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Abstract: Drought poses a serious threat to agricultural production and food security in the context
of global climate change. Few studies have explored the response mechanism and lag time of
agricultural drought to meteorological drought from the perspective of cultivated land types. This
paper analyzes the spatiotemporal evolution patterns and hysteresis relationship of meteorological
and agricultural droughts in the middle and lower reaches of the Yangtze River in China. Here, the
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index products and surface
temperature products were selected to calculate the Temperature Vegetation Dryness Index (TVDI)
from 2010 to 2015. Furthermore, we obtained the Standardized Precipitation Evapotranspiration Index
(SPEI) and the Palmer Drought Severity Index (PDSI) for the same period. Based on these indices,
we analyzed the correlation and the hysteresis relationship between agricultural and meteorological
drought in rainfed and irrigated arable land. The results showed that, (1) compared with SPEI,
the high spatial resolution PDSI data were deemed more suitable for the subsequent accurate and
scientific analysis of the relationship between meteorological and agricultural droughts. (2) When
meteorological drought occurs, irrigated arable land is the first to experience agricultural drought, and
then alleviates when the drought is most severe in rainfed arable land, indicating that irrigated arable
land is more sensitive to drought events when exposed to the same degree of drought risk. However,
rainfed arable land is actually more susceptible to agricultural drought due to the intervention of
irrigation measures. (3) According to the cross-wavelet transform analysis, agricultural droughts
significantly lag behind meteorological droughts by about 33 days during the development process
of drought events. (4) The spatial distribution of the correlation coefficient between the PDSI and
TVDI shows that the area with negative correlations of rainfed croplands and the area with positive
correlations of irrigated croplands account for 77.55% and 68.04% of cropland areas, respectively. This
study clarifies and distinguishes the details of the meteorological-to-agricultural drought relationship
in rainfed and irrigated arable land, noting that an accurate lag time can provide useful guidance for
drought monitoring management and irrigation project planning in the middle and lower reaches of
the Yangtze River.

Keywords: TVDI; PDSI; drought; meteorological drought; spatiotemporal evolution; lag

1. Introduction

Drought is a phenomenon that occurs when a region breaks the balance of precipita-
tion and evapotranspiration over a long period, resulting in the loss of soil moisture and
crops or the reduction of surface runoff [1]. The frequency and intensity of droughts show
an increasing trend due to the long duration and wide range of influence [2–4]. Drought
has caused immeasurable effects on the ecological environment and agricultural produc-
tion, thus seriously restricting the sustainable development of society [5–8]. A drought is
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generally defined by the international meteorological community as a “prolonged precipi-
tation deficit or significant precipitation shortage” and can be divided into four categories:
meteorological drought, agricultural drought, hydrological drought, and socioeconomic
drought, according to the impact type and scope [9–13]. These four types of droughts are
interrelated, and the meteorological drought, as the source and basis of the other three
droughts, refers to the unbalanced state of water gain and loss caused by the mismatch
between evaporation and precipitation [12–17]. Agricultural drought is a condition that
the soil water content cannot meet the needs of plant growth, resulting in a plant water
shortage [18]. Although the mechanisms of meteorological and agricultural droughts are
different, they have a certain response relationship between them [12–14,16,19]. Therefore,
various types of drought monitoring methods and indices have been proposed to describe
the changing characteristics or degree of drought development quantitatively.

Meteorological drought monitoring and remote sensing drought monitoring are two
common methods of drought monitoring [20–26]. Traditional meteorological drought
monitoring usually selects suitable drought indicators to determine the time and extent of
droughts based on the data obtained from meteorological stations, agricultural stations,
hydrological stations, and other stations, such as the standardized precipitation index
(SPI) [27,28], the precipitation anomaly percentage (Pa) [29], the standardized precipitation
evapotranspiration index (SPEI) [30], the precipitation Z-index [28], and the Palmer drought
severity index (PDSI) [31–33]. However, the occurrence and spatiotemporal characteristics
of drought are complex, and when coupled with scattered ground stations and poor repre-
sentative observation data, it makes it difficult to monitor large-scale droughts quickly and
accurately [34–37]. Among them, due to the clear physical meaning and the comprehensive
consideration of precipitation and temperature, PDSI is especially suitable for monitoring
meteorological drought on a longer time scale and has been widely used in China [38–41].

In addition, as a significant parameter for early drought prediction and monitoring,
the drought index can qualitatively determine the development process of drought over
a certain period. Therefore, remote sensing technology can be used to calculate ground
object parameters such as soil moisture, land surface temperature, crop growth status,
and vegetation coverage ratio [42,43]. By establishing a remote sensing drought index
model, we can evaluate and monitor the evolution of drought on large spatiotemporal
scales [44,45]. Common remote sensing drought indices include the Normalized Difference
Vegetation Index (NDVI) [46], Enhanced Vegetation Index (EVI) [47], Vegetation Health
Index (VHI) [48,49], Temperature Vegetation Drought Index (TVDI) [50], (Modified) Per-
pendicular Drought Index (MPDI/PDI) [51–55], Temperature Condition Index (TCI) [56],
Drought Severity Index (SDI) [57], Crop Water Stress Index (CWSI) [58], Water Deficit
Index (WDI) [59], Surface Water Supply Index (SWSI) [60–62], the Vegetation Supply Water
Index (VSWI) [63], etc. Each index has a different focus. Most researchers have shown
that the combination of NDVI and Land Surface Temperature (LST) can reveal information
about drought conditions. Due to the accurate estimation of surface soil moisture, the
TVDI has become one of the most important parameters for remote sensing agricultural
drought monitoring [36,64–67]. For example, Shashikant et al. [68] calculated the TVDI
based on Landsat 8 and classified the severity of agricultural drought in Malaysia. In order
to improve the accuracy of soil moisture inversion by the TVDI, Wang et al. [69] assessed
the effects of the TVDI calculated by different vegetation indices in drought monitoring in
Northeast China.

Agricultural drought is affected by meteorological drought directly, which occurs later
than meteorological drought, and there is usually a hysteresis relationship between them.
Assessing meteorological drought is simply based on the available global precipitation data
and climatic parameters. However, the development of agricultural drought is relatively
complex, and causes serious agricultural economic losses every year, threatening food
security and sustainable agricultural development. There may be uncertainties between
meteorology and agricultural droughts due to various meteorological or climate factors,
such as different climate regions, drought indices, or climate models. Seidenfaden et al. [70]
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estimated and compared several drought indices, and explored the linkage between the
drought and changing climate to evaluate the potential impact of uncertainties from climate
model choices on the indices. Kuśmierek-Tomaszewska et al. [71] found the relationship
between meteorological and agricultural drought indicators is significant, which can allow
for the determination of crop water deficits from the indicators to guide irrigation needs in
the study area. Behrang Manesh et al. [72] investigated the relationship between meteoro-
logical and agricultural droughts in different climates of Iran during the growing season
based on the correlation analysis between SPEI and VHI. Furthermore, global scholars
have conducted extensive research exploring the response of agricultural drought to me-
teorological drought [73,74]. Tian et al. [75] constructed the Comprehensive Agricultural
Drought Index (CADI) based on the hysteresis effect of soil moisture on meteorological
factors and compared it with various other indices to evaluate and verify the degree of
drought. Hu et al. [76] calculated the time-lag relationships among meteorological, agri-
cultural, and hydrological droughts using the grey relational analysis method and the
SWAT model. However, most research has focused on the formation and spread of drought
in the whole region. For example, Li et al. [77] only calculated the propagation time of
meteorological droughts to agricultural droughts in typical rain-fed agricultural areas of
the Loess Plateau in China but ignored irrigated arable land. Alahacoon et al. [78] also
only monitored long-term drought in the entire region of Sri Lanka to assess the impact
on the country’s economy. Few researches have explored the response mechanism and
hysteresis relationship of agricultural drought to meteorological drought based on arable
land types and compared the differences between rainfed and irrigated arable land [16,79].
In the context of the increasing global warming; therefore, studying the evolution discipline,
formation, and transmission mechanism of meteorological drought to agricultural drought
have important reference value for promoting the development of the regional economy. In
addition, this study distinguishes between rainfed and irrigated cultivated land, which can
provide new ideas and directions for related drought researchers.

