]. Low-altitude flight
capability allows UAV-LiDAR to produce ultra-high-density point clouds [16]. However,
recent advances in computer vision techniques, such as structure from motion (SfM) pho-
togrammetry, have transformed 2D digital aerial imagery into a powerful, inexpensive and
highly available alternative [2]. The use of SfM to simultaneously estimate 3D scene geometry,
camera pose and calibration parameters [17], in combination with multiview stereo image
matching, has made it relatively simple to generate LiDAR-like multispectral point clouds
from 2D imagery [5], which can be used to predict forest attributes such as tree height and
horizontal canopy structure [18]. UAV-derived imagery captures structural and spectral
data at high spatial and temporal resolutions [5] that is well-suited to local-scale ecosystem
modelling [19]. However, remotely sensed imagery is less effective at predicting vertical
forest structure, particularly as crown closure increases [20], as only the uppermost surface
is captured [14]. Digital aerial imagery is also negatively affected by shadows, particularly
in mature forests where the canopy is dense and multi-layered [9]. The amount of shadow
tends to increase when UAV imagery is captured in low solar angle conditions on sunny days.
While this effect can be minimised by surveying on cloudy days, the lower light levels tend
to reduce contrast and increase alignment error [5]. Shadows are particularly problematic
when orthomosaics are derived from UAV imagery [21]. Radiometric or spectral calibration is
sometimes required to compensate for fluctuations in weather and illumination conditions
during data capture, but this is more likely to be undertaken when spectral or vegetation
indices are to be calculated [22]. Camera settings such as shutter speed and focal length can
also be adjusted during UAV image collection in response to changing light conditions [23].

Canopy modelling is particularly complex in native eucalypt forests where the crown
structure is clumped on two levels, leaves are vertically oriented and leaves and canopy
clumps are easily moved by the wind [24,25]. Canopy cover in these forests generally
ranges from 50 to 80%, resulting in a sunlit environment that produces a floor of fire-
tolerant, hard-leaved shrubs and grasses in dry environments and tree ferns and small
rainforest shrubs in the wet [26]. The canopy structure and density are distinctly different
to that of coniferous and boreal forests, in which most research has been conducted to
date [27], which represents a more difficult target for 3D SfM reconstruction [24].

There are numerous examples in the literature where airborne LiDAR has been used to
model eucalypts grown in plantations [9,28–33]. However, plantations tend towards regular
tree spacings and therefore differ substantially in structure from native forests. By comparison,
relatively few LiDAR studies have been undertaken in native eucalypt forests [34], although
recent bushfires in eastern Australia appear to be driving an increase in modelling that is
focussed on fuel metrics and post-bushfire resilience ([23] (also uses SfM)) and [34–36].

Among the few examples of native eucalypt LiDAR studies, several have been con-
ducted in wet eucalypt forests [23,35,37–39], which have a different species composition to
dry eucalypt forests and therefore different structural attributes. Wet eucalypt species tend
to attain much greater heights, for example, mountain ash (Eucalyptus regnans) can grow to
80 m, while alpine ash (E. delegatensis) and shining gum (E. nitens) can grow to 60 m [40].
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Combined with different understoreys, the wet and dry native eucalypt forests represent
unique and distinct modelling challenges. Examples in which native dry eucalypt forest
has been modelled with airborne LiDAR data include a comparison of LiDAR models with
SfM dense point clouds and field-measured metrics [2] and an examination of projective
cover models in the context of native Australian eucalypt vegetation [41].

Studies involving photogrammetric SfM reconstructions of eucalypt forests are also
often based on plantation stands or forest farms [9,42–45]. A 2020 photogrammetric study
in an Australian native dry eucalypt open forest focussed on tree diameters rather than
canopy characteristics [46]. One study that did focus on photogrammetric canopy metrics
investigated the effect of variables such as flight parameters, sensors and system settings
on native dry eucalypt canopy reconstructions [24]. The latter study suggested that the NIR
spectral band (770–810 nm) had a positive effect on the completeness of the reconstructions.

This study aims to add to the relatively sparse literature on UAV-derived canopy
models in native dry eucalypt open forests and has three objectives. First, to assess the
effectiveness of UAV-LiDAR for canopy modelling in a native dry eucalypt open forest
by constructing a UAV-LiDAR-derived canopy height model (CHM) and comparing the
CHM tree heights and density values against field measurements. Second, to construct a
UAV-SfM CHM of the same native dry eucalypt open forest based solely on NIR imagery to
gain some insight into the contribution of the NIR spectral band to 3D SfM reconstruction
of native dry eucalypt open forest by making the same comparisons against height and
density field measurements. Third, using the field measurements as a baseline, to compare
the completeness and accuracy of the UAV-LiDAR CHM with the UAV-SfM-NIR CHM.

