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Abstract: Remote-sensing data are used extensively to monitor water quality parameters such as
clarity, temperature, and chlorophyll-a (chl-a) content. This is generally achieved by collecting in situ
data coincident with satellite data collections and then creating empirical water quality models using
approaches such as multi-linear regression or step-wise linear regression. These approaches, which
require modelers to select model parameters, may not be well suited for optically complex waters,
where interference from suspended solids, dissolved organic matter, or other constituents may act as
“confusers”. For these waters, it may be useful to include non-standard terms, which might not be
considered when using traditional methods. Recent machine-learning work has demonstrated an
ability to explore large feature spaces and generate accurate empirical models that do not require
parameter selection. However, these methods, because of the large number of included terms
involved, result in models that are not explainable and cannot be analyzed. We explore the use of Least
Absolute Shrinkage and Select Operator (LASSO), or L1, regularization to fit linear regression models
and produce parsimonious models with limited terms to enable interpretation and explainability. We
demonstrate this approach with a case study in which chl-a models are developed for Utah Lake,
Utah, USA., an optically complex freshwater body, and compare the resulting model terms to model
terms from the literature. We discuss trade-offs between interpretability and model performance
while using L1 regularization as a tool. The resulting model terms are both similar to and distinct
from those in the literature, thereby suggesting that this approach is useful for the development
of models for optically complex water bodies where standard model terms may not be optimal.
We investigate the effect of non-coincident data, that is, the length of time between satellite image
collection and in situ sampling, on model performance. We find that, for Utah Lake (for which there
are extensive data available), three days is the limit, but 12 h provides the best trade-off. This value
is site-dependent, and researchers should use site-specific numbers. To document and explain our
approach, we provide Colab notebooks for compiling near-coincident data pairs of remote-sensing
and in situ data using Google Earth Engine (GEE) and a second notebook implementing L1 model
creation using scikitlearn. The second notebook includes data-engineering routines with which to
generate band ratios, logs, and other combinations. The notebooks can be easily modified to adapt
them to other locations, sensors, or parameters.

Keywords: remote sensing; water quality; model development; linear regression; LASSO regularization;
L1; coincident data; Google Earth Engine
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1. Introduction
1.1. Remote Sensing of Water Quality

Remote-sensing data are used to monitor water quality [1] by estimating water quality
parameters such as clarity, temperature, and chlorophyll-a (chl-a) content [2–4]. Landsat
data are often used to estimate chl-a concentrations, which are a common index of water
quality [5–10], because their high spatial resolution (approximately 30 m per pixel), high
temporal collection rate (every 16 days), large coverage time (~37 years of data), and
spectral bands designed for vegetation studies are well suited to the estimation of chl-a
concentrations for use in long-term studies [11]. We selected Landsat data as an example
dataset for this study because of the long time periods and appropriate spectral information
contained in the dataset. These long time periods overlap with more field data, so there
are more observations available to create and validate models. Other missions, such as
MODIS or Sentinel 1, or multi-spectral images from aircraft or drones could also be used
with these methods.

Water quality characterization using earth observation data relies on regression models
that estimate the selected water quality parameters based on correlations with measured
spectral data. These models are created using spectral data collected coincidentally or
near coincidentally with the in situ measurements, so they measure the same conditions.
The spectral data are regressed on the in situ measurements, and the resulting regression
model is applied to estimate concentrations of interest [12–15]. In addition to regression
models, semi-analytical methods are also used and rely on spectral signatures of the
parameters of interest, such as chl-a levels, and use equations based on these expected
spectral peaks to compute the expected reflectance values from the sensor [16,17]. More
recently, studies have reported various machine-learning methods for fitting models, with
many of the papers comparing different methods, algorithms, and approaches [18–21].
These methods have proven successful, but the resulting models are complex, and it is
not always possible to explain the model terms and their physical meaning. Typically, the
regression models used to estimate chl-a and other water quality parameters are created by
selecting model parameters based on our understanding of the spectra of the water quality
parameter of interest. After the potential model terms are selected, the models are created
by either directly fitting the models using multilinear regression methods with a limited
set of preselected terms or by pre-selecting a slightly larger number of terms according to
the order of the expected correlations and then using step-wise linear regression to limit
the number of terms in the final model [15,22,23]. Efron et al. [24] discuss a number of
parameter selection methods or automatic parameter selection techniques for multilinear
regression models, noting that “good” models are generally categorized based on their
prediction accuracy but stressing that parsimony is an important criterion.

Since water quality models are generally developed using in situ data collected co-
incidentally with satellite data collections, the resulting models were often only applied
to images from the same collection [25,26]. In situ data are rarely collected at the same
time as satellite acquisitions, unless they are collected specifically for a remote-sensing
study, which limits the applicability of these approaches. Recent research has shown that
non-coincident data can be used to develop accurate chl-a models and that these models
can be applied to all the historical Landsat images of a given water body [22,23,27]. This
significantly increases the number of data available for model development and data anal-
ysis, thus supporting the use of remote-sensing data to evaluate long-term trends. This
finding potentially supports the use of available in situ data collected through a larger
range of conditions for model development, resulting in more robust models. For example,
Hansen and Williams [15] used near-coincident data to develop sub-seasonal models that
leveraged different spectral signatures based on the seasonal succession of algal species
and used these models to analyze conditions over a nearly 40-year period. Tanner et al. [28]
applied one of these models developed for Utah Lake to all historic Landsat observations
to analyze long-term trends in chl-a concentrations.
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1.2. Water Quality Models for Optically Complex Waters

Using remote-sensing data to study water quality in optically complex waters is
complicated by factors such as complex optical properties (especially in turbid water bodies
such as Utah Lake [25,26,29]), high suspended sediment volumes, shallow depths, and the
challenge of differentiating between dense algae blooms and land vegetation in shallow,
near-shore areas [8,30]. Multi-linear and step-wise regression result in parsimonious models
with only a few terms, where the behavior or correlation of each term can be analyzed.
However, the model terms for multi-linear regression, or the model terms and order of the
terms for step-wise linear regression, must be selected a priori. Such terms are generally
selected based on a spectral understanding of the parameter of interest and may not be
optimal for optically complex water.

In this study, we focus on two challenges that impact empirical model development:
the first is obtaining sufficient data with which to develop a regression model, and the
second is determining the terms to include in the model, especially with regard to optically
complex waters where a model may need to account for confounding factors and their
resulting spectra. The first challenge can be addressed by using near-coincident data for
model development rather than only coincident data and applying the resulting models
to historic remote-sensing data. The second can be addressed using machine-learning
methods, for which the limitation is that it is difficult to examine and explain individual
terms in the model; consequently, the resulting models lack explainability. Our method
addresses this latter issue.