Agricultural production occupies an important position in the development of the
national economy. The middle and lower reaches of the Yangtze River, one of the most sig-
nificant grain-producing areas in China [80–83], are threatened by drought frequently due
to the extreme climate, irrigation, and topography in recent years [82]. In particular, about
56.96 million people and 58,120 square kilometers of crops were affected by the extreme
drought events due to the high temperatures and the abnormally low precipitation in the
summer of 2013, with a direct economic loss of CNY 36.64 billion [82]. Therefore, investi-
gating the transmission mechanism and lag time between meteorological and agricultural
droughts can provide an alternative method for studying the evolutionary characteristics
of agricultural drought.

This study mainly analyzes the temporal and spatial evolution pattern and hysteresis
relationship between meteorological drought and agricultural drought. The key research
objectives are as follows: (1) identify the drought events and analyze the applicability and
feasibility of the PDSI in monitoring meteorological drought, (2) analyze the potential of
the PDSI and TVDI to monitor meteorological and agricultural droughts in the middle
and lower reaches of the Yangtze River, (3) describe the impact degree of meteorological
droughts to agricultural droughts in rainfed and irrigated land, respectively, and (4) analyze
the lag relationship of rainfed and irrigated land between meteorological droughts and
agricultural droughts according to the cross-wavelet transform and Pearson’s correlation
analysis method. This study focuses on different types of arable land, which has a certain
reference value for promoting economic development in the middle and lower reaches of
the Yangtze River.

2. Materials and Methods
2.1. Study Area

The middle and lower reaches of the Yangtze River occupy the area north of the
Nanling, south of the Qinling mountains–HuaiHe River line, and east of the Wu Mountains
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(105◦E–123◦E, 25◦–34◦N). The region is in the subtropical monsoon climate zone, with an
altitude of 5–100 m, flat terrain, and plenty of rivers and lakes. It has sufficient precipitation,
about 1000–1400 mm per year, though it is unevenly distributed, resulting in frequent
droughts and floods [84]. The annual average temperature of the area is 14–18 ◦C. As one
of the three major plains in China, the middle and lower reaches of the Yangtze River is
a significant grain base and a production base for important economic crops such as oil,
hemp, and cotton, making it a major agricultural area and the most economically developed
zone in China [80–83,85].

Based on the two high temperature and severe drought events in southern China
during the spring and summer of 2011 and 2013 summer, the important provinces involved
in the disaster were selected, including Chongqing, Guizhou, Hubei, Hunan, Anhui,
Jiangxi, and Zhejiang. According to the United States Geological Survey’s 1-km Global
Food Security Support Analysis Data (GFSAD) [86–89], Northern Anhui, Northern Hubei,
Central Chongqing, Western Guizhou, and the southeastern coastal areas of Zhejiang are
primarily irrigated agriculture, while Hunan, Jiangxi, and Southern Hubei are dominated
by rainfed agriculture. The geographical location, elevation, and distribution of agricultural
land categories in the study area are illustrated in Figure 1.
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2.2. Data

The remote sensing data selected is the Moderate-resolution Imaging Spectroradiome-
ter (MODIS) satellite data in this paper, sourced from the National Aeronautics and Space
Administration (NASA), including the NDVI product MOD13Q1 and the land surface
temperature (LST) product MOD11A2, with the spatial resolutions of 250 m × 250 m and
1 km × 1 km, respectively. The meteorological drought index selected and compared in
this article are the Standardized Precipitation-Evapotranspiration Index (SPEI) [30,90,91]
and the Palmer Drought Severity Index (PDSI) [31–33], which are respectively derived from
the global SPEI database and the TerraClimate database [92]. The SPEI database provides
long-term and reliable information about global drought conditions with a 0.5-degree
spatial resolution and a monthly temporal resolution. It can provide SPEI data on different
timescales from 1 to 48 months. The PDSI estimates soil moisture supply and demand
based on precipitation and temperature and is used to study the temporal and spatial
characteristics of drought to monitor large-scale droughts. Both SPEI and PDSI are widely
used in meteorological drought monitoring. SPEI with multi-scale features can help us
demonstrate the accuracy of drought events. However, the lower spatial resolution of
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SPEI data (50 km) may lead to large uncertainties for further analysis. For the middle and
lower reaches of the Yangtze River in China, the PDSI is mainly chosen for subsequent
research and analysis due to its higher spatial resolution. Other auxiliary data include
basic geographic data, such as administrative divisions and digital elevation models. Ac-
cording to the drought events that occurred in 2011 and 2013 recorded in the historical
disaster database of the National Disaster Reduction Center of the Ministry of Emergency
Management, the data from 2010 to 2015 were selected.

Using the Google Earth Engine (GEE) platform and the study area vector files, the
MOD11A2 and MOD13Q1 data for the whole year of 2010–2015 were obtained. The
MOD11A2 data were resampled to a 250 m spatial resolution before downloading based
on GEE. To monitor and determine the accuracy of drought events, this study downloaded
the SPEI data on four different time scales and analyzed the sensitivity of the SPEI data on
different timescales to drought events. High spatial resolution PDSI data were downloaded
as the main meteorological drought index data in this research. All PDSI data were
resampled from 4 km to 250 m spatial resolution by using the “Nearest” method in the
Resample module based on ArcGIS 10.8 software. The Global Food Security Support
Analysis Data Crop Mask Global 1-km dataset (GFSAD1KCM), which can distinguish
between rainfed croplands and irrigated croplands, was superimposed to investigate the
comprehensive response of different agricultural regions to meteorological and agricultural
droughts. Details of the remote sensing data and auxiliary data are shown in Table 1.

Table 1. Details of the remote sensing datasets and auxiliary datasets.

Data Set Coverage Period Frequency Resolution

MOD13Q1 Global 2010–2015 16-daily 250 m × 250 m
MOD11A2 Global 2010–2015 8-daily 1 km × 1 km

SPEI Global 2010–2015 Monthly 0.5◦ × 0.5◦

PDSI Global 2010–2015 Monthly 4 km × 4 km
GFSAD1KCM Cropland extent 2010 / 1 km × 1 km

DEM Global / / 30 m × 30 m

2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI) and Palmer Drought
Severity Index (PDSI)

The standardized precipitation evapotranspiration index (SPEI), which was first pro-
posed in 2010, is used to characterize the state of dry and wet climates [30]. Based on
the monthly surplus and deficit of moisture, the index can comprehensively consider the
effects of precipitation, evaporation, and transpiration to reasonably evaluate drought on
multiple timescales. As a dry–wet index according to the potential evapotranspiration
(PET) and precipitation (P), the SPEI has been widely used in drought studies worldwide.
The calculation process of the SPEI is given by:

First, the cumulative series of precipitation Pi and potential evapotranspiration PETi
at different timescales are established:

Dk
n = ∑k−1

i=0 [
2(i + 1)
k(k + 1)

(Pn−i − PETn−i)], n ≥ k, (1)

where i and k are the month and timescale (months), and n is the number of calculations.
The PET is calculated following the Thornthwaite method, Penman method, etc.

Then, the log-logistic probability density function is utilized to fit the established
water deficit series D, representing the difference between P and PET, and the cumulative
probability for a given timescale can be calculated by the distribution function:

F(x) = [1 +
(

α

x− γ

)β

]−1, (2)
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where α, β, and γ are scale, shape, and origin parameters, respectively, which can be gained
from the Linear moment method.

Finally, the SPEI is obtained by transforming the fitted water deficit series to a standard
normal distribution:

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 , W =
√
−2ln(P), (3)

When P ≤ 0.5, P = 1 − F(x). When P > 0.5, P = 1 − P and the sign of the
SPEI is reversed. The other constants in the formula are: C0 = 2.515517, C1 = 0.802853,
C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

The principle of PDSI is the water balance equation, that is, in the case of “climatically
appropriate for existing conditions”, the precipitation (P̂) is equal to the sum of evapo-
transpiration (ÊT), runoff (R̂O), and soil moisture exchange. The soil moisture exchange
includes the soil moisture recharge (R̂) and the soil moisture loss (L̂). The calculation
process of the PDSI is given by:

P̂ = ÊT + R̂ + R̂O− L̂, (4)

d = P− P̂ (5)

Z = Kj·d (6)

PDSIi = a·PDSIi−1 + b·Zi (7)

where P̂ is the monthly precipitation amount under the climatically appropriate for existing
conditions; d is the water deficiency, P is the actual precipitation amount, Z is the water
deficit index, and Kj is the climate correction coefficient for month j of the year. The a = 0.897
and b = 1/3 are the empirical coefficients. As a dry–wet index according to temperature
and precipitation, the PDSI has been widely used in drought studies worldwide. The
SPEI and PDSI values are classified as shown in Table 2 for distinguishing the drought
categories [31,93]. The overall flow chart of this research is shown in Figure 2.
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Figure 2. The flow chart of the methodology. SPEI: Standardized Precipitation Evapotranspira-
tion Index. PDSI: Palmer Drought Severity Index. TVDI: Temperature Vegetation Drought Index.
TVDI-rain/irr: TVDI of rainfed/irrigated arable land. MOD13Q1/MOD11A2: The satellite data.
GFSAD1KCM: Global Food Security support Analysis Data.
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Table 2. Different levels of the SPEI and PDSI.