2. Materials and Methods
2.1. The Study Site

Remote and field data were collected from the Samford Ecological Research Facility
(SERF) on 18 and 25 August 2020. SERF is located in the peri-urban Samford Valley
approximately 24 km northwest of Brisbane at 27.37985◦S and 152.87694◦E (Figure 1). The
vegetation at SERF is eucalypt (dry sclerophyll) open forest to woodland, predominantly
Eucalyptus melanophloia and E. crebra [47].
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2.2.1. Remote Data 
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requires unique adjustments to ensure the data are best suited for post-capture processing 
[48]. Flight parameters should deliver data that fulfil all requirements in terms of resolu-
tion, lighting and coverage [22].  

LiDAR data and digital imagery were collected on separate days in bright sunshine 
under clear sky conditions. Sensors were carried by a DJI Matrice 600 (M600) Pro UAV 
platform, with an onboard flight control system equipped with a global navigation satel-
lite system (GNSS) and inertial measurement units. Flights lasted approximately 26 min 
from take-off to landing.  

LiDAR data were collected on 18 August 2020 at ~39° solar azimuth and 41° solar 
elevation using an Emesent Hovermap 3D LiDAR mapping and autonomy payload, with 
a Velodyne Puck sensor with 360° × 360° rotating field of view (FOV). The pre-pro-
grammed flight path comprised a perpendicular grid with 30 m spacing (Figure 2) as a 
90° rotation of flight lines has been found to achieve greater canopy penetration [49]. 
Cross-angled LiDAR capture can also reduce occlusion and achieve greater connectivity 
across the survey area [50]. The Hovermap flew at approximately 55 metres above ground 
level (mAGL) and covered approximately 8.5 ha (85,397 m2). The sensor recorded a max-
imum of two returns per pulse, and the survey generated 112,090,335 points.  

 

Figure 1. Location and characteristics of the study site at Samford Ecological Research Facility in
Brisbane, Queensland. The inset at the top left shows the location of Brisbane relative to the whole of
Australia. The embedded images at the bottom left show the appearance of the vegetation in the field
plot looking across the landscape and up into the canopy.
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2.2. Data
2.2.1. Remote Data

In this study, flight planning sought to optimise the data collected with each sensor.
Flight planning should incorporate best practices as each platform–sensor combination
requires unique adjustments to ensure the data are best suited for post-capture process-
ing [48]. Flight parameters should deliver data that fulfil all requirements in terms of
resolution, lighting and coverage [22].

LiDAR data and digital imagery were collected on separate days in bright sunshine
under clear sky conditions. Sensors were carried by a DJI Matrice 600 (M600) Pro UAV
platform, with an onboard flight control system equipped with a global navigation satellite
system (GNSS) and inertial measurement units. Flights lasted approximately 26 min from
take-off to landing.

LiDAR data were collected on 18 August 2020 at ~39◦ solar azimuth and 41◦ solar
elevation using an Emesent Hovermap 3D LiDAR mapping and autonomy payload, with a
Velodyne Puck sensor with 360◦ × 360◦ rotating field of view (FOV). The pre-programmed
flight path comprised a perpendicular grid with 30 m spacing (Figure 2) as a 90◦ rotation
of flight lines has been found to achieve greater canopy penetration [49]. Cross-angled
LiDAR capture can also reduce occlusion and achieve greater connectivity across the survey
area [50]. The Hovermap flew at approximately 55 metres above ground level (mAGL) and
covered approximately 8.5 ha (85,397 m2). The sensor recorded a maximum of two returns
per pulse, and the survey generated 112,090,335 points.
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with 2064 × 1544 sensor resolution and 48° horizontal × 37° vertical FOV. Images were 
captured every two seconds with a nadir sensor. The flight path was designed to deliver 
high overlap to avoid difficulties with image matching in the SfM pipeline [22]. It com-
prised 16 adjacent survey lines with 19 m spacing and covered the same footprint as the 
Hovermap (Figure 3). The target altitude of 120 mAGL resulted in a footprint of approxi-
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of 5.2 cm.  

