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Abstract: Deep learning (DL) models have recently been widely used in UAV aerial image semantic
segmentation tasks and have achieved excellent performance. However, DL models are vulnerable
to adversarial examples, which bring significant security risks to safety-critical systems. Existing
research mainly focuses on solving digital attacks for aerial image semantic segmentation, but
adversarial patches with physical attack attributes are more threatening than digital attacks. In this
article, we systematically evaluate the threat of adversarial patches on the aerial image semantic
segmentation task for the first time. To defend against adversarial patch attacks and obtain accurate
semantic segmentation results, we construct a novel robust feature extraction network (RFENet).
Based on the characteristics of aerial images and adversarial patches, RFENet designs a limited
receptive field mechanism (LRFM), a spatial semantic enhancement module (SSEM), a boundary
feature perception module (BFPM) and a global correlation encoder module (GCEM), respectively,
to solve adversarial patch attacks from the DL model architecture design level. We discover that
semantic features, shape features and global features contained in aerial images can significantly
enhance the robustness of the DL model against patch attacks. Extensive experiments on three aerial
image benchmark datasets demonstrate that the proposed RFENet has strong resistance to adversarial
patch attacks compared with the existing state-of-the-art methods.

Keywords: UAV aerial images; semantic segmentation; deep learning (DL); adversarial patch attack;
robustness defense

1. Introduction

With the continuous development of remote sensing (RS) technology and UAV-related
devices, the use of UAVs for Earth observation has been widely used in military and civilian
fields [1]. Aerial image semantic segmentation aims to assign a predefined semantic label
category to each pixel in the aerial image, which is applied to urban planning [2], military
reconnaissance [3], geographic exploration [4], disaster assessment [5], etc. Benefiting
from the excellent feature extraction and representation effect of convolution neural net-
works (CNNs) [6] in deep learning technology, the use of CNNs for aerial image semantic
segmentation has received extensive attention.

Currently, many CNNs-based methods have achieved better results in aerial image
semantic segmentation. However, recent studies have found that CNN models are highly
vulnerable to adversarial samples, which mislead the model prediction results by construct-
ing carefully designed adversarial noise. Szegedy et al. [7] first proposed the concept of
adversarial examples and revealed the vulnerability of deep learning (DL) models. Since
then, many researchers have conducted extensive studies on the adversarial example
attacks [8–13]. Compared with the adversarial examples in the digital domain to modify
the pixel value of the overall image by constructing a series of constraints [14], the physical
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domain adversarial examples attack misleads the DL model by modifying the fixed range
of pixel values in the image. Brown et al. [15] called physical domain adversarial examples
adversarial patches and demonstrated that adversarial patches are more universal and
targeted attack methods for real-world physical objects. Based on the concept of adversarial
patches, Karmon et al. [16] proposed the LaVAN patch attack, which has better stealth and
generalization performance. Chindaudom et al. [17] attempted to construct the QR patch
that misleads human intuition to achieve physical domain adversarial attacks. Since then,
adversarial patches have been applied to different computer vision tasks. For example,
Bai et al. [18] proposed the inconspicuous adversarial patches (IAP) attack for the image
classification system, which obtains the stealth effect by improving the similarity between
the patch area and the original image. Zhang et al. [19] used the adversarial training strategy
to construct the misleading attention and classification (MAC) attack to destroy the pedes-
trian detection system. Nesti et al. [20] constructed a series of adversarial patch generation
methods to evaluate the robustness of urban scene semantic segmentation models. So far,
adversarial example attacks and defenses on ordinary optical images have been extensively
studied, and some work [21–23] has focused on aerial image processing. However, these
existing studies focus on the adversarial attack or defense of aerial image classification and
object detection tasks, ignoring the threat of adversarial examples and adversarial patches
to semantic segmentation. As shown in Figure 1, we use DeepLabV3 [24] as the semantic
segmentation model, LaVAN [16], QR-Patch [17], and IAP [18] as the adversarial patch
generation method. As can be seen from Figure 1, the adversarial patch attacks significantly
impact semantic segmentation results.

Figure 1. Visualization results of different adversarial patch generation methods on the attack effect
of the semantic segmentation model.

One possible way to defend against adversarial patch attacks is to use adversarial
training strategies, which extend the original training dataset by generating adversarial
examples [25]. However, using adversarial training increases the model training time,
and the trained model has poor generalization performance in the face of different cat-
egories of adversarial patch attacks. To effectively address the adversarial patch threat
in aerial image semantic segmentation, motivated by the sensitivity of the human visual
system to the inherent attribute information in an image [26,27], we attempt to enhance the
defense performance against adversarial patches by modifying the DL model architecture
to obtain robust features. To achieve this goal, we propose a robust feature extraction
network (RFENet) to defend against adversarial patch attacks. First, the local features
obtained by the small-size receptive field have been shown to resist adversarial attacks [28],
so we design the limited receptive field mechanism (LRFM) for aerial image semantic
segmentation to extract robust local feature information. Second, the semantic and con-
tour information is the inherent attribute features contained in the image [27,29], and it
is difficult for the adversarial patch to affect them. So, we construct the spatial semantic
enhancement module (SSEM) and the boundary feature perception module (GCEM) to
obtain the inherent attribute feature information in the aerial image. Third, the global
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feature information can establish the correlation of different pixels in the image, and the
modification of local pixel areas by the adversarial patch cannot affect the global informa-
tion extraction [26]. So, we design the global correlation encoder module (GCEM) to obtain
the global features of aerial images. It is worth mentioning that local features, semantic
features, contour features and global features also play an important role in improving
semantic segmentation accuracy, so the constructed RFENet can defend adversarial patch
attacks and obtain better semantic segmentation results. The contributions of this study are
summarized as follows.

• To the best of our knowledge, we are the first to systematically analyze the impact
of adversarial patch attacks on aerial image semantic segmentation and propose an
effective defense method against targeted and un-targeted adversarial patch attacks.
Our research reveals the significance of the resistability and robustness of deep learning
models when addressing safety-critical Earth observation tasks.

• We comprehensively analyze the characteristics of adversarial patches in aerial image
semantic segmentation. To defend against adversarial patches, a novel robust feature
extraction framework is further proposed. By obtaining robust local features, semantic
features, contour features and global features, RFENet can suppress the interference
of adversarial patches in the feature extraction process.

• To demonstrate the performance of the proposed method, we conduct a series of
experiments, including the defense capabilities of the model with multiple types
of adversarial patches. The experiments conducted on three aerial image datasets
containing urban and suburban show that the proposed framework can defend against
adversarial patches while maintaining better semantic segmentation accuracy.

The rest of this article is organized as follows. In Section 2, the related works are
briefly reviewed. Section 3 describes the proposed RFENet in detail. Section 4 presents the
experimental results and discussion. Finally, the conclusion is summarized in Section 5.

2. Related Works

In this section, we review the related methods of adversarial attacks and defense in
aerial images and analyze the existing robust feature extraction techniques.

2.1. Adversarial Attack and Defense for Aerial Images

With the widespread application of deep learning in aerial image processing, tech-
niques related to adversarial attacks have gradually gained attention. The current adversar-
ial attack methods for the aerial image processing field involve image classification, object
detection and semantic segmentation tasks.