SPEI Values PDSI Values Dryness/Wetness Levels

SPEI ≤ −2.0 PDSI ≤ −4.0 Extreme drought
−2.0 ≤ SPEI < −1.5 −4.0 ≤ PDSI < −3.0 Severe drought
−1.5 ≤ SPEI < −1.0 −3.0 ≤ PDSI < −2.0 Moderate drought
−1.0 ≤ SPEI < −0.5 −2.0 ≤ PDSI < −1.0 Mild drought
−0.5 ≤ SPEI < 0.5 −1.0 ≤ PDSI < 1.0 Normal or wet
0.5 ≤ SPEI < 1.0 1.0 ≤ PDSI < 2.0 Mild wet
1.0 ≤ SPEI < 1.5 2.0 ≤ PDSI < 3.0 Moderate wet
1.5 ≤ SPEI < 2.0 3.0 ≤ PDSI < 4.0 Severe wet

SPEI ≥ 2.0 PDSI ≥ 4.0 Extreme wet

2.3.2. Temperature Vegetation Drought Index (TVDI)

The Temperature Vegetation Drought Index (TVDI), which was proposed based on
the simplified NDVI-LST two-dimensional feature space in 2002 [50], is utilized to estimate
the land surface soil moisture and monitor drought:

TVDI =
(LST − LSTmin)

LSTmax− LSTmin
, (8)

LSTmin = a + b× NDVI, (9)

LSTmax = c + d× NDVI, (10)

Here, NDVI is the Normalized Vegetation Index, which can reflect the physiological
state of vegetation. Its calculation formula is as follows:

NDVI =
BNIR − BR
BNIR + BR

, (11)

where BNIR and BR are the reflectivities in the near-infrared band and the red band, respectively.
The land surface temperature (LST) is a parameter that reflects the water shortage

and soil moisture conditions during the vegetation growth period. The definition of TVDI
is shown in Figure 3, according to the NDVI and LST two-dimensional spatial scatter
plot. For each NDVI pixel value of a single image in the region, extracting the minimum
and maximum values of the land surface temperature corresponding to each NDVI pixel
(LSTmin, LSTmax), respectively. All LSTmin and LSTmax values were linearly fitted
separately to obtain the wet edge and dry edge Equations (9) and (10) in the feature space,
where a and c are the intercepts of the wet and dry edges, respectively, and b and d are the
slopes of the wet and dry edges, respectively.

In Figure 3, the TVDI value of the pixel point P is expressed as the ratio of X and
Y, where X represents the difference between the observed surface temperature of the
point P and the minimum temperature expressed in Equation (9), and Y represents the
difference between the maximum temperature expressed in Equation (10) and the minimum
temperature at point P in this area. Therefore, the TVDI can be defined as:

TVDI =
LST − (a + b× NDVI)

(c + d× NDVI)− (a + b× NDVI)
, (12)

The TVDI values are negatively correlated with soil moisture, ranging from 0 to 1.
When TVDI = 1, the pixels are on the dry edge, with the lowest soil moisture and a high
degree of drought. When TVDI = 0, the pixels are located on the wet edge, and the soil is
less affected by drought. The classification of TVDI values is shown in Table 3, according
to the common division rules of TVDI values for MODIS data [10,94]. In addition, the
influence of clouds needs to be considered in the TVDI calculation process. Here, this study
mainly focuses on the arable land area, which accounts for about 50% of the total study
area. Meanwhile, we deleted all cloud contamination pixels to calculate TVDI, and used
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the inverse distance weighted interpolation method to fill the area, which greatly reduced
the influence of clouds on the research results.
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Table 3. Different levels of the Temperature Vegetation Drought Index.

TVDI Drought Levels Soil moisture status

0 < TVDI < 0.46 No drought Wet or normal land surface, no drought

0.46 ≤ TVDI < 0.57 Mild drought Land surface with less evaporation and near
land surface with dry air

0.57 ≤ TVDI < 0.76 Moderate drought Dry soil surface and wilted near land surface
vegetation leaves

0.76 ≤ TVDI < 0.86 Severe drought Thicker dry soil layers and dry vegetation
0.86 ≤ TVDI < 1 Extreme drought Dry or dead land surface vegetation

2.3.3. Cross-Wavelet Transform and Wavelet Coherence

A Cross-Wavelet Transform (XWT) and Wavelet Coherence (WTC) can combine time
and frequency to analyze two time series datasets [74,95]. For two discrete time sequences
xn and yn, the XWT is defined as WXY=WXWY∗, where * indicates their complex conju-
gate. The cross-wavelet power is defined as

∣∣WXY
∣∣, and the complex argument arg (WXY)

represents the local relative phases of Xn and Yn at the time–frequency domain. PX
k and

PY
k represent the cross-wavelet power and background power spectrum of the two time

sequences, respectively. The theoretical formula is as follows:

D(

∣∣WX
n (s)WY∗

n (s)
∣∣

σXσY
< P) =

Zv(p)
v

√
PX

k PY
k , (13)

where Zv(p) is the confidence level associated with the probability p of the probability
distribution function, which can be defined by the square root of two χ2 distributions. The
phase angle of the cross-wavelet is defined as:

α = arg(X, Y) = arg[∑n
i=1 cos(αi),∑n

i=1 sin(αi)]. (14)
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Wavelet coherence is used to evaluate the degree of coherence of the cross-wavelet
transform in the time–frequency space. It can be defined as the square of the absolute value
of the smoothed cross-wavelet spectrum, normalized by the smoothed wavelet power:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
· S
(

s−1|WY
n (s)|

2
) , (15)

where S is a smoothing operator:

S(W) = Sscale(Stime(Wn(s))), (16)

and Sscale and Stime represent the smoothing along the wavelet scale axis and time axis,
respectively. Their calculation method is as follows for the Morlet wavelet:

Sscale(W)|n = (Wn(s)× c2Π(0.6s))|n, (17)

Stime(W)|s = (Wn(s)× c
−t2

2s2
1 )

∣∣∣∣∣
s

, (18)

within which c1 and c2 are the determined normalization coefficients, and Π is the rectan-
gle function.

2.3.4. Correlation Coefficient and Correlation Analysis

A correlation analysis is a simple statistical method for measuring the strength of
the relationship between two variables and calculating their association. One of the most
relevant statistical concepts is the correlation coefficient. A correlation coefficient is a unit
of measurement that indicates the correlation intensity in the process of correlation analysis
of variables. It is usually represented by the symbol r, having values between −1 and 1.
The closer its absolute value is to 1, the stronger the correlation between the two variables
and vice versa.

Pearson’s correlation analysis can be used to examine the correlation between meteo-
rological and agricultural drought indices [96,97]. For this study, the correlation coefficient
between PDSI and TVDI in the middle and lower reaches of the Yangtze River can be
calculated from two perspectives:

(1) To explore the spatial correlation of the two indicators based on the pixel scale in
2010–2015, the formula for calculating the correlation coefficient is as follows:

Rxy =
∑n

i=1 [(xi −
_
x)(yi −

_
y)]√

∑n
i (xi −

_
x)2
√

∑n
i (yi −

_
y)2

, (19)

where Rxy represents the correlation coefficient between variables x and y, and xi and yi
are the PDSI and TVDI values of the ith year, respectively.

_
x and

_
y represent the six-year

average of the PDSI and TVDI, respectively.