Figure 2. The extent of the point cloud generated using the UAV-LiDAR survey is depicted above in
yellow. The red polygon shows the location of the field plot within the point cloud and the green line
represents the flight path which comprised a perpendicular grid with 30 m spacing.
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Digital NIR imagery was captured on 25 August 2020 at ~54◦ solar azimuth and 33◦

solar elevation with a MicaSense Altum multispectral and radiometric thermal sensor, with
2064 × 1544 sensor resolution and 48◦ horizontal × 37◦ vertical FOV. Images were captured
every two seconds with a nadir sensor. The flight path was designed to deliver high
overlap to avoid difficulties with image matching in the SfM pipeline [22]. It comprised
16 adjacent survey lines with 19 m spacing and covered the same footprint as the Hovermap
(Figure 3). The target altitude of 120 mAGL resulted in a footprint of approximately 107 m
perpendicular to and 80 m along flight lines at ground level, with ~89% forward lap (71 m),
~84% side lap (90 m) and an average ground sampling distance (GSD) of 5.2 cm.
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Figure 3. This image depicts the landscape surrounding the study site with the UAV flight path used
to collect digital imagery (comprising 16 survey lines with 19 m spacing) shown in blue. The red area
shows the location of the field plot within this survey area.

2.2.2. Field Data

Field data were collected from a plot approximately 100 m × 50 m (actual area 4863 m2)
within the UAV survey area. Four parallel 100 m transects were set out lengthwise within
the plot at 10 m spacing (Figure 4). A Trimble R10 high-precision GNSS was used to
georeference the plot corners. Corner coordinates were used to create shapefiles in ArcGIS
v10.8 to enable field data to be compared with UAV-derived products. Additional ground
control points were not required for this study.
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Figure 4. The 50 m × 100 m field plot (orange outline) is shown with a data strip extending 1 m on
either side of four transects set 10 m apart (shown in yellow). Data was collected at 5-metre intervals
along each transect (orange asterisks).

The height of all trees with diameter-at-breast-height (DBH) >0.2 m was estimated
with a range finder, and the measured trees were georeferenced with a Trimble R10. Canopy
cover was estimated at 5 m intervals along each transect with the CanopyCapture mobile
app v1.0.2 [51]. To avoid ambiguity, field-measured canopy cover is interpreted as “crown
projective cover (CPC)” which estimates the vertical tree crown projection per unit area
of the ground surface, with overlaps counted only once [41]. CPC, therefore, does not
distinguish between foliage and woody elements.

2.3. Photogrammetric Pre-Processing of Digital Imagery

Ascent and descent images were trimmed, resulting in a set of 699 NIR images. Open
Drone Map (WebODM Manager) v1.8.7 was used for pre-processing following a standard
photogrammetric pipeline [24,52]. Default pre-processing settings (Supplementary Material,
Table S1) were retained, which included the use of the Scale Invariant Feature Transform
(SIFT) algorithm for feature detection and pre-matching of features across 8 images. SfM
sparse point clouds were reconstructed using image feature identification and keypoint
matching, while camera geometry was described using aerial triangulation. Iterative
bundle adjustments were applied to image blocks to address distortion and minimise
reprojection error. Multiview stereo pixel matching algorithms were used to reconstruct a
3D DPC.
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2.4. DPC Processing

LiDAR and SfM-NIR DPCs were processed using CloudCompare v2.11.1–2.11.3 in
the EPSG:28356 coordinate system. The LiDAR cloud was trimmed and then cleaned of
noise using the statistical outlier removal (SOR) tool based on 6 points and 1 standard
deviation. A field plot shapefile, with a buffer added, was used to segment the general
plot area from the trimmed cloud. The segment was rasterised based on a 0.5 m grid and
minimum heights were extracted to create a digital terrain model (DTM). The DTM was
cleaned of noise, much of which represented lantana (Lantana camara), which is an invasive
shrub that occurs in eucalypt and other native vegetation along Queensland’s coast and
hinterland. Setting the DTM as the reference, points above 2 m were exported from the
minimum height grid. The cloud was normalised for terrain so that all points represented
height above ground level and clipped again to field plot boundaries, thus creating the
final LiDAR-based CHM. The SfM-NIR DPC was then imported into Cloud Compare and
segmented with the buffered field plot shapefile before being manually aligned with the
LiDAR CHM (x + 3, y + 0, z − 3) and clipped to field plot boundaries.