Figure 1 shows an image of Utah Lake, our case study area. Utah Lake is optically
complex with very high concentrations of suspended sediments, organic matter, and
carbonate precipitates (Figure 1). Utah Lake characteristically exhibits the effects these
various confusing substances have on the spectral chl-a signal as it has high concentrations
of suspended solids, high levels of dissolved organic matter, a significant number of
precipitates, and is shallow, thus posing a potential for bottom reflectance, although the
water is so turbid the bottom is rarely visible [31].

Recent work demonstrating machine-learning methods has addressed the problem of
developing models for optically complex scenarios, as model development can be used
to explore a large feature space of non-standard terms. However, because of the large
number of parameters and non-linear combinations inherent in most machine-learning
methods, it can be difficult to determine the ultimate weight and physical relevance of
various parameters and under what circumstances a model might be applicable based on
a spectral understanding. Additionally, in most water quality applications, there are a
limited number of measured or observed data, and machine-learning methods with a large
number of features compared to the number of target data can result in the overfitting of a
model, a term used to describe models that fit a training dataset very well but cannot be
generalized to other data (even from the same population). This is certainly a concern for
water quality applications as in situ water quality datasets are generally small.

Due to the potentially large number of parameters and non-linear combinations
inherent in most machine-learning methods, it can be difficult to evaluate a trained machine-
learning model to determine the ultimate weight and importance of the various parameters
and their physical relevance as well as under what circumstances the model might be
applicable based on a spectral understanding.

Our goal is to use machine-learning approaches to develop models with explainable
spectral terms for complex waters rather than solely a model with a minimal error metric.

1.3. Approach

In this study, we explore regression models created using Least Absolute Shrinkage
and Selection Operator (LASSO) regularization, which is more commonly known as L1
regularization. This results in a familiar multi-term regression model with a limited number
of terms that can be evaluated to understand statistical correlations between the spectral
terms and in situ data. Using L1 regularization allows us to explore a very large feature
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space as it does not require the a priori selection of specific model terms or the relatively
expected importance or order of those terms. We present a case study wherein the number
of features is similar in order or magnitude to the number of measurements used to fit
the model. With L1 regularization, the user can trade model accuracy and parsimony
using a weighting term. Stine (as summarized in [19]) notes that L1 provides more robust
parameter selection than stepwise regression, which is sensitive to user-provided feature
selection and order, especially in cases where the number of features is similar to the
number of observations.
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Figure 1. A Landsat image showing sediment plumes and carbonate precipitation in the northern
and southern ends of Utah Lake, with less turbid waters entering the lake through Provo Bay on
the right center of the image. Sediment resuspension from boats and other activities can be seen as
“tracks”, with a boat and its associated tracks evident just west and a little south of Provo Bay.

Ishwaran, in the discussion provided in [24], notes that while we good prediction error
performance is desirable, simpler models are also prudent. These goals can be “diamet-
rically” opposed. In theory, lower prediction error should result in more parsimonious
models, but in practice, small improvements in prediction often result in larger models [24].
We use L1 regularization to develop a more general model by “shrinking” (i.e., regularizing
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or constraining) many model coefficients such that they approach zero. This results in
models that are less complex and avoid overfitting. For our purposes, this also results in
simplified models wherein terms can be examined and explained easily.

There are two related regularization approaches that are commonly used: Ridge (L2)
and L1 regularization. Both add a penalty term to the loss function, which is typically
the sum of the squared error. The added penalty term is the sum of the coefficients
squared for L1 or the sum of the absolute values of the coefficients for L2 regularization.
Both approaches minimize the coefficient values in the model as both the number and
magnitude of the coefficients increase this term. L2 regularization shrinks the model
coefficients such that they approach zero, which results in many terms having small
coefficients, but the coefficients do not generally reach zero. Conversely, L1 regularization
tends to set coefficient values to zero rather than a small number. L1 regularization can
encounter convergent issues because of the step-function that occurs when coefficients are
set to zero and, consequently, is used less than L2 regularization. Knight, in the discussion
provided in [24], notes that L1 regularization is special in that it usually produces exactly
0 estimates for model coefficients when they are dropped, and that it is robust with respect
to the tuning parameter. Loubes and Massart, in the discussion provided in [24], note that
parameter selection methods such as L1 allow for the fitting of linear models to noisy data
with only a few parameters.

L1 regularization minimizes cost functions, which constitute the prediction error
plus the sum of the absolute values of the coefficients, as shown in Equation (1). We
implemented a multi-linear regression model with L1 regularization using the Lasso model
from scikit-learn (sklearn.linear_model.Lasso) [32]. The scikit-learn Lasso model minimizes
the cost function, which, in this case, is the L2 norm of the error term squared (i.e., the
mean squared error) and the L1 norm of the model coefficients (i.e., the sum of the absolute
values of the model coefficients):

min
2

1
2n
‖X·w− y‖2

2 + α‖w‖1 (1)

where X denotes the model features, n denotes the number of features; w represents the
feature coefficients; y is the target value or measured chl-a concentration; ‖x‖2

2 is the
squared L2-norm or the square of the sum of x, which, in this case, is the squared error

given as
(√

∑(X·w− y)2
)2

; X·w are the predicted values (i.e., the dot product of the

model coefficients and parameters); and ‖w‖1 is the L1-norm or sum of the absolute value
of the coefficients ∑|w|. This results in a function with a weighted combination of the
fitting error and the sum of the absolute value of the model coefficients with alpha (α) as
the LASSO weighting parameter.

Minimizing this cost function (Equation (1)) using L1 regularization facilitates the
sections of a subset of features for regression analysis. This enhances prediction accuracy
by reducing overfitting and facilitates interpretability by limiting the number of resulting
model parameters.

L1 regularization can be thought of as an approach used to obtain the best predictive
performance with the smallest number of features. However, in some cases, L1 selects
parameters based on their interaction with the target value and does not attempt to select
the parameters that have the most dominant effect on prediction. L1 does not necessarily
approximate a physical model. For example, if multiple features are correlated, L1 tends to
choose only one of those features and assigns a weight of 0 to the others. This can cause a
model to omit a significant proportion of informative features. Generally, L1 will choose
more variables than a traditional model, even with optimal α selection. Due to these issues,
a different dataset can cause L1 regularization to select different variables; however, in this
study, we found the variable selection process to be very stable. We explore this effect in
Section 3.2, where we evaluate a range of α values and datasets using k-fold validations
and compute what percentage of the models select various parameters [33,34].
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Based on these caveats, we caution other researchers against blindly using models
generated via L1 in cases where the number of parameters is of a similar order to the
number of training samples, which is typical for most remote-sensing applications where
a few hundred samples is considered large. We submit L1 regularization as a means to
explore a large parameter space and identify potential model features for optically complex
water bodies that would not traditionally be considered.