(2) For a pair of single-phase images, the correlation coefficients between them can be
calculated by the following formula:

Rij =
∑N

k=1

[
(Zik − µi)

(
Zjk − µj

)]
√

∑N
k=1(Zik − µi)

2
√

∑N
k=1

(
Zjk − µj

)2
(20)

where i and j represent the PDSI and TVDI single-band images with N pixels, respectively.
Zik and Zjk are the values of their kth pixel, and µi and µj are the average values of the
whole image pixels, respectively. The lag time between meteorological and agricultural
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drought can be obtained by calculating and comparing the correlation coefficients of the
two indicators on different dates.

3. Results
3.1. Meteorological Drought Event Identification

The SPEI has multi-timescale features. Figure 4 shows the interannual variations of
the mean SPEI on the monthly (SPEI-1), quarterly (SPEI-3), semi-annual (SPEI-6), and
one-year (SPEI-12) timescales in the middle and lower reaches of the Yangtze River from
1960 to 2015. Obviously, the SPEI frequently changes on short timescales and tends to
stabilize as the timescale becomes longer. SPEI-1 shows the dry–wet state on a monthly
timescale, with frequent changes and large amplitudes. SPEI-3 reflects the dry–wet changes
in different seasons and is better than SPEI-1 in analyzing the annual drought conditions.
However, compared with SPEI-3, on the two timescales of SPEI-6 and SPEI-12, the dry
and wet changes in the study area are more obvious and gradually stabilize, which is
suitable for drought monitoring over a decade. By analyzing the SPEI changes of the four
timescales, the minimum SPEI values appeared in 2011 and 2013. Especially in SPEI-6
and SPEI-12, the drought situation around 2011 was particularly severe relative to recent
decades. Therefore, based on the long-term SPEI monitoring in the middle and lower
reaches of the Yangtze River, extreme drought events occurred in 2011 and 2013 on every
time scale, further emphasizing the important research value. However, compared with
the SPEI (about 50 km), the PDSI (4 km) with the higher spatial resolution is more suitable
for subsequent accurate and scientific analysis of the relationship between meteorological
drought and agricultural drought based on the spatial region and pixel scale. The PDSI
data from 2010 to 2015 were obtained as the meteorological drought index in this research.
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3.2. Spatiotemporal Distribution Characteristics of Drought Based on the PDSI and TVDI

The response of the land surface to droughts is affected by various factors, the most
important of which is the land surface moisture content. Rain-fed arable land and irrigated
arable land are two significant types of agricultural land, respectively. The soil moisture
of rain-fed arable land entirely depends on natural precipitation to meet the water needs
of crops completely. However, artificial irrigation projects and measures are used to
supplement the water for crops due to factors such as insufficient precipitation and high
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temperatures throughout the year. Therefore, the two situations need to be discussed
separately in the subsequent analysis.

3.2.1. Spatiotemporal Distribution Characteristics of the PDSI

According to the monthly average PDSI value in the middle and lower reaches of the
Yangtze River from 2010 to 2015, the average PDSI value in 2011 was the lowest at −3.34,
followed by −1.61 in 2013, and the highest in 2015 was 0.94 (Figure 5). From March to
December in 2011, the PDSI values were all lower than −2; this was especially the case
from April to December, wherein the values were generally lower than the annual average,
indicating that continuous meteorological droughts occurred in spring and summer in the
study area. The drought situation in 2013 was also prominent, and the PDSI values from
April to December mostly showed moderate to severe drought. Compared with 2011, the
middle and lower reaches of the Yangtze River mainly experienced meteorological drought
during the summer of 2013.
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Figures 6 and 7 show the monthly and 3-month spatial distribution of PDSI in the
middle and lower reaches of the Yangtze River in 2011 and 2013, respectively. Obviously,
the meteorological drought in 2011 was more severe than in 2013. From January 2011,
moderate to severe drought gradually developed in Northern Chongqing, northern Hubei,
northern Anhui, and most of Guizhou and steadily spread to the south and east. The severe
to extreme drought extended to almost the entire middle and lower reaches of the Yangtze
River from April to May. In summer, the drought tended to subside slightly. From June
to September, the severe to extreme drought was serious except for Anhui, Zhejiang, and
some parts of Jiangxi. It was not until November that the meteorological drought in the
middle and lower reaches of the Yangtze River was significantly relieved.

Figure 7 shows the difference more clearly in meteorological drought between the two
years. Unlike the continuous drought in the spring and summer of 2011, the meteorological
drought in 2013 mainly occurred in the summer. In spring, small areas in Guizhou and
Hubei first experienced meteorological drought. The moderate to severe meteorological
drought was observed in Southern Guizhou, most of Hubei, and Northern Chongqing
in June 2013. With the rapid development of drought from July to August, severe to
extreme meteorological drought occurred in most areas of Guizhou and Hubei and spread
to Zhejiang and Jiangxi in September and October. The PDSI continued to show severe
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meteorological drought in the northwest part of the middle and lower reaches of the
Yangtze River until the end of 2013. Figure 8 shows the spatial distribution of the annual
average of the PDSI in the middle and lower reaches of the Yangtze River from 2010 to
2015. The meteorological drought was the most severe in 2011. Followed by 2013 and 2012,
mainly concentrated in Guizhou and Hubei. Compared with the milder drought in 2014,
2010 showed a spatial pattern of wet in the east and dry in the west. In 2015, there was
almost no drought.
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3.2.2. Spatiotemporal Distribution Characteristics of TVDI

Using the two-dimensional feature space of the LST and NDVI, the dry edge and wet
edge were fitted to obtain the TVDI from 2010 to 2015, which was used as the agricultural
drought index in the middle and lower reaches of the Yangtze River. The TVDI of rain-
fed (TVDI-rain) and irrigated arable land (TVDI-irr) were extracted separately (Figure 9).
According to Figure 9, the minimum monthly average of TVDI-rain appeared in 2010 and
2015, indicating that compared with other years, the droughts in 2010 and 2015 were the
lightest. Furthermore, the annual average value of TVDI-rain in 2011 was the highest at
0.699, followed by 0.689 in 2013, and the minimum value was 0.641 in 2015, indicating that
the rain-fed arable land in the study area had the most severe drought in 2011 and 2013,
which was consistent with the results indicated by the SPEI. Compared with TVDI-rain,
the average TVDI-irr in each year from 2010–2015 is smaller than TVDI-rain, which proves
that due to the existence of irrigation measures, the drought condition of irrigated arable
land is weaker than that of rainfed arable land. In particular, the TVDI-irr values frequently
fluctuated in 2011 and 2013, indicating that, as the meteorological drought intensified and
precipitation decreased, the frequency and intensity of irrigation measures also increased.
Therefore, the monthly and 3-month spatial distributions of TVDI-rain and TVDI-irr in 2011
and 2013 are shown in Figures 10–12, and the images in January and December without
crop growth are removed.

Obviously, the meteorological drought developed rapidly and gradually caused the
occurrence of agricultural drought due to the severe lack of precipitation and the high
temperatures in the middle and lower reaches of the Yangtze River in the spring and
summer of 2011 and the summer of 2013. From the end of February to the beginning
of March in 2011, large-scale rain-fed crops during the planting period were in a state
of moderate to severe water shortage in Guizhou, Chongqing, Hubei, and Anhui. In
late March, most of the TVDI-rain values were above 0.57, and some areas reached 0.86,
showing extreme drought. In April and May, the drought was relieved, in a relative sense,
but western Guizhou and Chongqing were still severely dry. Compared with the rain-fed
arable land, the irrigated arable land suffered much less drought. From June to August
in summer, as the temperature gradually increased, severe to extreme drought conditions
spread from the west to most of Hunan and Jiangxi, Central Zhejiang, and Southern Anhui.
It was not until the harvest period, from the end of October to November, that the drought
in the middle and lower reaches of the Yangtze River tended to disappear.
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Figure 9. The average value of the TVDI in the middle and lower reaches of the Yangtze River from
2010 to 2015, with a temporal resolution of 16 days. The images without crop growth in January and
December were removed. (a) The TVDI of rain-fed arable land (TVDI-rain). (b) The TVDI of irrigated
arable land (TVDI-irr).