2.5. Canopy Structure and Analysis

Maps and data visualisations were drawn in ArcGIS v10.8. Assessment and statistical
analyses were based on the methods of Ref. [2]. Reconstruction of canopy cover in SFM-NIR
and LiDAR CHMs was initially assessed with visual comparison and comparison with an
aerial photograph of vegetation within the field plot. Statistical analyses were conducted
at the field plot level using 0.2 m grid cells. Field-measured CPC was compared with the
mean point density within a one-metre radius of each field data point (n = 84), for both
SfM-NIR and LiDAR CHMs. Point density values were extracted from a buffered field
plot to avoid edge effects. Field-measured heights of all trees within the field plot with
DBH > 0.2 m (n = 45) were compared with the estimated height (absolute Z distance) at
the same location in each CHM. Linear regression was performed using R Studio v3.6.3
to investigate relationships between datasets for CPC/point density and height variables,
and percentiles were calculated to assess the data distribution. As per Ref. [2], root mean
square error (RMSE) and bias were calculated for CHM heights as:

RMSE =

√√√√√ n

∑
i=1

(
xir − xi f

)2

n
(1)

Bias =
n

∑
i=1

(
xir − xi f

)
n

(2)

where n = number of observations, xir = CHM height and xif = field-measured height.
Differentiation of canopy layers was based on Ref. [53], with understorey defined as <5 m,
mid-canopy 5–15 m and upper canopy >15 m. The complete workflow is conceptualised
in Figure 5.
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Figure 5. The workflow for LiDAR and NIR data collection, point cloud processing and CHM
reconstruction, followed by analysis involving comparison between CHM metrics and against field-
derived measurements.

3. Results
3.1. Comparison of DPC Properties

The number of points in the DPC reconstructions was reduced with each iteration (Table 1).

Table 1. The number of points retained/proportion removed in each DPC iteration.

SfM-NIR LiDAR

Number of Points % Removed from
Previous Cloud Number of Points % Removed from

Previous Cloud

Raw data 29,910,131 - 112,090,335 -
Trimmed and cleaned - - 85,110,874 24.07

Clipped by buffered field plot 1,158,749 96.13 7,340,689 91.38
Points below 2 mAGL removed 801,306 30.85 4,918,675 32.99

Clipped by field plot (final CHM) 468,491 41.53 2,963,676 39.75

Similar proportions were removed in each DPC iteration, with the proportion slightly
lower for SfM-NIR when trimming points below 2 mAGL from the buffered field plot (~31%
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SfM-NIR vs. ~33% LiDAR), but slightly higher for SfM-NIR when removing the buffer
(~42% SfM-NIR vs. ~40% LiDAR). The point density of the final CHM was significantly
greater for LiDAR (609 points per m2) than for SfM-NIR (96 points per m2).

3.2. Comparison of CHM Point Densities

Point density ranged from 0 to 63 points per 0.2 m grid cell (mean = 1.76+/−5.64 (1 SD))
across the SfM-NIR CHM (Figure 6a) and from 0 to 300 points per 0.2 m grid cell
(mean = 11.03+/−20.60 (1 SD)) across the LiDAR CHM (Figure 6b). The SfM-NIR CHM
appeared to comprise mostly high and low point densities, with few mid-range values, whereas
mid-range values were extensive in the LiDAR CHM (noting the large difference in density
ranges between the two CHMs). Overlaying the CHMs (Figure 6c) showed that areas of high
SfM-NIR point density mostly coincided with mid-range LiDAR point density. Many high-
density LiDAR cells coincided with empty SfM-NIR cells (white areas), particularly in the north
and southwest corners of the field plot. Low-density LiDAR cells also coincided with empty
SfM-NIR cells. Low-density SfM-NIR cells mostly coincided with mid-range LiDAR cells.
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also the gaps in SfM-NIR data. The white areas represent points at which no data were collected.
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The vertical point distribution profiles (Figure 7) showed that both LiDAR and SfM-
NIR capture increased moving down through the upper canopy, with LiDAR capture
increasing more rapidly. Both SfM-NIR and LiDAR capture decreased at ~23 m and re-
mained relatively constant down to ~18 m, with a small spike in SfM-NIR capture at ~20 m.
SfM-NIR capture increased rapidly and outstripped LiDAR capture in the mid-canopy
(5–15 m). Around 12% of all SfM-NIR points were captured at ~12 m. Capture decreased
for both LiDAR and SfM-NIR below 10 m. The decrease was more rapid for SfM-NIR.
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3.3. Comparison of CHM Heights