(1) Attack on classification tasks. Czaja et al. [30] first studied adversarial example at-
tacks in remote sensing image classification and demonstrated that adding only weak
adversarial perturbations can mislead classifier prediction results. Li et al. [23] con-
structed black-box and white-box attack methods for attacking SAR image classifiers.
Xu et al. [25] systematically evaluated the adversarial example attack in remote sensing
image classification tasks. Ai et al. [31] analyzed the influence of adversarial pertur-
bation on aerial image classification and verified the transferability of adversarial
examples in different classification models. Jiang et al. [32] proposed a project gradient
descent adversarial attack (PGD) method to attack multi-source remote sensing image
classifiers. Based on the adversarial training strategy, Cheng et al. [33] proposed
a perturbation-seeking generative adversarial network (PSGANs) to improve the
robustness of the remote scene classification model. Chen et al. [34] systematically
analyzed the impact of four adversarial attack methods on multiple remote scene
classification models.

(2) Attack on detection tasks. Compared with aerial image classification tasks, attacks
against object detection are more challenging. Lian et al. [35] constructed a bench-
mark on adversarial patches to destroy the performance of aerial object detectors.
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Lu et al. [36] proposed a scale-adaptive adversarial patch attack method for attacking
aircraft object detection models, which can adaptively adjust the patch size according
to the detected object. Zhang et al. [37] constructed the universal adversarial patch
to attack the aerial object detection model and demonstrated its realizability in the
physical domain. Du et al. [38] proposed a patch generation method for attacking
vehicle object detectors in aerial scenarios, which enhances the attack efficiency by im-
proving the similarity between the patch region and the vehicle object. Deng et al. [39]
proposed an adversarial patch generation method based on style transfer theory
and used multiple data augmentation methods to improve the generalization and
transferability of patch attacks.

(3) Attack on semantic segmentation tasks. Attacks on aerial image semantic segmenta-
tion have also received attention recently. Xu et al. [21] proposed black-box mixup-
attack and mixcut-attack methods for attacking the semantic segmentation model,
which obtain essential regions of the original image by random cropping and use
gradient optimization and momentum iteration to improve the attack effect. They
further collected the generated adversarial examples dataset for researchers to design
advanced adversarial defense methods in aerial scenarios. Dräger et al. [40] proposed
a patch attack method based on wavelet transform to destroy semantic segmenta-
tion model performance. This method first uses wavelet transform to divide aerial
images into high-frequency and low-frequency, then embeds adversarial patches in
low-frequency to enhance the stealthiness of patch attacks. Since aerial image se-
mantic segmentation involves many safety-critical tasks, its related adversarial attack
methods should receive more attention.

(4) Adversarial defense technology. With the continuous emergence of adversarial at-
tack methods in aerial image processing, the corresponding adversarial defense
methods have also been studied. To improve the defense ability of the remote sensing
image classification model in the face of unknown attacks, Cheng et al. [33] proposed
a perturbation-seeking generative adversarial network (PS-GAN) defense framework.
The proposed PS-GAN uses GAN to generate massive data samples and introduces a
scaling search radius strategy to reduce the difference between adversarial and clean
examples to achieve adversarial defense. Chen et al. [41] proposed a soft threshold
defense method against various adversarial attacks on remote sensing scene classifica-
tion models. The soft threshold defense method uses adversarial examples as negative
samples, obtains the decision boundary with a logistic regression algorithm and uses
the decision boundary to judge the confidence of each category to detect adversarial
examples. To defend against adversarial patch attacks in aerial image object detection,
Chen et al. [42] constructed a cascade adversarial defense framework, which located
the adversarial patch region according to the high-frequency and salience informa-
tion in the back gradient propagation and then used the random erasure method to
suppress the adversarial patch.

2.2. Robust Features against Adversarial Attacks

Obtaining robust features contained in an image has been proven to be effective against
adversarial attacks. Still, robust features need to be obtained by a carefully designed feature
extractor. However, compared with adversarial training, robust features against adversarial
attacks can solve security threats at the DL model design stage.

Currently, the use of robust features to resist adversarial attacks has received attention.
Zhang et al. [43] first verified that using robust features to guide adversarial training can
suppress the influence of adversarial noise on image classifier models. Xiao et al. [26]
enhanced the model robustness by obtaining the edge feature information and improved
the generalization ability of the defense model through adversarial training. Xu et al. [27]
proposed a self-attention learning and global context encoder module to obtain global
feature information of aerial images to resist adversarial example attacks. Lal et al. [29]
constructed an adversarial defense framework for robust feature extraction and fusion,
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which improves the robustness of the DL model by fusing shape and semantic features.
Zhang et al. [44] aligned the feature obtained from the adversarial domain with the clean
sample features by the domain adaptive method and used the Wasserstein distance to
reduce the difference in feature distribution. Xie et al. [45] proposed a feature denoise
method to resist adversarial attacks, which reduces the interference of adversarial noise
by designing multiple noise filters and modifies the adversarial features to obtain robust
features. Zhou et al. [46] filtered adversarial noise interference by obtaining universal
invariant features and reducing feature bias by separating robust and adversarial features in
the feature encoder space. Freitas et al. [47] proposed a robust feature alignment method to
defend against adversarial patch attacks, which constructs the robust DL model by mining
deep semantic features. Liu et al. [48] proposed an adversarial feature distillation method to
suppress adversarial noise interference, which uses the feature difference between teacher–
student networks to filter adversarial noise. By constructing the unsupervised learning
method, Li et al. [49] obtained the global and semantic features of object regions to enhance
the adversarial robustness of the object detection model.

According to the above research, carefully designed feature extractor can obtain robust
features with adversarial defense capabilities. Based on this idea, we construct a series of
feature extraction methods to extract robust features against an adversarial patch attack in
aerial image semantic segmentation.

3. Methodology

Since an adversarial patch attack modifies the local pixels of the original aerial image,
it brings significant challenges to the aerial image semantic segmentation task. However,
the small receptive field ranges [28], semantic features [27], global features [26] and bound-
ary features [29] have been proven to be robust against patch attacks, and these features
also play an important role in image semantic segmentation. Combining the robustness
advantages of limited receptive field and robustness features, we propose a robust feature
extraction framework, RFENet, which can be effective against adversarial patch attacks
and obtain accurate semantic segmentation results. The pipeline of the proposed RFENet
is shown in Figure 2, which can be divided into the encoder part and the decoder part.
The encoder part extracts robust and valuable feature information, and the decoder part
restores the feature map resolution and output segmentation results.

Figure 2. Illustration of the proposed RFENet. The limited receptive field mechanism is first adopted
to extract local features with robustness. Then, we use the spatial semantic enhancement and
boundary feature perception modules to obtain robust semantic and boundary features. The global
correlation encoder module is used to build global dependency. Finally, we transmit the robust
features to the decoder part to obtain the semantic segmentation results.

In the encoder part, we use pre-trained ResNet [50] as the backbone network to extract
primary feature information. The LRFM consisting of conventional convolution, dilated
convolution [24], and depth-wise convolution [51] is used to capture the local feature infor-
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mation of the backbone feature to enhance the model robustness against adversarial patches.
After each LRFM, the SSEM is applied to all the feature maps, and the concatenation opera-
tion is used for feature information fusion, completing the semantic feature extraction task.
In the decoder part, the BFPM composed of different scale convolution kernels is used to
extract the boundary features of semantic fusion features output by SSEM and enhance the
boundary region saliency representation. To establish the global correlation of different
feature information and improve the model robustness, the GCEM is used to construct
the relationship between different features, capture the feature long-range dependence,
and input it into the backbone decoder layer to obtain accurate semantic segmentation.