To demonstrate our approach, we fit a multi-linear regression model using several
parameters generated from Landsat band values that were, in turn, generated using feature-
engineering options. We then fit a model on the target value (chl-a concentration), using L1
regularization to reduce the number of terms used in the model. We use a very large number
of features as we cannot be certain which features might be important for estimating chl-a
concentrations in optically complex waters. This approach is a repeatable, quantitative
method for the selection of the appropriate features for a given water body, and it allows
a model to use terms to address confounding factors present in optically complex waters
that may not be obvious.

1.4. Study Area

To demonstrate and explain our approach, we use chl-a data from Utah Lake along
with remote-sensing data from the Landsat series; notably, this approach is general and
could be applied to other water quality parameters, sensors, or locations. We selected Utah
Lake (Figure 1) because it is optically complex with very high concentrations of suspended
sediments, organic matter, and carbonate precipitates. Remote-sensing methods are often
complicated by the effects of these various confounding factors, including suspended solids
and organic matter, dissolved organic matter, precipitates, and bottom reflectance on the
expected spectral signal for different water quality parameters [31].

Utah Lake is unique in that it is a very optically complex body of water, has been
documented in a number of published remote-sensing and water quality studies, and has
been scrutinized through a large dataset of in situ measurements [4,35]. This provides
us with a large dataset with which to engage and the ability to compare our models to
published models. In this study, we used in situ data from the Utah Ambient Water
Quality Monitoring System (AWQMS) database managed by the Utah Department of Water
Quality (DWQ).

Utah Lake is a major physical feature in the Utah Valley and a valuable natural
resource. It is a shallow, turbid, slightly saline, eutrophic lake in a semi-arid area. It
has good pollution degradation and stabilization capacity because of its shallow, well-
oxygenated, high-pH waters. It supports and harbors abundant wildlife that forms part
of a productive ecosystem. The lake provides and supports a wide range of beneficial
applications, including ecological habitats, water storage, and recreation (e.g., boating,
sailing, fishing, and hunting). Abundant wildlife and ecological richness are some of its
more significant assets [36].

Figure 1 is an example Landsat image of Utah Lake that clearly shows sediment
plumes in the south stemming from Goshen Bay, with the “grey” color of much of the
lake indicating carbonate precipitation and suspended clays. Optically clearer, less turbid
water can be seen entering the lake from Provo Bay on the East side of the lake. Provo Bay
receives relatively clear water from Hobble Creek and several smaller tributaries. Examples
of sediment resuspension can be seen in boat “tracks”; in Figure 1 a boat and its associated
tracks are evident west and a little south of Provo Bay, which is located in the middle of the
eastern shoreline. Landsat data have been previously used to evaluate Utah Lake, and this
research includes published models for estimating chl-a concentrations [22,27,30].

Table 1 presents data and summary statistics for pertinent Utah Lake parameters.
These data were downloaded in August of 2020 from AWQMS based on a search query
applied to the period from 1901 through 2019. Utah Lake has Secchi depth measurements
of only 0.27 and 0.25 m for its mean and median values, respectively, and a level of total
dissolved solids of over 1000 mg/L. These very shallow Secchi depths and the high level
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of total dissolved solids indicate that Utah Lake is optically complex. Other parameters,
which are presented in Table 1, support this conclusion. While the geochemistry of Utah
Lake, including its dissolved and suspended solids, is eutrophic, studies have shown that
water quality, as measured by chl-a, has been improving over the last 40 years [28].

Table 1. Utah Lake data from the Utah Ambient Water Quality Monitoring System (AWQMS),
managed by the Utah Department of Water Quality (DWQ) (downloaded 1 August 2020), for the
2019 period.

Characteristic Name N Mean Median Max. Min. Std. Dev Skew Kurt.

Depth, Secchi disk (m) 3083 0.27 0.25 7.00 0.00 0.21 15.29 402.48
Turbidity (NTU) 683 62.30 41.60 790.00 0.10 89.12 5.31 33.68
Total suspended solids (mg/L) 1281 63.26 45.00 900.00 1.00 75.46 5.20 38.85
Total dissolved solids (mg/L) 1061 1016.94 1000.00 2340.00 106.00 281.45 0.26 0.78
Total volatile solids (mg/L) 716 12.30 9.00 110.00 2.00 11.09 3.40 18.40
Specific conductance (µmho/cm) 6614 1758.35 1772.15 20,980.0 0.00 501.40 14.41 539.50
Calcium (mg/L) 1058 62.59 59.00 213.00 24.50 21.93 3.35 13.98
Hardness, Ca, Mg (mg/L) 715 413.27 406.40 898.50 137.20 94.67 1.70 5.04
Carbonate (mg/L) 690 2.89 N/A 123.00 0.00 6.26 10.70 195.91
Chlorophyll a, (µg/L) 821 40.51 21.30 597.50 0.20 58.84 3.92 21.76

Utah Lake, like most water bodies, does not have water sampling data with the spatial
and temporal scope required to evaluate long-term trends and spatial patterns; however, it
does have more in situ data available than many reservoirs. This reason, combined with its
optically complex nature, is why we selected Utah Lake to demonstrate L1 regularization
for model selection.

2. Data and Methods
2.1. Overview

We obtained in situ measurements that included the measurement date, sample
collection time, measurement location (latitude and longitude), and chl-a concentrations
from AQWMS (Table 1). We uploaded these data and used Google Earth Engine (GEE) to
acquire all available Landsat pixel data from the in situ data locations along with the time
difference between the satellite and field collections. The satellite data included the values
for each Landsat band and the image timestamps.

We used a 5-day offset for the initial data extraction process, that is, any data within
5 days of either side of a field collection; however, we performed most computations
using a smaller offset and both 30 and 90 m resolution datasets. The 30 m resolution
data correspond to a single pixel at the native Landsat resolution, and the 90 m resolution
data represent a 3 × 3 grid averaged to mitigate noise and spatial variation. We extracted
the band data using GEE, which identified images within the offset window, selected the
pixel(s) associated with the in situ measurement location, and computed the 90 m average.
These data were exported as a table. The table has one row for each in situ measurement
and includes the in situ date/times, locations, offsets to remote-sensing data (in hours), in
situ parameter values, and remote-sensing band values. For the Landsat missions, there
are 8 additional columns. We generated separate tables for the 30 m and 90 m data. These
data can be used to develop models using our approach or any other method. Details and
working code used to create this table are provided in a Google Colab Notebook called
DataCollectionNotebook (Notebook1).

The remainder of Section 2 outlines the model generation process, providing details
and discussion for each step. We use the data generated by Notebook1 in this study
(Section 2.2) and select an offset and the features to be considered in model creation, such
as bands or band combinations, and generate these features (Section 2.3). We discuss
some data issues caused by negative reflectance values (Section 2.4); then, we discuss α

value selection (Section 2.5). Subsequently, we present model-fitting and error estimation
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processes performed (Section 2.6). Details of and working code used to perform model
fitting are included in the ModelFitNotebook (Notebook2). We provide a brief description
of the two notebooks that contain the example code to perform the feature-engineering and
model-fitting steps (Section 2.7). Notebook1 generates the data used to create using the
methods provided in Notebook2.