SfM-NIR CHM height ranged from 2.00 to 30.86 mAGL (mean 16.15+/−5.39 (1 SD)
mAGL). LiDAR CHM height ranged from 2.00 to 31.26 mAGL (mean = 18.46+/−6.41
(1 SD) mAGL). The mean distance between the CHMs was 1.07+/−0.71 (1 SD) mAGL
(RMSE = 0.3211 m). The visual comparison in CloudCompare showed that the LiDAR CHM
appeared smoother and more connected than the SfM-NIR CHM (Figure 8a,b). Null values
occurred in similar locations, but gaps appeared larger in the SfM-NIR CHM, particularly
the gap running north–south in the eastern half of the field plot. CloudCompare elevation
views (Figure 8c,d) showed the SfM-NIR CHM contained fewer data beneath the canopy,
with very few tree trunks represented.
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Figure 8. Visual comparison of CHMs in CloudCompare showed the difference between the SfM-NIR
and LiDAR height distribution in (a,b) plan view and (c,d) elevation view (scale bar in metres). The
elevation view shows the colour gradation from blue (lowest) to red (highest) height.

Proportional height capture with SfM-NIR (Figure 9a) equated to 0.89% understorey,
54.28% mid-canopy and 44.83% upper canopy. The upper canopy comprised the majority
of LiDAR capture (63.9%), with 33.7% mid-canopy and 2.4% understorey (Figure 9b).
Proportional capture was only 7.8% for SfM-NIR at 10 m, compared to 12.5% for LiDAR. In
comparison with LiDAR, SFM-NiR appeared to capture only the centres of upper canopy
clumps, but coincident mid-canopy areas were represented more fully (Figure 9c). Visual
comparison with an aerial image showed that null values in both CHMs were generally
coincident with bare ground visible through gaps in the canopy. SfM-NIR produced less
cover overall, covering 72.9% of the field plot compared to 90.6% for LiDAR (Appendix A).
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grey) overlaid on the LiDAR CHM (red to green).

3.4. Comparison with Field Data—Canopy

Field-measured CPC ranged from 0.15 to 0.70 (n = 84) (Figure 10a). More than 76% of
locations had CPC between 0.22 and 0.48. Only 7.1% of locations had a CPC of less than
0.22 and 16.6% exceeded 0.48 (Appendix B). Point density values of individual 0.2 m grid
cells within a 1 m radius of each field data point ranged from 0 to 56 points per cell in the
SfM-NIR extract (Figure 10b) and from 0 to 154 for LiDAR (Figure 10c).
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Point densities within each 1 m radius were aggregated, and the percentiles were
calculated. The mean point density of extracted 1 m circles (3.14 m2 area) ranged from 0 to
25.41 points per 0.2 m grid cell (mean = 4.74+/−6.61 (1 SD)) in the SfM-NIR extract and
from 0 to 78.92 points per 0.2 m grid cell (mean = 23.37+/−18.13 (1 SD)) for LiDAR.

The percentile values (Appendix C) were calculated to compare the spread in the
extracted CHM point densities (n = 84). The interquartile range for extracted SfM-NIR
values (Q1 = 0.18, Q3 = 5.90 from a maximum of 25.41) reflected the lack of mid-range point
densities observed in the SfM-NIR whole-of-field-plot CHM, whereas the interquartile
range for extracted LiDAR values, although still left of centre, was closer to the centre of
the spread (Q1 = 7.75, Q3 = 33.04 from maximum of 78.92). The full dataset is available in
Supplementary Material Table S2.

3.5. Comparison with Field Data—Tree Height

Field-measured heights of trees with DBH > 0.2 m (n = 45) ranged from 4.28 m to
38.44 m (mean = 14.41+/−9.35 (1 SD) m) (Figure 11a). Three of the measured trees were
taller than the maximum CHM heights. CHM heights at the location of each measured
tree ranged from 10.04 m to 29.24 m (mean = 18.57 +/− 6.57 (1 SD) m) for SfM-NIR, and
5.84 m to 30.93 m (mean = 18.86+/−6.92 (1 SD) m) for LiDAR. Figure 11b,c shows the
field-measured heights in relation to CHM heights.
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Figure 11. (a) Map showing the field-measured heights in relation to field plot and buffered transects.
Heights and locations of measured trees in relation to the (b) SfM-NIR CHM and (c) LiDAR CHM
height distributions.

Percentile values (Appendix D) were calculated to compare CHM heights at the
location of each field-measured tree. Lower percentile values were notably higher for
SfM-NIR (p05 = 9.20 m; p10 = 10.45 m) than for LiDAR (p05 = 6.91 m; p10 = 9.20 m). The
upper percentile values were only slightly higher for LiDAR (p90 = 28.06 vs. 27.55 m;
p95 = 29.64 vs. 28.84 m). The greatest difference occurred at p0 (SfM-NIR + 4.2 m). The full
dataset is available in Supplementary Material Table S3.