3.1. Limited Receptive Field Mechanism

The receptive field reflects the specific region mapped by the convolution feature map
in the image. The small-size receptive field contains local feature information, while the
large-size receptive field contains global context information [52]. The use of a smaller
size receptive field has been shown to enhance the robustness against adversarial patch
attacks [28]. Inspired by the dual-path network (DPN) [53], we construct the LRFM robust
to adversarial patches, which can effectively capture the local features contained in aerial
images and suppress the adverse effects of adversarial patches.

As shown in Figure 3, LRFM contains four different branches, the first branch uses
1× 1 convolution and 3× 3 dilated convolution with atrous coefficient r to build the small
receptive field range. The depth-wise convolution is used in the second and third branches
to extract local features and ensure the local receptive field is unchanged. The depth-wise
decomposes the k× k convolution kernel into 1× k and k× 1 convolution kernels. The 4th
branch uses 1× 1 convolution to retain feature details, and the skip connection operation is
used for feature transfer. In addition, the concat(·) and add(·) fusion operation are used
to fuse a different branch feature map. Formally, let the input feature be I ∈ RH×W×C;
the first branch is calculated as follows,

B1 = K3×3,r=2(K1×1(I)) (1)

where K1×1(·) and K3×3(·) are convolution with the batch normalization layer and the
ReLU activation function, and r = 2 denotes the used atrous coefficient. The second and
third branches are calculated as follows,

B2 = K1×1(K1×k(Kk×1(I))) (2)

B3 = K1×1(Kk×1(K1×k(I))) (3)

where K1×k(·) and Kk×1(·) represent 1× k and k× 1 depth-wise convolution. To maintain
the small receptive field range, we set k = 3. The fourth branch and feature fusion operation
are calculated as follows,

B4 = K1×1(I) (4)

Bcat = K1×1(Fcat(B1, B2, B3)) (5)

Badd = τ(Fadd(Bcat, B4)) (6)

where Fcat(·) represents the feature concatenation function, Fadd(·) represents the feature
addition fusion function, and τ(·) represents the ReLU activation function.

3.2. Spatial Semantic Enhancement Module

In the calculating process of the CNNs model, limited by the fixed size of the convolu-
tion kernel, each convolution layer can only cover the area calculated by the convolution
kernel [54], so the deep semantic feature contained in the aerial image is not easily obtained.
In addition, the semantic feature is robust against adversarial noise [29]. To obtain the
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semantic features of different scales and enhance the correlation of different convolution
features, we construct the SSEM as shown in Figure 4.

Figure 3. The architecture of our proposed LRFM.

Figure 4. The architecture of our proposed SSEM.

Since backbone features contain rich texture detail information, the combination of
backbone features Ib ∈ RH×W×C and limited field features I l ∈ RH×W×C can make the
texture detail and local perception information with different scales complement each
other, and we input it into the SSEM to generate semantic features Is ∈ RH×W×C, where C
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represents the number of feature channels, and H and W denote the width and height of
feature maps. The specific calculation is as follows,

Is = FSSEM(K1×1([Ib, I l ])) (7)

where K1×1(·) represents 1× 1 convolution, [·] represents a feature splicing operation, and
FSSEM(·) is the spatial semantic enhancement mechanism. Inspired by the dual attention
network [55], the constructed SSEM is composed of a spatial attention mechanism and a
channel attention mechanism. The spatial attention can obtain rich contextual representa-
tion, while the channel attention can enhance the relevance of semantic information. For the
input feature I ∈ RH×W×C, the spatial attention first expanded it into a one-dimensional
feature vector and transposed it to obtain a two-dimensional matrix X ∈ RHW×C, where C
represents the number of feature channels, and H and W represent the width and height of
the two-dimensional matrix feature map. Secondly, three parallel fully connected layers,
Wq, Wk, and Wv, are used to reduce the channel dimension of feature maps and obtain the
matrices Q = XWq, K = XWk, and V = XWv. Thirdly, the correlation matrix is obtained by
using A = QKT , which can represent the vector correlation between two different spatial
locations, and each row of the correlation matrix A is normalized by using the SoftMax
function. Finally, the correlation matrices A and V are multiplied, the fully connected layer
Ws is used to recover the channel dimension, and the spatial salience enhancement feature
XS = AVWs is obtained. The calculation process is as follows,

XS = σ
(

XWq(XWk)
T
)

XWvWs (8)

where Wq, Wk, Wv ∈ RC×C/4, Ws ∈ RC/4×C, and σ(·) represent the SoftMax function.
Similar to spatial attention mechanism, the channel attention mechanism first expands the
input feature to a one-dimensional feature vector and performs transposition to obtain
X ∈ RHW×C; Secondly, X is input into three fully connected layer output matrices,
Q = XWq, K = XWk, and V = XWv. Due to the dimension reduction operation causing
feature loss, we cancel the channel dimension reduction. Thirdly, the correlation matrix
is obtained by using B = KTQ, where Bij represents the inner product of the ith column
in matrix K and the jth column in matrix Q, i.e., the correlation of two different channel
vectors. Finally, the correlation matrix B is normalized by the SoftMax function. In addi-
tion, matrices V and B are multiplied, and the fully connected layer WS is used to obtain
the channel salience enhancement feature map XC = VBWs. The calculation process is
as follows,

XC = XWvσ
(
(XWk)

TXWq

)
Ws (9)

where Wq, Wk, Ws, Ws ∈ RC×C. The matrix addition operation is used to fuse the output of
the spatial attention mechanism and channel attention mechanism and generate the final
fusion feature Y ∈ RHW×C. The calculation process is as follows,

Y = XS ⊕ XC (10)

where ⊕ is the matrix addition operation, XS represents the output feature of spatial atten-
tion mechanism, and XC represents the output feature of the channel attention mechanism.

3.3. Boundary Feature Perception Module

Making full use of the boundary features of the ground object is conducive to obtaining
the structure and location information of the object region so that the model can complete
accurate semantic segmentation. In addition, Xiao et al. [26] demonstrated that shape and
contour features are robust against adversarial noise. To obtain robust boundary feature
information, we construct the BFPM based on the Gabor convolution network [56].

As shown in Figure 5, the proposed BFPM consists of 3× 3 convolution, a Gabor
convolution unit, and 1× 1 convolution. Specifically, BFPM first uses 3× 3 convolution
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to preprocess the robust semantic feature Y ∈ RH×W×C output by SSEM. Then, multiple
parallel Gabor convolutions are used to enhance the boundary feature extraction ability.
Finally, the 1× 1 convolution is used to fuse different Gabor convolution features. The use of
Gabor convolution can obtain rich scale and direction feature information while extracting
fine-grained local features. In each Gabor convolution unit, the convolution kernel is
replaced by Gabor filters with different directions and scales to form Gabor orientation
filters (GoFs), which are calculated as follows,

Cv
i,u = Ci,o ◦ G(u, v) (11)

Cv
i =

{
Cv

i,1, ..., Cv
i,U
}

(12)

where Ci,o represents the learned filter with size of C×W ×W, Cv
i,u represents the Gabor

orientation filter with size of C ×W ×W, and G(u, v) represents the Gabor filter with
size of W ×W in the u direction at the v scale. In the proposed BFPM, GoFs are used to
enhance the scale and direction information of the input feature map. The boundary feature
F̂ can be obtained by a convolution operation between GoFs and the input feature map.
The calculation process is as follows,

F̂ = GCconv_1×1(Cconv_3×3(Y), Cv
i ) (13)

where Cv
i represents the ith GoFs with scale v. Since the boundary feature F̂ contains C

channels, the kth feature map is calculated as follows,

F̂ i,k = ∑C
C=1 F(c) ~ C(c)

i,u=k (14)

where c represents the channel of input feature Y and filter Ci,u, ~ represents the convolu-
tion operation, and k represents the number of directions in the filter.