Unlike the continuous drought in the spring and summer of 2011, the drought event
in the middle and lower reaches of the Yangtze River in 2013 lasted for a relatively short
time. From February to June, the overall dry and wet conditions in the study area were
stable, and severe drought only occurred in parts of Guizhou and Hunan in early April. In
mid-to-late June, large-scale irrigated arable land was first affected by drought in Northern
Anhui and Northeastern Hubei, with the TVDI reaching above 0.76 and even 0.8 in some
areas, showing extreme drought. While the drought in rainfed arable land was dominant
in Southern Hubei, drought in Hunan, Jiangxi, and Zhejiang did not occur until mid-July.
Especially in mid-August, severe or extreme drought occurred in most areas of Guizhou
and Hunan. However, the drought of irrigated arable land decreased at this time, indicating
that although irrigated arable land is more sensitive to drought events, artificial irrigation
can alleviate the impact of drought and establish a non-drought condition. From mid-
August to early September, the drought was relieved, and the range of extreme drought
was reduced due to the precipitation brought by the southwest monsoon and typhoon
“Utor”. From mid-September to October, however, the drought began to intensify and
expand in parts of Hunan, Jiangxi, and Zhejiang, while the drought in the middle and
lower reaches of the Yangtze River continued until mid-to-late October and tended to end.

According to Figure 12a, compared with 2013, the agricultural drought of rain-fed
arable land in 2011 was more severe in spring and milder in summer. However, for irrigated
arable land, the degree of agricultural droughts was similar in the spring and summer of
2011 but significantly different in 2013 (Figure 12b). The results are consistent with the
change in meteorological drought, proving the propagation effect from meteorological
droughts to agricultural droughts. Affected by meteorology and precipitation, the response
results of rain-fed arable land were consistent in different periods. However, irrigated
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arable land is more sensitive to severe meteorological drought. Figure 13 shows the spatial
distribution of annual average of the TVDI from 2010 to 2015. Compared with irrigated
arable land, the agricultural drought degree of rainfed arable land has more obvious
differences between different years. On the one hand, irrigation can significantly alleviate
the stress of drought on crops and maintain a more stable dry and wet environment. On
the other hand, the drought situation of rain-fed arable land is inconsistently affected by
natural precipitation.
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Figure 10. Spatial distribution of the Temperature Vegetation Drought Index (TVDI) in the middle
and lower reaches of the Yangtze River in China in 2011, with a temporal resolution of 16 days. The
images without crop growth in January and December were removed. (a) The TVDI of rain-fed arable
land (TVDI-rain). (b) The TVDI of irrigated arable land (TVDI-irr).
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Figure 11. Spatial distribution of the Temperature Vegetation Drought Index (TVDI) in the middle
and lower reaches of the Yangtze River in China in 2013, with a temporal resolution of 16 days. The
images without crop growth in January and December were removed. (a) The TVDI of rain-fed arable
land (TVDI-rain). (b) The TVDI of irrigated arable land (TVDI-irr).
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Figure 12. Spatial distribution of 3-month average of the TVDI in the middle and lower reaches of the
Yangtze River in China in 2011 and 2013. The images without crop growth in January and December
were removed. (a) The TVDI of rain-fed arable land (TVDI-rain). (b) The TVDI of irrigated arable
land (TVDI-irr).
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Figure 13. Spatial distribution of annual average of the TVDI in the middle and lower reaches of the
Yangtze River in China from 2010 to 2015. The images without crop growth in January and December
were removed. (a) The TVDI of rain-fed arable land (TVDI-rain). (b) The TVDI of irrigated arable
land (TVDI-irr).

3.3. Correlation Analysis and the Lag Relationship between the PDSI and TVDI
3.3.1. Spatial Distribution of Correlation Coefficients from 2010 to 2015

Based on Equation (19), the spatial distribution of the correlation coefficient between
the PDSI and TVDI based on pixel scale in the middle and lower reaches of the Yangtze
River from 2010 to 2015 is shown in Figure 14. According to the statistical analysis, the
spatial correlation between PDSI-rain and TVDI-rain showed an overall negative correlation.
Among them, the area with a coefficient less than 0 is 414,144 square kilometers, accounting
for 77.55% of the total area of rainfed arable land. The spatial correlation coefficients of
PDSI-irr and TVDI-irr were positively correlated as a whole, and the area of the positive
correlation region was 62,861.81 square kilometers, accounting for 68.04% of the total area
of irrigated cultivated land.

Negative correlation coefficients represent opposite trends of the PDSI and TVDI,
indicating that agricultural drought strongly responds to the temporal and spatial changes
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in meteorology. Based on Figure 14a, the negative correlation between the two indices
for 77.55% of rain-fed arable land proves that agricultural drought also occurs with the
emergence of meteorological drought. On the contrary, the positive correlation between
the two indices for 68.04% of irrigated arable land represents that the PDSI and TVDI have
similar trends, indicating that agricultural drought did not occur or occurred later with the
appearance of the meteorological drought. However, the existence of some unavoidable
interference factors may affect the accuracy of the correlation coefficient in Figure 14, such
as weaker meteorological droughts in other years except 2011 and 2013, and for temporal
continuity, the months without vegetation growth in the study area are considered, etc.
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Figure 14. Spatial patterns of the correlation coefficient between the PDSI and TVDI based on
annual averages in the middle and lower reaches of the Yangtze River from 2010 to 2015. Passed
the significance test, with p < 0.05. (a) The PDSI and TVDI of rain-fed arable land. (b) The PDSI and
TVDI of irrigated arable land.
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The annual correlation curves between the PDSI and TVDI of rain-fed arable land and
irrigated arable land in Figure 15 are more illustrative and representative, further clarifying
the relationship between them. Obviously, the meteorological droughts of rain-fed arable
land were negatively correlated with agricultural droughts in 2010–2015, and the correlation
was most significant in 2011 and 2013. In other years, the relationship between the PDSI
and TVDI was relatively weak. However, for irrigated arable land, similar to Figure 14b, the
PDSI and TVDI showed different degrees of positive correlation in 2010–2015, indicating
crops were less threatened by drought and grew better due to the influence of artificial
irrigation measures, especially in 2010 and 2015.
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Figure 15. Correlation curves between the PDSI and TVDI of rain-fed arable land and irrigated arable
land based on month averages in the middle and lower reaches of the Yangtze River from 2010 to
2015. Passed the significance test, with p < 0.05.(a) The correlation curves of rain-fed arable land.
(b) The correlation curves of irrigated arable land.
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3.3.2. Cross-Wavelet Analysis

The cross-wavelet transform and wavelet coherence were used to deduce the relation-
ship between the PDSI and TVDI in the middle and lower reaches of the Yangtze River
(Figures 16 and 17). The WTC can reflect the correlation between the PDSI and TVDI in the
time–frequency domain, and XWT can analyze the lag relationship between the PDSI and
TVDI data.
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Figure 16. The cross-wavelet transform (XWT) between the PDSI and TVDI time series in the middle
and lower reaches of the Yangtze River from 2010 to 2015. The abscissa and ordinate represent the
year and period (month), respectively, and the color bar on the right is the wavelet energy. The arrows
indicate the relative phase relationship. (a) The XWT of the PDSI and TVDI in rain-fed arable land.
(b) The XWT of the PDSI and TVDI in irrigated arable land.
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Figure 17. The wavelet coherence (WTC) between the PDSI and TVDI time series in the middle and
lower reaches of the Yangtze River from 2010 to 2015. The abscissa and ordinate represent the year
and period (month), respectively, and the color bar on the right is the wavelet energy. The arrows
indicate the relative phase relationship. (a) The WTC of the PDSI and TVDI in rain-fed arable land.
(b) The WTC of the PDSI and TVDI in irrigated arable land.

In Figures 16 and 17, the thick contour represents significance at the 95% confidence
level against red noise, and the lighter black line is the cone of influence (COI) used to
remove the edge effects. The wavelet energy is represented by the color bar on the right.
The arrows indicate the relative phase relationship. When the PDSI and TVDI are in phase,
the phase angle is 0◦ and the arrow points to the right, indicating that the two indicators
are positively correlated. When PDSI and TVDI are in antiphase, the phase angle is 180◦

and the arrow points to the left, showing that the two indicators are negatively correlated.
Generally, there is a lag relationship between meteorological droughts and agricultural

droughts. In the cross-wavelet transform diagram, the lag time can be calculated according
to the angle pointed by the arrow. The specific calculation method of converting the phase-
angle to time lag can be implemented by using MATLAB software [95]. This method has
been validated and widely used in the research of the lag relationship of different time
series [73,75,98,99]. In general, compared with the irrigated arable land, the PDSI and
TVDI were more strongly correlated in rainfed arable land, showing a large-scale negative
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correlation, especially on a 12-month timescale. By calculating the average phase angle in
the XWT, the rain-fed arable land was −132.2◦, indicating that agricultural drought occurs
with an average lag of 33 days. However, irrigated cultivated land showed a large-scale
positive correlation, and the lag time could not be determined due to the influence of
irrigation measures.