3.6. Regression Analysis

The regression of CPC- and CHM-extracted point densities (Figure 12a,c,e) showed very
low correlation between CPC and CHM densities (R2 = 0.0180~SfM-NIR; R2 = 0.0628~LiDAR)
and even lower correlation between CHMs (R2 = 0.0121). Figure 12a,e suggests the SfM-NIR
dataset is strongly skewed by a high number of zero and near-zero values. The skew is
compounded by the fact that many of these zero and near-zero locations correspond to high
CPC and LiDAR density values.

Similar relationships were evident in the height data (Figure 12b,d,f) with field-
measured height very poorly correlated with CHM height (~SfM-NIR R2 = 0.0415, ~LiDAR
R2 = 0.2508) and a low correlation between CHMs (R2 = 0.1712). SfM-NIR height data were
again strongly skewed by zero values (n = 20), where field-measured trees corresponded
with empty cells in the CHM. Figure 12b suggests that excluding the SfM-NIR zero values
would have resulted in a strong correlation with LiDAR heights at the remaining locations.
The large number of zero values inflated the RMSE of SfM-NIR predicted heights (13.08 m)
and created a negative bias (−4.09 m). The LiDAR CHM predicted tree heights were
somewhat closer to field-measured heights (RMSE = 9.29 m), with a bias that suggested the
heights were overestimated (2.77 m).
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4. Discussion

This study has undertaken a range of comparisons to gain some insight into the
accuracy and completeness of UAV-derived DPCs while acknowledging that comparisons
based on individual structural parameters do not address broader questions of quality [1].
Comparisons were first made between UAV-SfM-NIR and UAV-LiDAR CHMs to assess
differences in height and density distribution and extent. CHM height and density metrics
were then compared with field-measured tree heights and CPC. Due to the very obvious
difference in canopy penetration and subsequent data capture, this discussion will treat the
LiDAR CHM as a surrogate baseline for SfM-NIR CHM assessment and focus strongly on
the factors that impeded greater completeness in the SfM-NIR reconstruction.

4.1. Canopy Height Models

The range and distribution of heights were similar in both CHMs, particularly in the
higher percentiles, with lower standard deviation in SfM-NIR height, which is consistent
with the findings of [14], but LiDAR point density was an order of magnitude greater than
SfM-NIR. LiDAR also produced a far greater extent and more connectivity in cover, which
could be interpreted as a more complete representation of the canopy when referenced
against aerial photographs. Successful SfM reconstruction of woody vegetation such as
eucalypt relies on image capture that maximises canopy features [24]. Sub-optimal image
matching in the photogrammetric pipeline may have contributed to the sparseness of the
SfM-NIR cover, as pre-processing presents challenges that can cause missed objects and
vertical bias [14]. Fewer feature matches result in lower 3D point cloud density, which
reduces canopy sampling [5].

4.1.1. Effect of Eucalypt Forest Structure

Native eucalypt forests have distinct characteristics that make photogrammetric image
matching difficult. This results, in part, from the clumped overstorey structure [25] as
photogrammetric reconstruction is far more accurate in continuous cover [19]. Gaps in
eucalypt canopies have steep and complex surfaces [24]. These abrupt vertical changes, in
combination with highly varied canopy relief, cause omissions that interfere with image
matching [19]. Fluttering leaves and swaying branches, which are characteristic of eucalypt
forest, can also impair feature matching and reduce SfM point cloud density [5,54]. Canopy
movement is a possible explanation for the unexpectedly low proportion of SfM-NIR
capture in the upper canopy, where only 46% of the data were collected, compared to 54%
in the mid-canopy.

4.1.2. Overlap and Spatial Resolution

The quality of SfM reconstructions is improved by high image overlap and ground
sampling distance (GSD) >5 cm [1], but spatial resolution is reduced when moving up
through the canopy as the distance to the sensor decreases [24]. While the average GSD in
the UAV-image survey was 5.2 cm, the average spatial resolution at the base of the CHMs
(2 mAGL) was 5.1 cm, with a 105 m × 79 m footprint, ~89% forward lap (70 m) and ~84%
side lap (86 m). However, at top-of-canopy height (TCH) (~35 m), the footprint was further
reduced to 76 m × 57 m, resulting in ~84% forward lap (48 m), ~78% side lap (59 m) and
a spatial resolution of 3.7 cm. This reduced the opportunity for feature matching in the
upper canopy by almost half, as single features may have appeared in 48 images at 2 mAGL
but in only 25 images at TCH. It is also possible that the default ‘8 matching neighbours’
pre-processing setting in ODM was too low, particularly with image overlap of around 80%,
as this combination causes valid matches to be ignored, which decreases reconstruction
accuracy [55].