Figure 5. The architecture of our proposed BFPM.

3.4. Global Correlation Encoder

The global feature information plays a crucial function in semantic segmentation tasks,
which achieves feature correlation modeling by establishing long-range dependencies of
different feature information [57]. In addition, the robustness of global features enables
the DL model to effectively defend against the impact of adversarial attacks [27]. To fully
extract the global feature information, we construct the GCEM based on the pairwise
relationship of the feature vector.
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As shown in Figure 6a, the pairwise relationship between feature vector x1 and
other nodes are represented as r1 = (r1,1, r1,2, ..., r1,N), and x1 is spliced with the pairwise
relationship r1 to obtain the global relationship feature y1 = [x1, r1]. Similarly, different
feature nodes can generate global relationship features y = (y1, y2, ..., yN) and use it as
the feature vector of global attention to calculate the global relationship attention weight
a = (a1, a2, ..., aN). The learning of the pairwise feature relationship makes full use of
the feature position relationship, which can better represent local location features and
global scene information. Based on the pairwise feature relations, we construct the GCEM.
GCEM can learn different feature nodes on the spatial dimension of the feature map
and obtain global spatial structure information by representing the pairwise relationship
between feature nodes. The structure of GCEM is shown in Figure 6b, and the specific
implementation is as follows,

(1) For the input feature S ∈ RL×H×W , the L dimensional feature vector of each spatial po-
sition in the feature map is used as the feature node si ∈ RL(i = 1, 2, ..., N, N = H ×W)
and reconstructed into the node graph GS.

(2) The feature nodes are input into the 1× 1 convolution to obtain different feature
node vectors and perform dot product operations to form the spatial relationship
matrix RS ∈ RN×N representing the relationship between each vector. The pairwise
relationship between node i and node j is represented as rS

i,j, and the calculation is as
follows,

rS
i,j = fS

(
si, sj

)
= θT

S (si)ϕS
(
sj
)

(15)

θS(si) = ReLU(BN(W θsi)); ϕS
(
sj
)
= ReLU

(
BN
(
W θsj

))
(16)

where θS and ϕS represent the embedding functions consisting of 1 × 1 convolu-
tion, batch normalization (BN), and ReLU activation function; and W θ ∈ RL/k×L,
W ϕ ∈ RL/k×L and k represent the dimension reduction ratio. Similarly, the pairwise
relationship between node j and node i is rS

j,i = fS
(
sj, si

)
, using (rS

i,j, rS
j,i) to represent

the bidirectional relationship between si and sj.
(3) For the ith feature node, the pairwise relationships with other nodes are stacked

sequentially to obtain the spatial relationship vector rS
i = [RS(i, :), RS(:, i)] ∈ R2N .

The spatial relationship vector and the original feature information are spliced to ob-
tain the spatial relationship attention ES ∈ R1+N/k with global structure information
and local detail information. The specific calculation is as follows,

ES =
[
poolC(ψS(si)), δS

(
rS

j

)]
(17)

ψS(si) = ReLU
(
BN
(
Wψsi

))
; δS

(
rS

j

)
= ReLU

(
BN
(

W δrS
j

))
(18)

where ψS and δS represent the embedding functions for stitching and fusion of original
features and spatial relationship features, which consist of 1× 1 convolution, BN and
ReLU; and Wψ ∈ RL/k×L, W δ ∈ R2N/2k×2N , poolC(·) represent the global average
pooling on the channel dimension.

(4) The spatial relationship attention ES is used to calculate the attention weight ai
of each position in the feature map. The attention weight is multiplied with the
original feature to obtain the spatial relation attention weighted feature. The specific
calculation is as follows,

ai = Sigmoid(W2ReLU(W1ES)) (19)

where feature weights W1 and W2 are obtained by 1× 1 convolution and BN function.
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(a) (b)

Figure 6. Interpretation of the proposed GCEM: (a) the pairwise relationship between feature vectors;
(b) the structure of global correlation encoder model.

3.5. Optimization Function

In semantic segmentation tasks, the cross-entropy loss [58] is commonly used as an
optimization function to predict the category of each pixel vector and then calculate the
average of all pixels. Although the cross-entropy loss has achieved better results, there is a
serious pixel category imbalance problem in aerial images, such as some object regions only
occupy a small proportion of pixels, which makes it difficult to achieve optimal training
of the proposed method. The dice loss [59] can alleviate the pixel category imbalance
but ignores the boundary feature information optimization of the object region. To better
achieve optimal training, we propose a hybrid optimal loss function combining dice loss
and boundary loss. The hybrid loss function is defined as

Lhybrid = αLdice + βLboundary (20)

where Lhybrid represents the hybrid loss function, Ldice, Lboundary represent the boundary
loss function, and α and β represent balance coefficient. Specifically, the dice loss is
calculated as

Ldice = 1−
2 ∑N

i=1 ∑C
c=1 gc

i sc
i

∑N
i=1 ∑C

c=1 gc2

i + ∑N
i=1 ∑C

c=1 sc2

i

(21)

where i represents the pixel point, c represents the pixel category, gc
i represents the ground

truth category, and sc
i represents the prediction category probability. The boundary loss is

calculated as
Lboundary = 1−

∫
Ω

φG(ξ)sθ(ξ)dξ (22)

where φG denotes the boundary level set, and sθ(ξ) is the prediction category probability.

4. Experiments and Analysis

In this section, we will first introduce the datasets used in this study. Then, the experi-
mental results, analysis, and discussion are presented in detail.

4.1. Data Descriptions

To verify the effectiveness and feasibility of the proposed method, we conducted
extensive experiments on three UAV aerial image benchmark datasets.

The first dataset is UAVid [60], which is captured using the high-resolution RGB
video recorder, and the resolution of each image is 3840 × 2160 pixels. The UAVid dataset
contains eight categories of static and dynamic ground objects, such as building, road,
low-vegetation and moving-car. The second dataset is Semantic Drone [61], which contains
eighteen categories of ground objects in urban scenes. Semantic Drone performs data
collection at distances of around 5 to 30 m from the ground and uses a high-resolution
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RGB camera to capture images with the resolution of 6000 × 4000. The third dataset is
AeroScapes [62], which uses high-resolution RGB cameras to capture eleven categories
of ground objects under urban and suburban scenes, and the resolution of each image is
1280× 720 pixels. The details of the three datasets used in the experiment is shown in Table 1,
and Figure 7 gives some samples and corresponding ground truth for different datasets.

Figure 7. Example images and corresponding ground truth from the UAVid [60], Semantic Drone [61],
and AeroScapes [62] datasets.

Table 1. The sample statistics information of three benchmark datasets.