In Section 3, we demonstrate the impacts of resolution, offset, and α selection on model
accuracy and discuss best approaches for selecting these parameters. This includes the
impacts of the time offset between in situ and remote-sensing data and how the resolution
of remote-sensing data impacts model error.

2.2. Study Data

We used AQWMS data collected from 42 Utah Lake locations (Figure 2). We selected
“chlorophyll a, uncorrected for pheophytin” surface measurements as the water quality
parameter. The data were downloaded in July 2022 and contained 1024 samples from
11 July 1989 through 15 September 2021. We only performed minimal data cleaning and
quality assurance with respect to these data. Results presented in later sections indicate
that we may have included some outliers, and several duplicate samples, which affected
model’s results. Since this paper focuses on the model creation methods and not on models’
results, we did not expend any additional efforts on data cleaning.
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Figure 3 shows that most of these data were collected since 2017. Two outliers with
values of 503 and 905 µg/L were excluded in the plot to preserve readability. The 99.5%
quantile for these data is 427.63 µg/L. The boxplots (top panel) suggest that the concen-
tration of chl-a is increasing over time, with larger interquartile ranges on the boxplots
and large outliers indicating increased variability. However, there is sampling bias in
these measurements. Later samples focus on areas prone to algal blooms and higher chl-a
concentrations, such as Provo Bay. Recent studies show that chl-a concentrations in the
lake, with the exception of small areas of Provo Bay, are decreasing over time [28,30].
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Figure 3. Box plots of chl-a concentrations over time (top panel), with the number of samples
collected per year presented in a bar chart (bottom panel). These data were downloaded from
the AQWMS database and contain data collected from 11 July 1989 through 15 September 2021,
constituting 1024 measurements in total. Outliers in the top plot were clipped to 500 µg/L for
visualization purposes.

Figure 4 shows the distribution of chl-a concentrations and statistics for measured
values that have near-coincident satellite pixels. These data have a usable Landsat pixel
available within the 5-day (120 h) offset (Figure 4). This resulted in a dataset with 531 sam-
ples, amounting to about half of the original dataset. These data have a maximum value of
503.3 µg/L and mean and median values of 36.9 and 17.75 µg/L, respectively. The quantile
plot and information (Figure 4) show that 99.5% of the data are below 337 µg/L. The
data are right-skewed. Most sample concentrations are relatively low, with rare episodic
events exhibiting high concentrations (i.e., blooms). The 75th percentile concentration is
only 42 µg/L, which is less than 10% of the maximum. The episodic nature of the high
concentration data is shown in the relatively large skew and kurtosis values, which match
our expectations for algal blooms.
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Figure 5 depicts the in situ measurements plotted against the absolute value of the
offset (in hours) between the in situ measurements and their nearest Landsat image. The
absolute offset value includes in situ data collected either before or after the satellite passed
over. The dividing lines occur at 12 h increments until 72 h (3 days); then, they occur at
24 h increments to 120 h (5 days). In between each line is a number indicating the number
of pairs that occurred in that interval. Figure 5 highlights the relationship between Landsat
collections and field work. Landsat collections occurred at 10:30 am local time. The plots
show that field data are often collected in the mornings, with data clustered around 24 h
(1-day) offsets. This plot shows that our in situ data were generally collected within a
few hours of 10:30 local solar time. The clusters show that the data from the “morning”
sampling trips were collected about two and a half hours before and after the satellite’s
overpass, or from about 8:00 am to about 1:00 pm, a pattern we followed in our own
water-sampling campaigns. This morning sampling pattern is clearly presented in Figure 5
with sample clusters at 24, 48, and 72 h, wherein the dividing line represents the time
splitting the data clusters. While in this study we maintained multiples of 12 for our offset,
we recommend that each researcher should carefully examine examine their data, and
potentially use offsets other than 12 h intervals. For example, the 30 h window includes data
within a cluster of samples that would otherwise be excluded by 24 h window (Figure 5).
These samples were only a few hours beyond the 24 h mark, and the inclusion of these
samples significantly increased the size of the available data. In other words, in Figure 5, a
cutoff of 30 h keeps the entire cluster of pairs around the 24 h mark rather than only the
pairs to the left of it. In subsequent computations, we limited data to an offset of 3 days, or
72 h, for model development; however, we also present models with smaller offsets.

Table 2 provides the number of pairs in an offset period and the mean, median, and
standard deviation of the values in the period. It also provides the cumulative number of
data pairs that were used for model development, along with the cumulative statistics. The
last line presents the statistics for all the data, which is a subset of the information provided
in Figure 4. The cumulative mean matches the mean of all the data, while the cumulative
standard deviation is slightly different due to rounding errors. The data in the different
time slices along with the cumulative datasets show variation, wherein mean, median, and
standard deviation values clustered around the values for the entire dataset. We compared
the data in each 6 h offset bin using both a Student’s T test and the Tukey–Kramer test
for unequal size groups. The resulting comparison shows that there was no significant
difference among any of the bins at an α level of 0.01.
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Table 2. Number of in situ/satellite image pairs for different outsets, with descriptive statistics
provided for the in situ chl-a data.

Offset (Hours) N Mean Median Std Dev Cumulative
N Cum. Mean Cum. Std Dev

0–12 91 32.84 16.6 60.37 91 32.84 60.37
12–24 48 31.06 11.35 73.12 139 32.23 65.03
24–36 75 32.94 15.16 46.42 214 32.48 59.17
36–48 60 44.24 31.75 48.33 274 35.05 56.98
48–60 57 28.87 11.5 37.21 331 33.99 54.10
60–72 92 33.62 23.35 35.28 423 33.91 50.59
72–96 63 44.74 21.30 57.57 486 35.31 51.55
96–120 70 48.00 21.62 69.72 556 36.91 54.17

All 556 36.91 17.75 54.25 N/A 36.91 54.25

We acquired the near-coincident remote-sensing data used in this study using GEE [37]
from the Landsat 5, 7, 8, and 9 missions included in the Collection 2 data generated by
the USGS. These datasets have the following GEE image collection identifiers: LAND-
SAT/LT05/C02/T1_L2, L2LANDSAT/LE07/C02/T1_L2, LANDSAT/LC08/C02/T1_L2,
and LANDSAT/LC09/C02/T1_L2, respectively. The collection identifiers include the
overall mission (LANDSAT), the satellite (LT05–LC09), the collection (CO2), and the pro-
cessing level (T1_L2). While Landsat 5 and Landsat 7 have the same band designations [11],
Landsat 8 has different band designations (Table 3). We mapped the bands to a common
set of names (Table 3) and combined the Landsat datasets into a single image collection
using GEE.