4.1.3. Canopy Penetration

Differences in canopy penetration will have contributed to differences in SfM-NIR and
LiDAR CHM height and density metrics [5]. Photogrammetric reconstructions represent
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the uppermost visible surface rather than the broader range in observed surfaces obtainable
with LiDAR [14] and therefore deliver less information on vertical structure [2]. The lack
of data in the SfM-NIR ground layer was demonstrated by the lower proportion of points
removed when DPCs were trimmed below 2 mAGL. The low SfM-NIR capture from 2 to
10 m, and the lack of trunk representation in the SfM-NIR CHM was consistent with other
studies that have observed inadequate SfM capture of mid- and understorey layers [56],
often as a result of overstorey occlusion [19]. This problem is exacerbated by the multi-
layered eucalypt canopy, such that smaller eucalypt trees are often poorly modelled [24].
The uncharacteristically high proportion of SfM-NIR point capture through the upper–mid-
canopy (10–15 m) may have been related to the selection of the NIR spectral band, as NIR
has been found to increase point reconstruction in eucalypt canopy [24]. It may also be a
product of the large intra-canopy gaps within the eucalypt forest, which would allow a
greater penetration than the dense broadleaf canopies that have often been studied [4,19].

4.1.4. Solar Elevation and Shadow

Shadows affect SfM reconstruction. The large brightness differential between a sunlit
canopy and areas of shadow reduces feature detectability [2]. It is difficult to avoid the
impact of shadows in a mature, native forest [9] where the canopy structure is complex
and non-homogenous [57]. Large shadows produced by low solar elevation have been
linked to the under-sampling of the canopy surface [5]. To reduce this impact, solar noon is
often targeted for remote sensing [6,9,12,24]. However, in native eucalypt forests, low solar
elevation surveys (~25◦) have been found to improve the reconstruction of canopy features,
enhance point reconstruction throughout the vegetation profile and increase useful shadow-
based contrast between the ground and canopy, which may be related to the pendulous
orientation of eucalypt leaves, such that the leaf surfaces tend to be perpendicular to lower
angles [24]. In this study, however, the 33◦ solar elevation of the UAV-imagery survey
was perhaps too large to maximise such enhancements, at least with NIR data alone. In
addition, UAV-image surveys flown before solar noon can cause objects that occur to the
west of vertical features to be obfuscated [21]. This is particularly apparent in the height
and density differences in the north/northeast corner of the CHMs. The effect is likely to
have been compounded by shadows cast by the sun at a late-winter 54◦ azimuth. Solar
azimuth should perhaps be incorporated into UAV-imagery flight planning to the same
extent as solar elevation. Overall, these shadow effects are perhaps unsurprising, given that
single-time-of-day photogrammetry products have been found to produce sub-optimal
results in native eucalypt forests [24]. On this basis, it is considered that a single NIR survey
was insufficient to gain full insight into the contribution of NIR data and that multiple
UAV-image surveys should be conducted at different solar elevations and combined [21,24].
In addition, it may be beneficial to fly UAV-image surveys closer to a solar equinox.

4.2. CHM Comparison with Field Measurements

While the SfM-NIR CHM produced less cover and lower point densities than the
LiDAR CHM, this does not necessarily translate to less accuracy. To gain some insight into
the performance of the models as representative reconstructions, a comparison with field
data was necessary.

4.2.1. Canopy Cover

Extracted SfM-NIR point density data was strongly skewed by empty cells, and LiDAR
demonstrated high point density at many locations where SfM-NIR point density was zero
or near zero. The correlation between extracted CHM point densities and field-measured
CPC was very low. These results are perhaps unsurprising. LiDAR point density has been
found to be an unreliable proxy for canopy cover as it is highly inconsistent across the
point cloud [2] and strongly affected by survey altitude [58]. Point cloud density in SfM
reconstructions may also be considered an unreliable proxy, as it is impacted by many
factors in the field unrelated to canopy cover, such as spatial resolution, wind, shadow
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and movement, as well as feature matching challenges presented by the photogrammetric
pipeline [5]. The patchy nature of the eucalypt canopy may also have been a source of error
as CPC varied widely, with no discernible pattern across the field plot. As a result, the
extracted CHM density values (1 m radius) are unlikely to have provided precise samples.