Datasets Object Category Training Validation Test

UAVid
building, road, tree, low-vegetation,

moving-car, static-car,
human, background-clutter

200 70 150

Semantic
Drone

tree, rocks, dog, fence, grass, water, bicycle,
dirt, pool, door, gravel, wall, obstacle, car,

vegetation, fence-pole, window, paved-area

280 40 80

AeroScape
person, bike, car, drone, obstacle,
construction, road, sky, animal,

boat, vegetation

2288 654 327

4.2. Adversarial Patch Setting

To verify the adversarial robustness of the proposed method, we select six adversarial
patch generation methods to attack different aerial image semantic segmentation models.
Figure 8 shows the visualization results of different adversarial patches trained on the aerial
image dataset. Figure 8a is the adversarial patch generated by LaVAN [16]. This method
generates image domain adversarial patches with multiple iterative optimization trainings.
Figure 8b shows the QR-patch attack [17], which generates QR patches by constructing the
optimal patch mask. Figure 8c shows the adversarial patch generated by IAP [18], which
uses generative adversarial networks (GANs) and attention mechanisms to enhance attack
performance. Figure 8d shows the adversarial patch generated by Patch-Wise [63]. This
method generates patch region pixels in a pixel-by-pixel iterative manner. Figure 8e shows
the DiAP patch [64], which generates the adversarial patch by the reverse model gradient.
Figure 8f shows the ImageNet-Patch attack [65], which has a strong transfer performance.

The purpose of applying adversarial patch attacks in semantic segmentation tasks
is to make the attacked model produce pixel misclassification problems. Patch attacks
usually randomly paste the generated adversarial patches to the original image to achieve
the attack effect. In this study, we scale different adversarial patches to a suitable size and
paste them into the original image to complete the attack behavior.
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(a) (b) (c) (d) (e) (f)
Figure 8. Visualization results for different types of adversarial patches: (a) LaVAN; (b) QR-Patch;
(c) IAP; (d) Patch-Wise; (e) DiAP; (f) Image-Patch .

4.3. Implementation Details

In the experiment, we applied PyTorch and Python 3.7 to construct the proposed
aerial image semantic segmentation framework. All the experiments were carried out
with Intel i9-12900T CPU with 64 GB RAM, NVIDIA GTX Geforce 3090 GPU, and the
Ubuntu 18.04 operating system. To ensure the credibility of the experimental results, we
randomly selected images in the dataset to form the training set, validation set, and test set
and repeated the experimental process 20 times. In addition, to improve the generalization
ability of the model, we used data augmentation methods such as random inversion,
size cropping, and brightness transformation to increase the number of dataset samples.
For model optimization, the training epochs were set as 2000, the batch size was 16, and the
stochastic gradient descent (SGD) with a momentum of 0.9 was used as the optimizer.
The initial learning rate was set as 0.001 and the poly learning strategy was employed to
automatically adjust the learning rate. For all the methods compared, we used the source
code provided by the author for experiments and used the hyperparameter setting and
optimization strategy consistent with the original article. Algorithm 1 gives the detailed
steps to attack the proposed RFENet using adversarial patches. The goal of adversarial
patch attacks on aerial image semantic segmentation is to use adversarial patches to interfere
with the aerial image to maximize the misclassification of all test pixels.

Algorithm 1 Adversarial Patch Attack on RFENet

Input:
1: Aerial image x and corresponding ground truth y.
2: Semantic segmentation model f with parameters θ.
3: Adversarial patch χ, training epochs τ, and learning rate η.

Output: The predictions on the adversarial patch images xadv.
4: Initialize model parameters θ with uniform distribution.
5: for t in range(0, τ) do
6: Compute the local features B via Equations (1)–(6).
7: Compute the semantic features Y via Equations (7)–(10).
8: Computer the boundary features F via Equations (11)–(14).
9: Computer the global features G via Equations (15)–(19).

10: Computer the cross-entropy loss L via Equations (20).
11: Update θ by descending its stochastic gradients.
12: end for
13: Generate the adversarial patch image xadv via Ref. [16–18,63–65].
14: Feed the adversarial patch image xadv to the model f to achieve the segmentation.

The pixel accuracy (PA), mean pixel accuracy (mPA), F1_score, and mean intersection
over union (mIoU) were utilized to quantitatively estimate different methods. Specifically,
PA = (tp + tn)/(tp + tn + ft + fn); the mPA is the mean of the sum of category pixel
accuracy (cPA), where cPA = tp/(tp + fp); the F1_score is the geometric mean between
the precision (P) and recall (R) of each class as F1_score = 2× (P× R)/(P + R), where
P = tp/(tp + fp) and R = tp/(tp + fn); the mIoU is defined as the mean of IoU, and the
IoU is calculated as IoU = |Pi ∩ Gi|/|Pi ∪ Gi|, where the Pi and Gi are the set of prediction
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pixels and ground truth information for the ith class. Moreover, the tp, fp, fn, and tn are
defined as true positives, false positives, false negatives and true negatives.

4.4. Comparison with State-of-the-Art Methods

In this subsection, we give the semantic segmentation results of the proposed RFENet
and other methods on the adversarial patch test set. As for the construction of the ad-
versarial patch test set, we used LaVAN [16] and QR-Patch [17] to construct adversarial
patches in the UAVid dataset; for the Semantic Drone dataset, IAP [18] and Patch-Wise [63]
were used to construct the corresponding adversarial patch test set; for AeroScape dataset,
DiAP [64] and ImageNet-Patch [65] are used to construct the adversarial patch test set.
A brief description of each aerial image semantic segmentation method compared in the
experiments is presented below.

1. BSNet [66]: It includes feature extraction and restoration stages in which the feature
extraction stage uses the gradient convolution to obtain boundary features, and the
feature restoration stage uses global dependencies to recover feature resolution.

2. MANet [67]: This method uses the efficient attention mechanism to extract global
context dependencies, uses the linear complex kernel attention mechanism for local
and global feature alignment and performs feature fusion by channel weighting.

3. AFNet [68]: This method uses the small-scale dilated convolution kernel to extract
multi-scale features of different ground objects and then uses the multi-scale structure
with a scale layer attention module to obtain discriminative feature information.

4. SSAtNet [69]: This method uses the pyramid attention pooling module to obtain
detailed feature information, uses the pooling index to fuse local and global features
and recovers the fine-grained feature information by information correction.

5. MDANet [70]: This method uses multi-scale deformable attention to capture dif-
ferent scale features, uses a self-attention module to establish long-range context
dependence and optimizes the boundary region segmentation effect with a local
embedding module.