Table 3. Mapping of band names to satellite bands for the three Landsat missions used in this paper.

Band Name
Satellite Bands

Landsat 8 Landsat 7 Landsat 5

Blue SR_B2 SR_B1 SR_B1
green SR_B3 SR_B2 SR_B2

red SR_B4 SR_B3 SR_B3
NIR 1 SR_B5 SR_B4 SR_B4

SWIR1 2 SR_B6 SR_B5 SR_B5
SWIR2 2 SR_B7 SR_B7 SR_B7

SurfTempK 3 ST_B10 ST_B6 ST_B6
1 Near-infrared (NIR); 2 shortwave infrared (SWIR); 3 surface temperature (Kelvin).
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We used the calibrated surface reflectance data from the USGS Level 2 Collection
2 Tier 1 data [38,39], thereby eliminating the need to perform atmospheric corrections.
The USGS produces three data tiers; for this dataset, tier 1 (T1) meets geometric and
radiometric quality standards, and Level 2 data correspond to data that are calibrated and
ready for analysis.

Using GEE, we generated an image collection from all the images from Landsat
missions 5, 7, 8, and 9 that included Utah Lake. However, since the coverage period
of our in situ data ended in September 2021, we did not use any Landsat 9 images in
this study. Data in the GEE image collections were stored as integers; we converted the
integers to surface reflectance floating-point values using the USGS-supplied multipliers
before analysis.

We used the quality assessment (QA) band to eliminate pixels that were clouded, had
cloud shadows, or were otherwise contaminated and to identify water pixels [38]. For
30 m data, the pixels that contained the in situ measurement points needed to pass the
quality-screening test. For the 90 m data, either all 9 or any of the 9 pixels in the 3× 3 group
nearest the in situ point needed to pass the quality-screening procedure to be selected. This
method is similar to those described by Cardall, Tanner, and Williams [37].

The result of this process was a dataset containing the in situ measurement value, the
offset in hours between the measurement and the pixel value, and the band values of the
corresponding Landsat image pixels. We recommend collecting data at a large offset and
filtering the data at the model-fitting stage to avoid incrementally collecting more data for
larger time offsets.

We have provided Notebook1, which contains working code, to better describe and
demonstrate the method. Notebook1 accepts a CSV file with date, location (in latitude and
longitude), and a measurement value of any in situ data as input. It outputs a CSV file that
echoes this input and adds columns with the offset information and the reflectance value
for each of the satellite bands. Notebook1 is designed to select Landsat data but could be
modified for other sensors.

2.3. Model Parameters

We used 6 Landsat bands (Table 3) corresponding to the blue, green, red, near-infrared
(NIR), shortwave infrared-1 (SWIR1), and shortwave infrared-2 (SWIR2) regions. We did
not use the surface temperature band as a potential model feature. Since we expected high
chl-a values to be strongly correlated with warm temperatures, we excluded temperature
from the model to avoid an overfit and poor model performance in non-summer months.
Surface temperature may be an appropriate feature for some models, such as a seasonal
model trained for summer months.

We generated potential features for the linear regression model that include: the
Landsat bands (6), the inverse of the natural log of each band (1/ ln x) (6), the natural
logs of each band (ln x) (6), the inverse of each band (1/x) (6), the square of each band
(x2) (6), band ratios (x1/x2) (30), normalized band differences ([x1 − x2]/[x1 + x2]) (15),
and band pair multiplications (x1 ∗ x2) (15). We included the inverse and squared terms
for the bands so that we could consider non-linear model relationships in a LASSO multi-
linear regression. The inclusion of the 6 bands and all the engineered features resulted in
90 different potential features in the model. The use of other sensors, such as MODIS or
Sentinel II, would result in a different number bands, band spectral range, and features.

Initially, we generated all the features for SWIR1 and SWIR2 bands. The resulting
models preferably selected the inverse of these two bands as features. However, while
the number of errors was relatively low, these bands are noisy and correlated with water
temperature, which we intentionally did not include as a potential feature; therefore, these
features will likely be excluded in models designed to achieve maximum performance. In
the work reported below, we retained the SWIR1 and SWIR2 band features but did not
include any engineered features using these bands, e.g., band inverses, band ratios, squares,
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or other features. We retained SWIR1 because some of the published Utah Lake models
use SWIR1.

2.4. Negative and Small Reflectance Values

The USGS calibration process for surface reflectance data can result in the acquirement
of negative values for the blue and SWIR bands over water, as water has low reflectance
in these wavelengths. These negative values are not physically possible but are artifacts
of data processing. In the coincident data pairs, with a coincidence window of 5 days,
there were 16, 2, 37, 40, and 40 negative values for the blue, red, NIR, SWIR1, and SWIR2
bands, respectively. The values, while negative, have small absolute values. This occurs
because water is highly light-absorbent in the SWIR range. Due to the high concentrations
of suspended solids in Utah Lake, it is possible that light in the SWIR range can scatter back
from suspended material if the scatterers are shallow enough, thereby providing the small
values observed in the data. For instance, at 1640 nm (~SWIR1), the absorption coefficient
for water is 6.35/cm [40]; thus, if light scatters back from 1 cm depth, only e−12.70 ~3 × 10−6

of the light that reaches that far will be reflected from the surface. Likewise, the SWIR2
band has an absorption coefficient of about 20/cm, which is generally higher throughout
the bandpass [40]. Due to this high level of light absorption, the SWIR bands are very
sensitive to any unremoved glint (from skylight or sunlight). Landsat level 2 reflectance
data are highly optimized for land and are not corrected for glint from water surfaces.

Most physically based models (i.e., based on response of chlorophyll and accounting
for other constituents in the water) use visible and near-infrared wavelengths (see, for
example, [41]). For Utah Lake, suspended calcium carbonate and sediments are currently
present in the upper portion of the water column, and these allow for the return of light;
additionally, as noted, we retained the SWIR1 band because published Utah Lake models
used this band.

We found that if we fit a model with these small, negative values (with bands set to a
minimal positive value before computing inverses or logs), a few predicted chl-a values
(fewer than 10 of the approximately 500-member dataset) consequently corresponded to
large, negative values. We used an ad hoc approach to evaluate different methods to address
this issue. For this study, we replaced extremely small or negative values reflectance for the
blue, red, NIR, and SWIR1 bands with values of 0.01, 0.01, 0.001, and 0.001, respectively.
Offset methods may be more appropriate in order to maintain original, small band values
distinct from these changes. Data-cleaning operations are required and are specific to any
given dataset. We recommend more advanced methods, such as an offset approach, but
did not evaluate other methods for this study.