3.3.3. The Correlation Coefficients between the PDSI and TVDI with Different Lag Times in
2011 and 2013

To further explore the lagged relationship between meteorological drought and agri-
cultural drought, a correlation analysis was performed on the PDSI and TVDI for rain-fed
and irrigated arable lands according to Equation (20). Based on the crop growth period and
drought events in the middle and lower reaches of the Yangtze River in 2011 and 2013, the
correlation coefficients between the PDSI and TVDI with different lag times were calculated
(Table 4), where the lag times were determined according to the temporal resolution of the
PDSI (one month) and TVDI (16 days).

Table 4. The correlation coefficients between the PDSI and TVDI.

Lag Time March April May June July August September October November

Rainfed croplands
of PDSI and TVDI

in 2011

No lag −0.39 −0.13 −0.10 0.11 0.04 0.17 −0.26 −0.25 −0.03
15-day lag −0.01 −0.06 −0.41 −0.13 0.01 −0.18 −0.53 −0.36 −0.16
30-day lag −0.14 0.10 0.16 0.04 −0.36 −0.51 −0.09 −0.07 −0.15
45-day lag −0.13 0.05 0.09 0.05 −0.07 −0.03 −0.05 −0.15 −0.23

Irrigated
croplands of PDSI
and TVDI in 2011

No lag −0.27 −0.06 −0.20 0.23 0.31 0.35 0.21 0.14 −0.05
15-day lag 0.03 −0.08 −0.01 0.12 0.25 −0.03 −0.02 −0.05 0.47
30-day lag −0.10 0.18 0.31 0.09 0.08 0.11 0.04 0.04 −0.25
45-day lag −0.06 0.08 0.38 −0.07 −0.03 0.00 0.07 −0.36 −0.24

Rainfed croplands
of PDSI and TVDI

in 2013

No lag −0.20 −0.21 −0.04 0.00 0.03 0.16 0.03 0.03 −0.09
15-day lag −0.18 −0.06 −0.17 −0.18 −0.13 −0.03 −0.22 −0.05 0.42
30-day lag −0.13 −0.06 −0.06 0.07 −0.30 −0.25 −0.19 −0.03 −0.01
45-day lag −0.01 −0.04 0.02 0.11 0.07 −0.15 0.10 0.00 0.13

Irrigated
croplands of PDSI
and TVDI in 2013

No lag −0.33 −0.29 −0.08 0.12 0.29 0.30 0.20 0.13 0.11
15-day lag −0.21 −0.22 −0.05 −0.32 −0.09 0.12 0.09 −0.33 0.23
30-day lag −0.22 −0.20 −0.01 −0.17 0.08 0.12 −0.10 −0.15 0.06
45-day lag −0.25 0.06 −0.11 0.35 0.15 0.12 −0.24 0.25

The lag times were determined based on the temporal resolution of the PDSI (one month) and TVDI (16 days),
with p < 0.05 serving as the criteria to pass the significance test.

For rain-fed arable land in 2011 and 2013, the correlation between the PDSI and TVDI
without lag time was relatively high during the planting and germination of vegetation
from March to April in the spring, indicating that crop growth, water demand, and the
dry–wet state are greatly affected by meteorological drought. In the peak season of crop
development, from May to September, the PDSI was more strongly correlated with the
TVDI. However, in 2011, the correlation coefficients between the PDSI and TVDI lagged by
15 days in May, June, and September and were −0.41, −0.13, and −0.53, respectively. This
indicates that agricultural drought occurred 15 days later than meteorological drought in
these three months, while the correlation coefficient with a lag of 30 days was −0.36 and
−0.51 in July and August 2011. Similarly, the crop drought in May–September 2013 lagged
behind the meteorological drought by about 15 days (May, June, and September) to 30 days
(July and August). In October, because of the low vegetation coverage of cultivated land
caused by the autumn harvest, the correlation between the PDSI and TVDI decreased.

Similar to rain-fed arable land, there was a strong correlation between the PDSI and
TVDI of irrigated arable land without a lag time in March–May in 2011 and 2013. However,
the correlation in May was obviously weaker than that of rainfed arable land, with a
correlation coefficient of −0.20 and −0.08, indicating that the vegetation germination and
heading stage were not significantly affected by meteorological drought due to the existence
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of artificial irrigation measures. From June to October, the PDSI had a strong positive
correlation with the TVDI, which was completely opposite to rainfed arable land. This was
especially the case in August when the correlation coefficient reached a maximum of 0.35
and 0.30. In general, the results showed that, although an extreme meteorological drought
occurred, the vegetation did not experience severe agricultural drought. On the contrary,
the physiological characteristics and growth of crops were robust and consummate, proving
that artificial irrigation measures and projects that supported the irrigation of cultivated
land reduced or even prevented the development and occurrence of agricultural drought.

4. Discussion

Based on the severe drought events in the middle and lower reaches of the Yangtze
River in the spring and summer of 2011 and the summer of 2013, the meteorological drought
index, PDSI, and the agricultural drought index, TVDI, in 2010–2015 were calculated in this
study. By using the methods of cross-wavelet change, wavelet coherence, and Pearson’s
correlation analysis, the spatiotemporal evolution patterns, correlation, and hysteresis
from meteorological to agricultural droughts were analyzed and discussed for rainfed
arable land and irrigated arable land. Such an analysis can support the identification and
classification of drought events and guide regional agricultural activities and production.

4.1. The Influence of Artificial Irrigation Measures on Agricultural Drought

There is a significant response relationship between meteorological drought and agri-
cultural drought. However, for irrigated croplands, even if severe meteorological drought
occurs, artificial irrigation measures can alleviate and prevent the occurrence of agricul-
tural drought. In this case, there may be a nonlinear relationship between meteorological
drought and agricultural drought compared to rainfed arable land. Cao [79] and Zhou
et al. [100] demonstrated the different responses of rainfed croplands and irrigated crop-
lands to meteorological drought and the importance of irrigation measures. However, few
studies have distinguished among them for comparative analysis. The drought-stressed
area shown by the PDSI illustrates that climate change may cause soil moisture deficits,
and some researchers have also proved that meteorological drought indicators play an
important role in monitoring and indicating drought in irrigated arable land [101–103],
but it does not consider the realities of agricultural production processes. The TVDI can
describe the actual agricultural drought conditions due to the combination of the LST and
NDVI. Therefore, we should fully consider the differences between rainfed and irrigated
arable land types when exploring the relationship between meteorological and agricultural
drought, especially in the critical stage of crop growth. The results in Section 3.3 serve to
demonstrate further the significance of this study in distinguishing between the two types
of croplands.

4.2. The Significance of Hysteresis Analysis of Agricultural Drought

The propagation time of meteorological drought to agricultural drought can be un-
derstood as the lag time of agricultural drought to meteorological drought. Thus, this
study discussed the hysteresis relationship between meteorological drought and agricul-
tural drought by combining cross-wavelet change and Pearson’s correlation analysis. The
maximum correlation coefficient method based on Pearson’s correlation analysis can judge
the spread of drought, but most studies concentrated on the propagation process of meteo-
rological drought to hydrological drought [104–106]. In fact, the spread of meteorological
drought to agricultural drought is more complex [12], and accurate monitoring of the lag
time is also particularly important.

In Section 3.3.3, the time with the largest correlation coefficient was taken as the lag
time of agricultural drought. The results showed that the lag of rain-fed cultivated land
is prominent, while the lag relationship of irrigated cultivated land is not obvious. The
main reason for the lag relationship is that the intervention of artificial irrigation mea-
sures prevented the propagation of meteorological drought to agricultural drought. Zhou
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et al. [100] also found that the propagation time from meteorological drought to agricultural
drought was shorter under drier conditions than in the case of wetter conditions, which
was confirmed by the results of this paper, and further clarifies the significance of analyzing
the hysteresis based on rain-irrigated cultivated land.