These compared methods use techniques commonly used in aerial image semantic
segmentation, such as multi-scale feature extraction, feature fusion and attention mecha-
nism. The quantitative results are reported in Tables 2–4 from which we find that these
compared methods cannot resist adversarial patch attacks, resulting in a significant de-
crease in semantic segmentation performance. For the UAVid dataset with LaVAN [16] and
QR-Patch [17] attacks, the mAP of BSNet [66] is only 23.85% and 17.65%, while the mPA on
the Semantic Drone and AeroScape datasets is only around 25%, indicating that BSNet is
seriously vulnerable to adversarial patch attack. This phenomenon further demonstrates
that using simple feature extraction or feature fusion operations is insufficient to defend
against adversarial patch attacks. For the semantic segmentation network MANet [67], its
mPA and mIoU on all three datasets are under 30%, especially the mIoU on the UAVid
dataset where it is only about 17%. The results of MANet show that the existence of adver-
sarial patches interferes with its reasoning process. Although MANet uses the attention
mechanism to obtain local and global features, it still fails to gain defense abilities that
are beneficial to resist adversarial patches. The reason for this problem may be that the
adversarial patch affects the pixel distribution of the original image, making the semantic
segmentation model. AFNet [68] with multi-scale feature extraction ability is also affected
by the adversarial patch attacks, and its mPA metrics on the UAVid dataset are only 25.48%
and 21.63%. Despite the fact that AFNet uses the same small-size receptive field mech-
anism as the proposed RFENet in the process of feature extraction, it fails to obtain the
better defense effect against patch attacks. The reason for this phenomenon is that AFNet
uses the dilated convolution with large dilated coefficient to enhance feature extraction
ability, but this operation also increases the impact of adversarial patch attacks on model
performance. For the semantic segmentation network SSAtNet [69], even though the model
extracts local and global feature information that has a defensive effect against patch attacks,
the performance on all three datasets still falls short of the desired results. The reason for
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this phenomenon is that SSAtNet pays no attention to the semantic features and boundary
features that have important defensive effects against adversarial patch attacks, which
expands the impact of adversarial patches on model performance. Compared with other
semantic segmentation networks, MDANet [70] establishes the interdependence of global
context information, which makes it have a slight advantage against patch attacks, but the
performance of the model is also seriously affected by patch attacks. This phenomenon
further illustrates that global dependence on contextual information alone cannot defend
against adversarial patch attacks, and the extraction of other robust feature information
needs to be considered in the process of constructing contextual information correlations.
For the proposed RFENet, with the help of different robust feature extraction components,
we can significantly improve the resistibility of the model towards adversarial patch attacks.
On all three datasets, the mPA metric of RFENet is more than 80%, which dramatically
outperforms the existing state-of-the-art aerial image semantic segmentation methods.
For the algorithm real-time analysis, it can be observed from Tables 2–4 that the proposed
RFENet still has advantages. Take the Semantic Drone dataset, for example; the single
image inference time of RFENet is around 20 s, which is superior to all the compared
methods. The reason is that although the proposed method uses multiple robust feature
extraction components, the structure is relatively simple and does not require the model to
perform complex inference processes.

To visually validate the influence of adversarial patch attacks on the prediction results
of different semantic segmentation methods, we further show the corresponding semantic
segmentation results visualization map in Figures 9–11. From the visualization results, it
can be observed that adversarial patch attacks seriously impact the performance of different
semantic segmentation networks, misleading these models into making wrong predictions.
Take the visualization results of UAVid dataset for example. For the LaVAN [16] patch
attack, although the annotation information corresponding to the middle region in the
aerial image belongs to “road”, many existing methods incorrectly predict the region as
“background” or “building” and cannot correctly predict the small-size object region, such
as “car” and “human”. For QR-Patch [17] attacks, their impact on model performance
is more serious, such as the region belonging to the “tree” being incorrectly predicted
as “background” or “car”. Moreover, the same phenomenon can be observed from the
visualization results of Semantic Drone and AerosScape datasets. By contrast, the proposed
RFENet is more robust towards adversarial patch attacks, and the semantic segmentation
results of RFENet are much closer to the ground truth annotation.

Table 2. Quantitative results of the UAVid dataset on the adversarial patch (LaVAN/QR-Patch) test
set, where the best results are shown in bold.

Class BSNet MANet AFNet SSAtNet MDANet RFENet

building 13.24/8.89 15.86/11.52 14.48/9.75 17.62/12.14 16.38/10.82 85.26/84.38
road 20.75/12.46 22.37/13.48 25.86/15.81 27.63/16.24 26.75/17.32 87.13/86.57
tree 23.48/14.52 25.32/15.72 28.45/17.83 30.14/18.65 31.75/18.96 88.75/87.46

low-vegetation 17.52/10.63 19.86/12.57 21.75/14.89 22.73/15.26 23.17/16.84 86.24/85.23
moving-car 8.75/4.26 12.73/10.86 15.28/13.75 17.42/14.31 18.52/14.85 81.32/79.41

static-car 10.63/8.15 13.78/11.43 14.23/12.64 16.17/15.85 17.62/16.35 78.63/77.42
human 7.15/5.48 11.73/10.62 16.31/14.86 17.35/15.24 19.13/18.76 76.51/74.64

background 31.25/25.36 33.87/26.13 36.55/28.70 39.48/37.26 42.68/38.97 80.13/76.85

PA (%) 26.17/20.78 27.15/21.75 28.60/24.65 30.40/24.96 31.42/26.03 91.26/89.32
mPA (%) 23.74/17.65 24.83/18.32 25.48/21.63 27.51/22.06 28.92/24.38 88.57/86.24
mF1 (%) 19.57/16.85 21.36/18.13 22.82/19.46 24.38/21.42 26.93/24.35 85.42/83.27

mIoU (%) 16.59/11.21 19.44/14.04 21.62/16.03 23.56/18.12 24.50/19.11 82.98/81.49
Runtime (s) 21.32/22.75 26.83/27.42 25.47/26.14 31.58/33.18 33.72/35.64 19.84/21.45
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Table 3. Quantitative results of the Semantic Drone dataset on the adversarial patch (IAP/Patch-Wise)
test set, where the best results are shown in bold.

Class BSNet MANet AFNet SSAtNet MDANet RFENet

tree 13.27/14.73 14.15/16.43 18.63/19.28 16.82/17.15 18.79/19.37 75.82/77.95
rocks 9.42/6.38 11.58/12.26 14.30/13.52 11.43/12.56 13.48/14.62 70.42/71.35
dog 7.63/8.12 9.45/11.38 11.93/12.46 10.23/9.62 15.74/16.58 73.57/75.69

fence 12.57/13.81 14.72/16.54 15.82/16.97 11.85/13.16 17.86/18.20 74.98/76.24
grass 22.71/21.64 24.52/23.83 27.38/28.14 19.54/21.32 31.78/32.26 92.54/93.38
water 20.14/19.58 21.65/20.46 25.62/24.35 19.57/18.62 27.98/28.42 90.42/91.85

bicycle 12.57/10.62 15.72/16.31 18.39/19.58 11.23/12.15 19.36/20.37 75.87/76.35
dirt 7.65/8.54 9.43/11.26 12.53/13.86 7.54/6.38 14.24/15.37 69.42/70.31
pool 17.43/18.75 19.86/20.78 26.75/25.34 16.82/15.68 30.27/31.86 94.26/95.77
door 2.14/3.27 4.31/5.64 7.42/6.73 3.75/5.82 10.42/12.45 66.78/67.42

gravel 19.43/20.63 21.59/23.86 31.86/32.97 26.93/27.42 35.98/34.26 85.97/86.41
wall 14.64/16.52 16.25/17.31 22.42/21.75 13.87/15.46 25.08/24.22 72.47/73.86

obstacle 16.78/17.88 18.64/20.93 23.96/22.87 17.94/18.53 26.93/27.51 78.32/79.43
car 21.65/22.15 23.70/24.56 25.78/26.14 20.65/19.37 29.82/28.13 93.56/94.27

vegetation 19.58/18.96 22.41/21.93 26.53/28.52 21.85/23.97 31.53/32.85 79.32/81.36
fence-pole 3.22/3.54 5.82/6.87 8.62/9.74 10.86/11.42 12.95/13.37 66.87/67.12
window 7.25/6.75 9.57/11.36 15.30/16.27 12.79/11.68 16.58/17.74 71.43/73.84

parved-area 21.49/22.31 23.86/25.73 25.93/27.36 24.78/23.64 38.36/38.02 95.78/96.34

PA (%) 29.45/31.27 31.73/32.56 36.12/37.41 33.42/34.41 42.13/44.56 84.72/87.36
mPA (%) 22.68/23.57 27.51/28.46 33.87/34.18 30.89/31.42 39.05/41.73 81.87/82.35
mF1 (%) 16.29/17.48 18.32/19.17 22.75/23.64 18.97/19.30 26.93/27.86 79.84/81.43

mIoU (%) 13.86/14.12 15.96/16.91 19.89/20.32 15.47/15.77 23.18/23.65 79.32/80.50
Runtime (s) 23.72/24.51 28.47/29.16 27.64/28.03 32.27/33.85 34.96/35.82 20.32/21.98

Table 4. Quantitative results of the AeroScape dataset on the adversarial patch (DiAP/ImageNet-
Patch) test set, where the best results are shown in bold.