2.5. Alpha

The degree to which L1 reduces the number of model parameters is tuned using the
α parameter, which computes the penalty function with a weighted combination of the
fitting error and the sum of the absolute value of the model coefficients (Equation (1)). A
larger α value increases the weight of the coefficient sum and results in fewer parameters
in the final model, while a lower α value results in more terms as it favors a small error
with less weight assigned to the number of features. At the extremes, an α value of zero
retains all the potential model parameters, while a large α value results in a linear model
that is a single constant, i.e., all coefficients are set to zero and the model is just a constant.
In the latter case, the model error, which is the first term in the loss function (Equation (1)),
constitutes the variance of the data (square of the standard deviation). This extremely large
α value results in a model of the form of ŷ = c or causes the prediction to be a constant that
is equal to the mean of the dataset.

We explore α selection in detail in the case study provided in Section 3.1. We suggest
that practitioners compute the variance of their dataset and evaluate their coefficients’
magnitude for a full model (i.e., α = 0). This will provide some insight into the expected
range of the α value. Conversely, using the scikit-learn library, one can quickly select
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different values of α and evaluate the results, thus enabling the simple identification of the
range of α values that provides a model with the preferred number of terms.

This approach facilitates the exploration of a wide feature space. For example, a priori,
we do not know if the best model is linear or non-linear. By including band inverses,
logs of bands, and squared band values, we can use linear regression methods to fit
non-linear models and allow the algorithm to determine which is the best method to
model the data. We allow L1 regression to determine whether linear, non-linear, or a
combination of both types of terms provides higher predictive capabilities while providing
a parsimonious model where parameter contributions can be explored and explained.
However, L1 regularization will generally discard correlated features, while the most
informative model may include these correlated features. This is discussed in Section 4.

2.6. Model Training, Error Estimation, and Evaluation

For the case study, we used the default values to fit the scikit-learn Lasso model (with
the exception of α, which we adjusted). We explicitly set the maximum interactions to
1000; this is also the default value. The Lasso model uses coordinate descent to minimize
the cost function and fit the model [32]. We used k-fold cross-validation to determine
model’s performance. Unless otherwise stated, we used 10 folds and 20 repeats. For each
fold, 10% of the data were reserved as the test set, and the model was fit to the remaining
90% of the data; then, the accuracy was computed using the test data. This was repeated
20 times, with the data stochastically sampled for each fold. This resulted in 200 model
realizations that were used to estimate the error for any given model. While it is common to
use train–test–validate splits to develop and evaluate models, in this case, since the number
of parameters and number of samples are similar, we used the k-fold approach as there
was not a sufficient number of data to render the train–test–validate approach viable. For
example, for a time offset of 12 h, there are 91 data pairs, which almost matches the number
of potential features (90). In this case, 90% of the dataset equates to approximately 80 values,
that is, the number in each fold, which is less than the number of total potential parameters.

We computed several error metrics, including the root-mean-squared error (RMSE),
which we will generally use for reporting in subsequent sections. After evaluating model
accuracy using k-fold cross validation, we generated the final model using the full dataset
with no data reserved. We used k-fold analysis to select the model parameters and estimate
error; then, we used the resulting parameters with all the data to develop an accurate but
parsimonious model that could be used and explained.

We evaluated feature selection over a range of α values to determine if the features
selected by the L1 algorithm were robust or if the selected features changed significantly
with different α values or over the duration of the stochastic realizations. We evaluated
feature stability by counting how many times each feature was selected for a model with a
given number of parameters, wherein any of the models had at least 200 realizations. We
present details of this analysis in Section 3.

After selecting the appropriate model parameters, such as α, and estimating the error,
we then used the model, trained with respect to all the data, to evaluate the impact of
coincidence time offsets on model accuracy. This analysis, presented in Sections 3.3 and 3.4,
provides practitioners with guidelines and methods for evaluating the trade-offs between
data quantity and variation with time.

2.7. Code and Notebooks

We have provided example code in two separate Google Colab notebooks to help
communicate the details of the methods we developed and provide readers with a starting
point if they should choose to evaluate these techniques.

Notebook1 takes a CSV file of in situ measurements, including the measurement date,
latitude, longitude, measured value, and maximum offset window, as an input. It outputs
a CSV file that includes the original data, the measured satellite band values (currently,
the Landsat series), and the offset time from the in situ sample to the satellite collection.
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Notebook1 uses the complete Landsat image collection (Landsat 5, 7, 8, and 9) with data
from the early 1980s to the present. Notebook1 can be easily modified to obtain data from
other collections such as MODIS or Sentinel 2.

Notebook2 reads in the data file generated by Notebook1, performs minimal data
cleaning, and conducts feature engineering; then, it uses L1 regularization to generate a
multi-linear regression model in either normal or log-space. The level of data cleaning is
minimal, consisting of the removal of blank rows or rows where there are NaN values. Note-
book2 performs a feature-engineering task that generates additional model features. The
features are selectable by checkboxes, and choices include the following bands: log(band),
inverse log(band), inverse bands, band ratios, normalized band differences, square of
bands, and band products. Notebook2 can save a CSV file with all the measurements and
features to allow a practitioner to use their own software or methods for model fitting. For
accurate model development, we recommend a more in-depth data-cleaning step that is
data-specific and not algorithmic.

Notebook2 generates a multi-linear regression model by regressing the features on the
measured in situ data using L1 regularization. Both the offset amount (i.e., time window for
coincident samples) and the L1 α value are selectable. Notebook2 also allows the features
to be normalized or scaled using either min–max scaling or normal (z-score) scaling. We
did not scale data or evaluate data scaling for this study.

Notebook2 provides some simple visualizations to aid model fitting and estimates
model error using repeated k-fold validation with 10 folds and 20 repeats, which is easily
changeable. It outputs a CSV file with the selected offset, pixel scaling (i.e., 3 × 3 or 9 × 9),
number of data points used in the model, list of all the features used in fitting, parameter
coefficients, and error estimates.

3. Case Study and Results
3.1. Impact of Alpha Selection

Figure 6 presents the parameter coefficients for the models created with α values
(displayed on the x-axis) ranging from 1000 to 1 and from 100 to 1 × 10−2 for the chl-a
model (top panel) and log(chl-a) model (bottom panel), respectively. In Figure 6, each
line represents the value of a coefficient for a model feature that has been selected by the
algorithm. At large α values, most coefficients are zero, with the number and size of the
parameter coefficients increasing with decreasing α values. Small α values weight error
higher than feature count, resulting in more of the features being included in the model.
These plots were made with 90 potential features and a 72 h (3 day) time window, thereby
providing 402 measurements.

At large α values, which are displayed on the left side of both the top and bottom
panels (Figure 6, top), most of the parameter coefficients are zero or low, as expected. As
the α value decreases, both the number and value of the parameter coefficients increase.

The parameter coefficients for 1/NIR and 1/blue bands are the first parameters
selected and do not reach zero until they are near larger α values. None of the other features
are selected (i.e., the parameter coefficients become non-zero) until an α value below about
0.8 or 1 for the chl-a model or log(chl-a) model, respectively, when the coefficient for
the 1/red and blue/NIR feature becomes non-zero for the chl-a model and log(chl-a)
model, respectively. Additional features are added to the selections (i.e., the parameters are
assigned non-zero coefficients) as the α value continues to decrease.