4.3. The Limitations of this Study

There are some limitations and deficiencies in this research:
(1) Only a single agricultural drought index TVDI and a single meteorological drought

index, the PDSI, were selected in this research, and there was no comparative analysis be-
tween different indices. In addition, the PDSI is more commonly used for drought analysis
on large time scales. Decades of PDSI and TVDI data can be supplemented for subsequent
long-term drought studies. Furthermore, various remote sensing or meteorological drought
indices can be used to compare and analyze the actual conditions of different drought types
or regions. There are differences in the drought monitoring effect of special indicators.
Despite that drought classification levels are only used to analyze the overall development
of drought, the uncertainty caused by the classification still needs to be considered seriously.
In fact, few researchers have investigated the applicability of existing drought indices under
different drought regimes in different regions. Therefore, further research needs to combine
multiple drought indices to improve the accuracy of drought monitoring. (2) There was a
lack of comprehensive consideration for the sensitivity of different vegetation species to the
TVDI and PDSI due to the differences in the growth periods of crops. Therefore, the study
area can be further subdivided according to the crop planting range. When combined with
the index monitoring results, the analysis of both the drought conditions and their causes
can be more accurately portrayed.

(3) The representativeness of the classification base map of rainfed and irrigated
cultivated land has not been verified, and the quality of the base map will greatly affect
the accuracy of various indicators in subsequent research. Therefore, it is necessary to
carefully select the arable land classification maps. The comparison of various datasets
and the accurate distribution information of irrigated arable cropland become the primary
objective of the next research paper.

5. Conclusions

With an increasing global warming trend, monitoring drought disasters has become
particularly scientific and persistent. This is especially the case for agricultural droughts,
which seriously threaten agricultural production and food security. Therefore, monitoring
and predicting agricultural drought events represent a significant and lasting subject. As a
large-scale data source, satellite remote sensing data provide strong support for identifying
and analyzing drought disasters. The proposal of multiple drought indices can make it
easier to analyze the temporal and spatial evolution of drought scientifically. The PDSI and
TVDI were selected as the meteorological and agricultural drought indices for the study,
and the major conclusions are as follows:

(1) According to the SPEI monitoring on different time scales in the middle and lower
reaches of the Yangtze River for several decades, extreme drought events occurred in 2011
and 2013. Meanwhile, in order to improve the accuracy, high-resolution PDSI data is more
appropriate for meteorological drought monitoring and meets the needs of this study.
Moreover, the monitoring results show that severe to extreme meteorological drought
occurred in different spatial ranges in the middle and lower reaches of the Yangtze River in
the spring and summer of 2011 and the summer of 2013, which is consistent with the records
of drought events, indicating the feasibility of using the PDSI for multi-year meteorological
drought monitoring.

(2) In the summer of 2011, the rain-fed arable land of the study area featured prominent
agricultural drought, and severe to extreme droughts gradually spread from the west to
most of Hunan and Jiangxi, Central Zhejiang, and Southern Anhui. In addition, large
areas of irrigated arable land experienced drought first in mid-to-late June of 2013, such as
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Northern Anhui and Northeastern Hubei. One month later, the rain-fed arable land, mainly
in Southern Hubei, Hunan, Jiangxi, and Zhejiang, suffered from agricultural drought.
Compared with rainfed land, drought has a greater impact on irrigated land, indicating
that irrigated lands are more sensitive to drought. However, artificial irrigation measures
and projects have a certain ability to control droughts, which can alleviate the growth-
related stress of drought on vegetation. Due to the high drought sensitivity of irrigated land,
therefore, it is necessary for water conservancy and agricultural departments to accurately
predict and judge the agricultural drought that may be caused by meteorological drought
and ensure the timeliness and accuracy of irrigation measures to protect food security.
The effect of irrigation in preventing and mitigating drought is beneficial for disaster
management decision-making and can be instructive for developing and implementing
disaster reduction schemes.

(3) There is a certain lag relationship between the occurrence of meteorological
droughts and agricultural droughts. The average lag time from meteorological to agri-
cultural droughts in the middle and lower reaches of the Yangtze River from 2010 to
2015 was 33 days. For rain-fed arable land, compared with meteorological drought, the
occurrence of agricultural drought was delayed by 0–30 days during the entire growth
period of vegetation. This is especially the case in the key season of vegetation growth
from May to September, when there is a one-month lag between agricultural drought and
meteorological drought. On the contrary, the SPEI and TVDI of irrigated arable land were
positively correlated from June to October, further indicating that irrigated arable land
was not threatened by drought due to the existence of irrigation measures and projects.
Therefore, under the stress of meteorological drought, timely drought prevention measures,
especially the water supplement for irrigated arable land crops, can ensure food security
and improve the sustainability of local water resource management. For rainfed arable land,
it can also provide policymakers with a scientific basis for drought mitigation strategies,
such as increasing and expanding irrigation measures.
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71. Kuśmierek-Tomaszewska, R.; Żarski, J. Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in
1961–2020 as an Element of the Climatic Risk to Crop Production. Agriculture 2021, 11, 855. [CrossRef]

72. Behrang Manesh, M.; Khosravi, H.; Heydari Alamdarloo, E.; Saadi Alekasir, M.; Gholami, A.; Singh, V.P. Linkage of agricultural
drought with meteorological drought in different climates of Iran. Theor. Appl. Climatol. 2019, 138, 1025–1033. [CrossRef]

73. Du, C.; Chen, J.; Nie, T.; Dai, C. Spatial–temporal changes in meteorological and agricultural droughts in Northeast China:
Change patterns, response relationships and causes. Nat. Hazards 2022, 110, 155–173. [CrossRef]

74. Li, R.; Chen, N.; Zhang, X.; Zeng, L.; Wang, X.; Tang, S.; Li, D.; Niyogi, D. Quantitative analysis of agricultural drought
propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation. Agric. For. Meteorol.
2020, 280, 107809. [CrossRef]

75. Tian, Q.; Lu, J.; Chen, X. A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: A
case study in the Yangtze River basin, China. Catena 2022, 209, 105804. [CrossRef]

76. Hu, C.; Zhao, L.; Wang, Y.; Xue, X.; Wu, L. Analysis of the relationship between the meteorological, agriculture and hydrological
drought. Meteorol. Environ. Sci. 2016, 39, 1–6.

77. Li, Y.; Huang, S.; Wang, H.; Zheng, X.; Huang, Q.; Deng, M.; Peng, J. High-resolution propagation time from meteorological to
agricultural drought at multiple levels and spatiotemporal scales. Agric. Water Manag. 2022, 262, 107428. [CrossRef]

78. Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-based meteorological and agricultural drought monitoring for agricul-
tural sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [CrossRef]

79. Cao, S.; Zhang, L.; He, Y.; Zhang, Y.; Chen, Y.; Yao, S.; Yang, W.; Sun, Q. Effects and contributions of meteorological drought on
agricultural drought under different climatic zones and vegetation types in Northwest China. Sci. Total Environ. 2022, 821, 153270.
[CrossRef] [PubMed]

80. Li, M.; Chai, X.; Wang, G.; Hu, W.; Zhang, L. Research on meteorological drought in the middle and lower reaches of the Yangtze
River. Nat. Resour. 2019, 34, 374–384. [CrossRef]

81. Qin, P.; Liu, M. Methods for diagnosis and assessment of meteorological drought and application in the middle and lower Yangtze
Basin. Resour. Environ. Yangtze Basin 2015, 24, 1969–1976.

82. Yin, G.; Zhang, H.; Zhang, L. Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the
Middle and Lower Reaches of the Yangtze River from 2001 to 2019. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1245–1256.

83. Siqi, W.; Xiang, Z.; Nengcheng, C.; Jiaxiang, Z.; Chuli, H.; Xiaoting, P. Monitoring and comparison of drought in five provinces of
the middle and lower reaches of the Yangtze River based on the multiple drought indices. J. Arid Meteorol. 2019, 37, 209.