Class BSNet MANet AFNet SSAtNet MDANet RFENet

tree 12.26/14.37 15.72/17.31 18.64/20.17 21.95/23.04 25.34/27.15 82.53/83.42
rocks 3.42/4.86 5.16/7.23 9.41/11.84 12.72/13.84 17.85/19.21 65.34/66.57
dog 5.92/6.78 8.57/10.36 15.72/17.37 18.97/19.28 23.86/24.57 73.96/74.18

fence 4.89/5.13 7.93/8.75 14.29/16.53 17.50/18.26 20.43/21.92 61.97/63.42
grass 6.28/7.52 11.58/13.64 18.51/21.75 21.62/22.83 25.32/26.71 66.28/67.74
water 8.15/9.43 13.72/15.08 22.73/24.32 25.76/27.08 30.72/31.98 60.92/62.31

bicycle 17.82/18.94 23.75/25.84 29.62/31.65 32.95/34.26 37.24/38.62 88.74/89.92
dirt 22.45/23.71 31.84/33.91 38.54/39.41 41.85/42.32 46.31/48.05 91.24/92.51
pool 7.14/8.43 9.48/12.56 13.57/14.28 16.96/18.14 21.54/23.52 62.73/64.95
door 9.56/10.75 14.87/16.92 20.32/21.46 23.41/24.96 29.31/30.89 83.47/85.26

gravel 17.84/19.13 22.73/25.04 27.43/28.54 31.86/33.28 37.03/39.41 87.62/88.43

PA (%) 32.16/33.78 35.96/37.21 38.96/39.57 42.63/44.28 43.97/45.26 88.96/90.08
mPA (%) 26.47/27.92 28.56/29.75 31.62/32.74 34.57/35.94 36.57/38.21 82.74/84.25
mF1 (%) 22.36/24.05 24.57/25.82 26.75/27.92 30.92/32.63 32.41/34.45 79.85/81.43

mIoU (%) 10.52/11.73 15.03/16.96 20.79/22.48 24.14/25.20 28.63/30.18 74.98/76.24
Runtime (s) 25.43/27.52 31.25/33.98 30.54/31.63 38.42/39.57 39.24/40.26 21.75/22.68
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Figure 9. Visualization results of different methods on adversarial patch (LaVAN/QR-Patch) test set
in the UAVid dataset, where the yellow curve circle represents the added adversarial patch region.

Figure 10. Visualization results of different methods on adversarial patch (IAP/Patch-Wise) test
set in the Semantic Drone dataset, where the yellow curve circle represents the added adversarial
patch region.



Remote Sens. 2023, 15, 1690 18 of 23

Figure 11. Visualization results of different methods on adversarial patch (DiAP/ImageNet-Patch)
test set in the Aeroscapes dataset, where the yellow curve circle represents the added adversarial
patch region.

4.5. Ablation Study

The proposed RFENet consists of LRFM, SSEM, BFPM and GCEM. These modules
extract different robust feature information that has a defensive effect on adversarial patch
attacks. In this subsection, we evaluate how each robust feature extraction component in
the proposed RFENet influences the semantic segmentation performance on the adversarial
patch test set. The LaVAN [16] patch attack was used to generate the adversarial patch
test set, and the encoder–decoder structure DeepLabV3 [24] was used as the baseline and
gradually added different robust feature extraction components. The experimental results
with different modules are presented in Table 5. It can be clearly observed from Table 5
that the baseline model performs better and better on the adversarial patch test set with
the introduction of different robust feature extraction modules. For example, the use of
LRFM can increase the mPA metrics of all three datasets by 21.73%, 18.57% and 23.49%,
respectively. Take the results in the UAVid dataset for example. The use of LRFM enables
the baseline to yield the mPA of 43.26%, the use of SSEM can increase the mPA to 63.82%,
BFPM enables the baseline to yield the mPA of 79.51%, and GCEM enables the baseline
to yield the mPA of 87.24%. The experimental results in Table 5 further demonstrate that
the combination of different robust feature extraction components enables the baseline
network to obtain optimal semantic segmentation results and illustrate that robust features,
such as semantic and contour, can effectively improve the adversarial robustness of the
semantic segmentation model.

Another interesting issue is the influence of adversarial patches with different sizes
and shapes on semantic segmentation results. Normally, for the fixed-size adversarial
patch, the larger the size is, the better the attack performance is because it covers a larger
region and interferes more with the features. Take the adversarial patch generated by
QR-Patch [17] for example; we conducted extensive experimental verification. As shown in
Table 6, the performance of existing semantic segmentation networks is affected by the size
of adversarial patches. However, as can be seen from Table 6, the semantic segmentation
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performance of the proposed RFENet does not decrease significantly with the increase of
adversarial patch size, which further proves the robustness of the proposed method against
adversarial patch attacks. For the adversarial patch shape, the results in Table 6 show
that the rectangular adversarial patch has stronger attack performance than the circular
adversarial patch, but the proposed RFENet still has strong robustness.

Table 5. Performance of each robust feature extraction component in RFENet for different datasets,
where the best results are shown in bold. (Report in mPA).

Baseline LRFM SSEM BFPM GCEM UAVid Semantic Drone Aeroscapes

! 21.53 19.86 22.45
! ! 43.26 (21.73 ↑) 38.47 (18.57 ↑) 45.94 (23.49 ↑)
! ! ! 63.82 (20.56 ↑) 59.13 (20.66 ↑) 68.70 (22.76 ↑)
! ! ! ! 79.51 (15.69 ↑) 75.68 (16.55 ↑) 81.93 (13.23 ↑)
! ! ! ! ! 87.24 (7.73 ↑) 82.71 (7.03 ↑) 88.46 (6.53 ↑)

Table 6. The influence of adversarial patches with different sizes and shapes on the semantic
segmentation network, where the best results are shown in bold. (Report in mPA).