Figure 6 does not reach extreme α values allowing it to show models with all 90 features;
this occurs at α values near 1 × 10−8, and such models are not realistic for a dataset of only
400 measurements. In this region, some of the features have large positive and negative
offsetting coefficients, which are also unreasonable.
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Figure 6. The model coefficient values with a 72 h (3 day) time window for the chl-a (top) and
log(chl-a) (bottom) models whose α values vary from 1000 to 1 and 100 to 1 × 10−2, respectively
(x-axis is log scale) plotted on a log scale. This plot shows the number and size of the parameter
coefficients, where each line represents the coefficient for a model feature. The number of coefficients
(parameters) increases with decreasing α values (i.e., more lines), with absolute coefficient values
also increasing (i.e., line magnitude).

The bottom panel of Figure 6 shows the behavior of L1 regularization for a model that
predicts the log of chl-a (log(chl-a)) content rather than chl-a content directly. Figure 6 shows
that various features are added to the model at significantly lower α values compared to the
direct chl-a model. This is in part because the absolute value of the error is lower in the L1
algorithm because the log of the values is significantly smaller than the values themselves.

We evaluated the accuracy of the models with different α values and used k-fold
validation to estimate errors (Figure 7). For this analysis, we used data with an offset
or time window of 12 h. We used ten folds with 20 repeats to compute error metrics for
different values of α, which are shown as points on the graph; thus, the error estimates for
each α value, or graph point, are based on 200 realizations. We evaluated both the direct
chl-a model and the log(chl-a) model, which are presented in the top and bottom panels of
Figure 7, respectively.
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line shows the number of terms in the model versus α or the L1 regularization weight.

Figure 7 graphically presents the results and trade-offs of different α values for the
chl-a and log(chl-a) models in the top and bottom panels, respectively. These figures show
the mean RMSE of the training and test datasets and the mode of the number of model
terms vs. α. The standard model uses α values from 0.001 to 50, while the log(chl-a) model
uses α values from 0.0001 to 1. There are 200 stochastic realizations for each data point.
The shaded area in the plot represents the 25th and 75th quartiles and shows the variability
of the test error metric over the 200 realizations. For small α values, the mean of the error
is well outside the 75th percentile. This is because a few of the 200 realizations have very
large errors and skew the dataset. Both models behave as expected, where the test data
error is initially very high—indicating overfitting—and then reduces to a value similar to
the training error (Figure 7). The training error has significantly less variation for all the
realizations compared to the test error, as shown by the width of the shaded area.

For both models, chl-a and log(chl-a), the variance in the test error increases with an
increasing α. A great deal of this behavior can be attributed to the small size of our dataset.
For a time offset of 12 h, there are only 82 measurements. With 10 folds, that means that the
test dataset has only 7 or 8 values, leaving the training datasets with about 70 values. These
data have a mean of about 30 and a standard deviation of about 60 (Table 2); therefore,
there was significant variation in the test data for any given realization. These plots show
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general trends, but the variation in the test error for any given realization is large, with the
shaded portion, itself large, containing only half (~100) of the 200 realizations for each data
point on the graph. However, the variation in the error computed for the training data is
relatively small, indicating little variation over the 200 realizations.

The chl-a model plot indicates overfitting until about the middle of the plots; then,
both the training and test errors become similar and increase with decreasing α values.
Figure 7 shows that as α increases, the number of retained features (blue line) decreases,
as the former places a higher penalty on the sum of the coefficients. The model with the
fewest terms has the highest RMSE as the model moves towards predicting a constant.

For the chl-a model, the difference between training and testing also decreases until
an α value of about 1.0, at which point they become similar, and there are four to six terms
retained for the model. At this point the errors are similar and increase with increasing α

values as the model essentially only predicts the mean of the test or training dataset.
The bottom panel of Figure 7 shows the results of the log(chl-a) model, which has

similar trends but presents a larger gap between the testing and training datasets at low α

values. For this dataset, the log(chl-a)-model indicates clear overfitting at small α values,
with less overfitting as α increases. One interesting aspect of this plot is that at low α

values, the mean RMSE is well outside the 75th percentile (even more so than in the top
panel). This occurs because the dataset includes three large values; if these three values
all appear in the testing data, the resulting model can be severely overfit with respect to
the low values. The 200 realizations produced a few models with very large, unrealistic
values for these few cases, which resulted in a very large mean value, though only for a
few realizations; over 50 % of the realizations (between the 25th and 75th percentiles) are
close to the test dataset error.

Table 4 summarizes the impact of α values on the number of terms in the model. This
table was generated using all the data with a 72 h offset rather than the 12 h offset used
in the plots. The RMSE was also computed using all the data (i.e., the training data). The
number of terms in the model drops to five when α is equal to twelve and does not drop to
four until α is five for the chl-a model. While not shown in Figure 7, the variation in the
number of coefficients is small.

Table 4. The number of terms included in calibrated chl-a and log(chl-a) models and the correspond-
ing range of α values with a 72 h (3-day) time window using all the data.

Chl-a
Model

Chl-a
Model

Chl-a
Model

Log(chl-a)
Model

Log(chl-a)
Model

Log(chl-a)
Model

Alpha (α) Number of
Terms RMSE Alpha (α) Number of

Terms RMSE

0.005 22 25.46 0.0001 23 36.89
0.01 20 25.82 0.0002 20 36.35
0.05 16 26.69 0.0005 19 35.69
0.1 12 27.24 0.0010 14 35.96
0.5 8 27.52 0.0022 11 35.81
1 8 27.89 0.0046 10 35.73
5 4 31.10 0.0100 10 37.31
10 3 31.32 0.0215 9 42.32
25 3 31.94 0.0464 8 53.91
50 2 32.61 0.1000 7 64.34

We have not provided a suggested range or value for α because the correct value
depends on the variation in the target data, the range of the parameters, and the number of
parameters in the final model. However, the mean value of the dataset can provide insight
into the ranges to explore for determining the value of α. Evaluating the dataset’s mean
and variation through Equation (1) can provide some guidance. For example, if the dataset
variation is in the 10s of units, e.g., 50 µg/L, and the expected features have coefficient
values in the range of 0–1 and we want five parameters in the model, then the sum of the
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five coefficients needs to be in the same order of magnitude as the variation in the dataset.
In this case, an α of 1 would assign approximately equal weight to the prediction error
and the coefficients, while an α value of 500 would probably result in a model with only a
single constant. However, depending on the range of feature values, coefficient values are
frequently less than 1, which would require a larger α value to generate a model with five
features. For this example, you could use an iterative approach with α values in the range
of 1 to 100 to determine which α values result in a five-term model.