84. Jia, H.; Chen, F.; Pan, D.; Du, E.; Wang, L.; Wang, N.; Yang, A. Flood risk management in the Yangtze River basin—Comparison of
1998 and 2020 events. Int. J. Disaster Risk Reduct. 2022, 68, 102724. [CrossRef]

85. Jia, H.; Chen, F.; Zhang, J.; Du, E. Vulnerability analysis to drought based on remote sensing indexes. Int. J. Environ. Res. Public
Health 2020, 17, 7660. [CrossRef]

86. Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.; Tilton, J.; Sankey, T.T.
Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century:
Current achievements and future possibilities. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (Remote
Sensing Handbook); CAB Direct: Boca Raton, FL, USA, 2015; pp. 1–19.

87. Gumma, M.; Thenkabail, P.; Teluguntla, P.; Oliphant, A.; Xiong, J.; Congalton, R.; Yadav, K.; Smith, C. NASA Making Earth System
Data Records for Use in Research Environments (MEASURES) Global Food Security-Support Analysis Data (GFSAD) Cropland
Extent 2015 South Asia, Afghanistan, Iran 30 m v001. In NASA EOSDIS Land Processes DAAC; USGS: Sioux Falls, SD, USA, 2017.

88. Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.G.; Tilton, J. Global food
security support analysis data (GFSAD) at nominal 1 km (GCAD) derived from remote sensing in support of food security in the
twenty-first century: Current achievements and future possibilities. In Land Resources Monitoring, Modeling, and Mapping with
Remote Sensing; CRC Press: Boca Raton, FL, USA, 2015; pp. 131–160.

89. Yadav, K.; Congalton, R.G. Accuracy assessment of global food security-support analysis data (GFSAD) cropland extent maps
produced at three different spatial resolutions. Remote Sens. 2018, 10, 1800. [CrossRef]

http://doi.org/10.3390/rs9020177
http://doi.org/10.1016/S2095-3119(14)60813-3
http://doi.org/10.3390/agronomy11061243
http://doi.org/10.3390/agriculture11090855
http://doi.org/10.1007/s00704-019-02878-w
http://doi.org/10.1007/s11069-021-04940-1
http://doi.org/10.1016/j.agrformet.2019.107809
http://doi.org/10.1016/j.catena.2021.105804
http://doi.org/10.1016/j.agwat.2021.107428
http://doi.org/10.3390/su13063427
http://doi.org/10.1016/j.scitotenv.2022.153270
http://www.ncbi.nlm.nih.gov/pubmed/35085634
http://doi.org/10.31497/zrzyxb.20190213
http://doi.org/10.1016/j.ijdrr.2021.102724
http://doi.org/10.3390/ijerph17207660
http://doi.org/10.3390/rs10111800


Remote Sens. 2023, 15, 1689 30 of 30

90. Angulo Martínez, M.; Beguería, S.; El-Kenawy, A.; López-Moreno, J.; Vicente Serrano, S. The SPEIbase: A new gridded product
for the analysis of drought variability and drought impacts. In Proceedings of the European Conference on Applied Climatology
(ECAC) & European Meterological Society (EMS), Lodz, Poland, 10–14 September 2010.

91. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 gridded dataset (1901–2006)
of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index.
J. Hydrometeorol. 2010, 11, 1033–1043. [CrossRef]

92. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate
and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef] [PubMed]

93. Deng, H.; Cheng, F.; Wang, J.; Wang, C. Monitoring of Drought in Central Yunnan, China Based on TVDI Model. Pol. J. Environ.
Stud. 2021, 30, 3511–3523. [CrossRef]

94. Wu, L. Classificationof drought grades based on temperature vegetation drought index using the MODIS data. Res. Soil Water
Conserv. 2017, 24, 130–135.

95. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time
series. Nonlinear Process. Geophys. 2004, 11, 561–566. [CrossRef]

96. Sedgwick, P. Pearson’s correlation coefficient. BMJ Br. Med. J. 2012, 345, e4483. [CrossRef]
97. Ly, A.; Marsman, M.; Wagenmakers, E.J. Analytic posteriors for Pearson’s correlation coefficient. Stat. Neerl. 2018, 72, 4–13.

[CrossRef]
98. Li, Q.; He, P.; He, Y.; Han, X.; Zeng, T.; Lu, G.; Wang, H. Investigation to the relation between meteorological drought and

hydrological drought in the upper Shaying River Basin using wavelet analysis. Atmos. Res. 2020, 234, 104743. [CrossRef]
99. Gao, C.; Chen, C.; He, Y.; Ruan, T.; Luo, G.; Sun, Y. Response of Agricultural Drought to Meteorological Drought: A Case Study of

the Winter Wheat above the Bengbu Sluice in the Huaihe River Basin, China. Water 2020, 12, 2805. [CrossRef]
100. Zhou, K.; Li, J.; Zhang, T.; Kang, A. The use of combined soil moisture data to characterize agricultural drought conditions and

the relationship among different drought types in China. Agric. Water Manag. 2021, 243, 106479. [CrossRef]
101. Dash, S.S.; Sahoo, B.; Raghuwanshi, N.S. A SWAT-Copula based approach for monitoring and assessment of drought propagation

in an irrigation command. Ecol. Eng. 2019, 127, 417–430. [CrossRef]
102. Mondol, M.A.H.; Zhu, X.; Dunkerley, D.; Henley, B.J. Changing occurrence of crop water surplus or deficit and the impact of

irrigation: An analysis highlighting consequences for rice production in Bangladesh. Agric. Water Manag. 2022, 269, 107695.
[CrossRef]

103. Meliho, M.; Khattabi, A.; Jobbins, G.; Sghir, F. Impact of meteorological drought on agriculture in the Tensift watershed of
Morocco. J. Water Clim. Chang. 2020, 11, 1323–1338. [CrossRef]

104. Zhou, Z.; Shi, H.; Fu, Q.; Ding, Y.; Li, T.; Wang, Y.; Liu, S. Characteristics of propagation from meteorological drought to
hydrological drought in the Pearl River Basin. J. Geophys. Res. Atmos. 2021, 126, e2020JD033959. [CrossRef]

105. Bhardwaj, K.; Shah, D.; Aadhar, S.; Mishra, V. Propagation of meteorological to hydrological droughts in India. J. Geophys. Res.
Atmos. 2020, 125, e2020JD033455. [CrossRef]

106. Ding, Y.; Xu, J.; Wang, X.; Cai, H.; Zhou, Z.; Sun, Y.; Shi, H. Propagation of meteorological to hydrological drought for different
climate regions in China. J. Environ. Manag. 2021, 283, 111980. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1175/2010JHM1224.1
http://doi.org/10.1038/sdata.2017.191
http://www.ncbi.nlm.nih.gov/pubmed/29313841
http://doi.org/10.15244/pjoes/130952
http://doi.org/10.5194/npg-11-561-2004
http://doi.org/10.1136/bmj.e4483
http://doi.org/10.1111/stan.12111
http://doi.org/10.1016/j.atmosres.2019.104743
http://doi.org/10.3390/w12102805
http://doi.org/10.1016/j.agwat.2020.106479
http://doi.org/10.1016/j.ecoleng.2018.11.021
http://doi.org/10.1016/j.agwat.2022.107695
http://doi.org/10.2166/wcc.2019.279
http://doi.org/10.1029/2020JD033959
http://doi.org/10.1029/2020JD033455
http://doi.org/10.1016/j.jenvman.2021.111980
http://www.ncbi.nlm.nih.gov/pubmed/33477095

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 
	Standardized Precipitation Evapotranspiration Index (SPEI) and Palmer Drought Severity Index (PDSI) 
	Temperature Vegetation Drought Index (TVDI) 
	Cross-Wavelet Transform and Wavelet Coherence 
	Correlation Coefficient and Correlation Analysis 


	Results 
	Meteorological Drought Event Identification 
	Spatiotemporal Distribution Characteristics of Drought Based on the PDSI and TVDI 
	Spatiotemporal Distribution Characteristics of the PDSI 
	Spatiotemporal Distribution Characteristics of TVDI 

	Correlation Analysis and the Lag Relationship between the PDSI and TVDI 
	Spatial Distribution of Correlation Coefficients from 2010 to 2015 
	Cross-Wavelet Analysis 
	The Correlation Coefficients between the PDSI and TVDI with Different Lag Times in 2011 and 2013 


	Discussion 
	The Influence of Artificial Irrigation Measures on Agricultural Drought 
	The Significance of Hysteresis Analysis of Agricultural Drought 
	The Limitations of this Study 

	Conclusions 
	References