Method
Patch Size Patch Shape

15 × 15 30 × 30 45 × 45 60 × 60 75 × 75 90 × 90 Rectangle Circle

BSNet 73.16 62.41 48.75 31.57 27.71 20.62 18.64 24.38
MANet 72.47 63.85 47.18 38.45 26.32 21.87 19.85 25.97
AFNet 75.83 64.22 46.22 36.73 28.16 22.54 17.93 25.42

SSAtNet 76.15 61.4 47.86 35.94 29.34 21.25 18.77 26.85
MDANet 77.43 66.57 45.27 34.68 30.38 23.79 20.34 27.66
RFENet 84.36 84.16 83.64 83.51 82.97 82.68 83.05 84.22

5. Discussion

To more comprehensively and systematically analyze the impact of adversarial patches
on aerial image semantic segmentation models, we conducted different adversarial patch
attacks (LaVAN [16], QR-Patch [17], IAP [18], Patch-Wise [63], DiAP [64] and ImageNet-
Patch [65]) on all three datasets to construct adversarial patch test sets. As shown in
Table 7, the existing semantic segmentation network and the proposed REFNet obtain
better semantic segmentation results for clean sample datasets without patch attacks.
However, for the adversarial patch test set, these existing methods suffer from the severe
negative impact of adversarial patch attacks, making them not achieve the ideal semantic
segmentation performance. For the comparison of adversarial patches, we can see from
Table 7 that all the adversarial patch attacks have produced attack effects, especially QR-
Patch attack [17], which has the most serious impact on the semantic segmentation model.
It is worth noting that our proposed RFENet achieves more than 80% mPA metrics on
all three adversarial patch test sets generated by different patch attack methods, which is
significantly better than other existing methods. In addition, we can observe from Table 7
that the proposed RFENet still has a slight advantage on the clean sample test set without
patch attacks, and its mPA metric reaches 89.47%, 85.26% and 86.75%, respectively. This
phenomenon further illustrates that the proposed method can resist patch attacks and
obtain better semantic segmentation performance. The reason why the proposed method
has better performance is that we extracted robust features that can suppress adversarial
patches and enhanced the representation of these features in the CNNs feature extraction
process. In addition, these robust features are also valuable for obtaining high-precision
semantic segmentation results. Therefore, our proposed method has significant advantages
for aerial image semantic segmentation under adversarial patch attacks.
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Table 7. Quantitative comparison results on the clean sample test sets and the adversarial patch test sets
generated by different attack methods, where the best results are shown in bold. (Report in mPA).

Dataset Patch Attack BSNet MANet AFNet SSAtNet MDANet RFENet

Clean Sample 77.52 78.13 76.84 79.37 81.42 89.47
LaVAN 23.41 (54.11 ↓) 24.82 (53.31 ↓) 25.74 (51.10 ↓) 28.05 (51.32 ↓) 28.74 (52.68 ↓) 88.63 (0.84 ↓)

QR-Patch 16.27 (61.25 ↓) 17.58 (60.55 ↓) 21.34 (55.50 ↓) 20.95 (58.42 ↓) 23.65 (47.77 ↓) 87.36 (2.11 ↓)
IAP 19.73 (57.79 ↓) 21.46 (56.67 ↓) 23.65 (53.19 ↓) 24.83 (54.54 ↓) 25.47 (55.95 ↓) 87.42 (2.05 ↓)

Patch-Wise 17.35 (60.17 ↓) 18.94 (59.19 ↓) 24.37 (52.47 ↓) 25.43 (53.94 ↓) 24.69 (56.73 ↓) 88.06 (1.41 ↓)
DiAP 18.32 (59.20 ↓) 19.57 (58.56 ↓) 22.38 (54.46 ↓) 24.94 (54.43 ↓) 25.12 (56.30 ↓) 88.59 (0.88 ↓)

UAVid

Image-Patch 21.64 (55.88 ↓) 22.75 (55.38 ↓) 24.06 (52.78 ↓) 23.87 (55.50 ↓) 23.43 (57.99 ↓) 89.34 (0.13 ↓)

Clean Sample 68.41 69.20 71.42 73.65 75.27 85.26
LaVAN 20.74 (47.67 ↓) 22.64 (46.56 ↓) 23.42 (48.00 ↓) 24.96 (48.69 ↓) 25.87 (49.40 ↓) 84.75 (0.51 ↓)

QR-Patch 12.43 (55.98 ↓) 13.71 (55.49 ↓) 14.26 (57.16 ↓) 15.92 (57.73 ↓) 16.57 (58.70 ↓) 83.15 (2.11 ↓)
IAP 18.94 (49.47 ↓) 19.37 (49.83 ↓) 21.58 (49.84 ↓) 20.95 (52.70 ↓) 22.46 (52.81 ↓) 83.98 (1.28 ↓)

Patch-Wise 22.35 (46.06 ↓) 23.89 (45.31 ↓) 24.17 (47.25 ↓) 25.48 (48.17 ↓) 24.56 (50.71 ↓) 84.32 (0.94 ↓)
DiAP 16.54 (51.87 ↓) 17.68 (51.52 ↓) 18.21 (53.21 ↓) 19.54 (54.11 ↓) 19.86 (55.41 ↓) 83.65 (1.61 ↓)

Semantic
Drone

Image-Patch 24.45 (43.96 ↓) 26.87 (42.33 ↓) 26.42 (45.00 ↓) 27.63 (46.02 ↓) 28.75 (46.52 ↓) 84.93 (0.33 ↓)

Clean Sample 74.56 76.34 77.85 78.46 79.35 86.75
LaVAN 22.37 (52.19 ↓) 23.56 (52.78 ↓) 24.97 (52.88 ↓) 26.30 (52.16 ↓) 27.63 (51.72 ↓) 86.14 (0.61 ↓)

QR-Patch 11.38 (63.18 ↓) 12.68 (63.66 ↓) 13.04 (64.81 ↓) 14.57 (63.89 ↓) 15.62 (63.73 ↓) 84.52 (2.23 ↓)
IAP 19.26 (55.30 ↓) 21.79 (54.55 ↓) 20.35 (57.50 ↓) 22.84 (55.62 ↓) 23.74 (55.61 ↓) 85.64 (1.11 ↓)

Patch-Wise 15.06 (59.50 ↓) 17.93 (58.41 ↓) 18.24 (59.61 ↓) 19.78 (58.68 ↓) 21.35 (58.00 ↓) 86.45 (0.30 ↓)
DiAP 17.35 (57.21 ↓) 18.89 (57.45 ↓) 19.24 (58.61 ↓) 18.73 (59.73 ↓) 20.26 (59.09 ↓) 85.92 (0.83 ↓)

Aeroscapes

Image-Patch 21.52 (53.04 ↓) 22.76 (53.58 ↓) 23.85 (54.00 ↓) 24.67 (53.79 ↓) 25.92 (53.43 ↓) 86.57 (0.18 ↓)

6. Conclusions

In this study, we systematically explored the adversarial patch attacks in aerial image
semantic segmentation and proposed an aerial image semantic segmentation network
with better defense and semantic segmentation performance. We first analyzed the threat
of adversarial patches to aerial image semantic segmentation and demonstrated that the
existence of adversarial patches destroys the performance of existing aerial image semantic
segmentation networks. Then, we studied in detail the “robust features” that have a
suppressive effect on adversarial patch attacks and analyzed the function of robust features
in defending against adversarial patches. Based on the advantages of these robust features
in defending against patch attacks, we proposed a robust feature extraction network for
aerial image semantic segmentation. The proposed RFENet consists of LRFM, SSEM, BFPM
and GCEM, which are used to obtain local features, semantic features, boundary features
and global features that are inhibitory to the adversarial patch, respectively. Extensive
experiments on three aerial image semantic segmentation datasets demonstrate that the
proposed method exhibits stronger resistance towards different adversarial patch attacks
compared with the existing semantic segmentation networks. In addition, the ablation
study further illustrated the contribution of each constructed robust feature extraction
component in resisting patch attacks and improving semantic segmentation accuracy. This
article reports the first study on defense against adversarial patch attacks under aerial image
semantic segmentation. It provides a possible solution for defense against adversarial patch
attacks at the DL model design level. In future work, we aim to introduce the concept
of robust features in adversarial patch detection and adversarial training to solve the
adversarial patch threat in aerial image semantic segmentation.
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