4.2.2. Canopy Height

Comparing UAV-derived data with field-derived measurements, Ref. [58] found that
both photogrammetric and LiDAR DPC reconstructions overestimated tree heights, particu-
larly for tree heights between 21 and 30 metres in intermediate or codominant crown classes.
This finding concurs with the LiDAR overestimation and bias (+2.77 m; +0.7%) observed in
this study, but not the SfM-NIR underestimation (−4.09 m; −1.1%). The SfM-NIR underesti-
mation can be partially explained by incomplete canopy reconstruction, which was driven
by an absence of SfM-NIR data at 20 of the 45 measured tree locations. Removal of those
20 datapoints would have increased the SfM-NIR correlation with field measurements from
R = 0.2 to 0.6, reduced RMSE from 13.08 to 8.01 m and produced a slightly positive bias
(+9.7 × 10−17). The challenges already identified with feature matching may have contributed
to missing SfM-NIR data. TCH in remotely sensed CHMs, whether SfM or LiDAR, represents
average height across the entire outer surface [5]. Eucalypt characteristics such as canopy
movement also cause underestimation of TCH [5], although SfM overestimations have been
observed in eucalypt forests [2]. It is also possible that the over/underestimations do not
represent CHM error. Field-measured height can incorporate significant error as it is difficult
to accurately estimate the treetop from the ground [5].

5. Conclusions

The remotely sensed SfM-NIR and LiDAR DPCs in this study did not produce compara-
ble representations of native dry eucalypt forest canopy, and neither produced a complete
reconstruction of the canopy cover. Comparison between CHMs showed the models were
similar in their representation of tree heights but varied greatly in relation to CPC and canopy
extent. Most notably, SfM-NIR data were missing from many locations where LiDAR data
were successfully collected, and all other observed differences appear to have stemmed from
this. Comparisons with field-measured data confirmed that the LiDAR DPC reconstruction
was more representative of the eucalypt canopy. It appears that a single UAV survey was
insufficient to achieve a more complete SfM-NIR canopy reconstruction [24], and it is recom-
mended that multiple surveys be conducted at different solar elevations and combined for
future comparative studies in native dry eucalypt forests. Photogrammetric pre-processing
settings should also be further explored in an effort to optimise image feature matching.
While NIR data on its own was not expected to achieve a complete reconstruction, this study
has nonetheless provided some insight into its contribution to native dry eucalypt forest
modelling, in addition to assessing the performance of LiDAR for this purpose.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15061694/s1, Table S1: Default Open Drone Map pre-processing
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dataset for field-measured and corresponding CHM heights.
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Table A1. Comparison of extent of cover using SfM-NIR and LiDAR CHMs calculated as the number
of empty cells as a proportion of available cells.

Number of
Empty Cells

Number of
Available Cells % No Cover % Cover

SfM-NIR CHM 72,879 269,230 27.1 72.9

LiDAR CHM 25,274 269,775 9.4 90.6

Appendix B

Table A2. Distribution in CPC estimates.

CPC Sites %

0.15–0.22 6 7.1
0.22–0.31 17 20.2
0.31–0.37 18 21.4
0.37–0.42 13 15.5
0.42–0.48 16 19.0
0.48–0.57 8 9.5
0.57–0.70 6 7.1

Total 84 100

Appendix C

Table A3. Percentile values for CPC and CHM point density at field data collection points (n = 84).

Field Measured CPC/CHM Mean Point Density per 0.2 m Grid Cell (within 1 m Radius)

Mean+/−1 SD p0 p05 p10 p25 p50 p75 p90 p95 p100

Field CPC 0.39+/−0.11 0.15 0.22 0.26 0.30 0.38 0.45 0.53 0.60 0.70
SfM-NIR CHM mean
point density 4.74+/−6.61 0.00 0.00 0.00 0.18 1.89 5.90 16.23 20.05 25.41

LiDAR CHM mean
point density 23.37+/−18.13 0.00 0.00 0.71 7.75 22.04 33.04 44.24 60.57 78.92

Appendix D

Table A4. Percentile values for field-measured and corresponding CHM heights (n = 45).

Field Measured Tree Height (m)/CHM Height at Same Location (m)

Mean+/−1 SD p0 p05 p10 p25 p50 p75 p90 p95 p100

Field tree height 14.41+/−9.35 4.28 5.95 6.21 7.55 11.55 17.65 29.55 37.19 38.44
SfM-NIR CHM height 18.57+/−6.57 10.04 10.71 11.31 12.88 16.56 25.08 27.55 28.84 29.24
LiDAR CHM height 18.86+/−6.92 5.84 10.53 11.04 12.99 17.29 24.98 28.06 29.64 30.93
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