3.2. Model Terms and Stability

We evaluated the stability of the terms selected by L1 regularization. Specifically, we
were interested in whether the realizations generated for the stochastic k-fold analysis
would select the same equation terms with different coefficients or if each realization would
select different terms. We found that the features selected by L1 regularization remained
relatively constant with very little variation, for which old features were retained and new
terms were selected as α decreased.

Figure 8 presents heatmaps for the chl-a (top panel) and log(chl-a) models (bottom
panel), displaying the number of model terms selected (y-axis) versus the selected features
(x-axis). We used k-fold realizations to generate this plot, for which there were 200 realiza-
tions per α value. The values for any given feature number are based on several hundred
to a few thousand realizations, as a range of α values may result in the same number of
features. The features in each panel are ordered by the percentage of time, or probability,
that the feature was selected in any model, with the most-selected features depicted on the
left. The color and number in the box reflect the probability that a feature was selected in
the realizations. For each realization, we determined the number of features in the resulting
model and which features were selected. We then computed, for any given feature count,
the probability that a given feature was selected. The number of features is somewhat
variable for a given α, and a range of α values can result in models with the same number
of terms, which means that for any given feature count, there were at least 400, usually
significantly more, realizations. Figure 8 shows that while there is some variability in the
terms that were selected, in general, once a term was selected at a low feature count, it was
retained in models with higher feature counts. For a given feature count, the selected terms
remained consistent.

In the first row of the heatmap for the chl-a model (with a median feature count of
25), 25 of the most probable features (columns) were selected 100% of the time. For the
next row, consisting of 24 features, 17 features were selected over 90% of the time, while
7 other features were selected over 80% of the time. As the number of terms in the model
decreases (increasing α), so does the number of features, and the features that are selected
are selected over 90 to 100% of the time, while other features are rarely chosen.

Figure 8 shows that the first two features, 1
ρNIR

and 1
ρblue

, for either model are selected
over 80% and 90% of the time in any model for the chl-a and log(chl-a) models, respectively,
with either feature being selected 100% of the time for most feature counts. Other features
are similar, with the next two features for either model being selected 100% of the time for
the log(chl-a) model, while there is slightly more variation for the chl-a model.

For actual model development, this type of analysis should be performed, and model-
ers should consider which parameters should be included in the final model.
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Figure 8. Heatmap of feature selection probability in the trained L1 model vs. feature names for the
chl-a model (top panel) and the log(chl-a) model (bottom panel), respectively. This shows that for a
given feature count, the selected features are consistent over hundreds of realizations. The standard
model uses α values from 0.001 to 50, while the log(chl-a) model uses α values from 0.0001 to 1.

3.3. Impact of Time Coincidence

We used both the chl-a and log(chl-a) models with α values of 0.5 and 0.04, respectively,
to analyze the impact of coincidence measurements or the offset between when satellite
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and in situ data were collected. We used k-fold validation with 10 splits and 20 repeats to
compute the RMSE error (Table 5). A time offset impacts a model in two different ways.
For samples taken later in time, it is likely that conditions have changed, which generally
tends to decrease the accuracy of the models, but with an increasing time window there
are more in situ–satellite measurement pairs, which generally increases model accuracy,
and the tradeoffs between these two processes are not obvious. Accordingly, it is often
unclear which offset should be used to develop the best model; is it better to have more
representative data (i.e., small offset) or more data (i.e., large offset)? We present the
results of different offsets to provide insight into how our dataset behaved. Care should be
taken when interpreting these results, as different datasets will behave differently from our
example.

Table 5. Impact of the time window size for near-coincident measures on the median RMSE for
models with an α of 0.5 (chl-a) and 0.04 (log(chl-a)).

Window Size (Hours) # of Data Pairs RMSE (chla) RMSE (log(chla))

6 55 11.67 11.09
12 85 10.78 16.99
18 99 12.12 16.52
24 123 15.80 20.54
30 168 17.44 23.12
36 193 19.55 22.98
42 202 20.98 25.24
48 249 26.04 33.53
54 290 26.07 33.37
60 300 26.22 33.63
66 328 28.38 35.87
72 388 27.40 34.45

We obtained an extensive dataset that contains over 500 in situ measurements. Table 5
shows that as the window size decreases, the number of data pairs also decreases, changing
from 388 to 55 data pairs for time windows of 72 to 6 h, respectively. Even with a short
window of 6 h, we have 55 data points, which is more than many published studies.

For our data, the RMSE decreases from about 28 to about 12 and about 35 to about
11 for the chl-a and log(chl-a) models, respectively, as the time window decreases from 72
to 6 h, i.e., 388 to 55 data pairs. The largest time window, 72 h, has an RMSE larger than
the RMSE of the smallest offset, 6 h, by factor of about 2 to 3 for the chl-a and log(chl-a)
models, respectively.

Table 5 has implications for model developers. It shows that the tradeoffs between the
data collected coincidentally or near-coincidentally and the number of data points available
for model fitting can significantly affect the error. In our case study, we have a very large
number of available in situ measurements, over 500, which means that we have sufficient
data for the models (even with small time offsets). For many locations, this may not be the
case. Many published studies use 10 measurements or fewer for model development but
generally have measurements taken within a few hours of the satellite collection.

Our results imply that the use of a 12 h offset for our dataset resulted in the best
model. This model is slightly better than the model created with data pairs from a 6 h
offset. In addition, since we used a k-fold validation with 10 folds, we computed errors
using models trained on only 90% of the available data. Utah Lake is large and subject
to wind disturbance, which can rapidly change algae distribution, so a shorter window
may be more important for Utah Lake than for other locations. For lakes that are more
protected or smaller, a larger time window might be appropriate, especially if data are
limited, and a larger offset allows more data. Rather than making a recommendation on an
appropriate time window, we see this work as a guide that practitioners can use to conduct
similar evaluations.
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3.4. Pixel Resolution

We evaluated the impact of satellite data resolution on the development of a model
used to examine Utah Lake. In prior sections, we used data with 30 m resolution, which
is the default resolution of Landsat data. However, when evaluating non-coincident data,
others [15] used 90 m pixels computed by the spatial averaging of the Landsat data to reduce
variation or noise. They reasoned that since the data were not acquired coincidentally
with satellite collection, using spatially averaged data may help reduce the impact of local
variations. To evaluate the impact of 90 m data, we averaged a 3 × 3 Landsat pixel array
around each in situ measurement location. Our algorithm provides averages even if all
the pixels were unusable because they were occluded by clouds, cloud shadows, or other
data quality issues. For example, some computed averages may consist of fewer than nine
measurements. In general, this 90 m dataset presented a small increase in the number of
data pairs for any given time window, as some of the in situ measurements had low quality
pixels at the measurement location but usable pixels within the 90 m area.

Table 6 shows the impact of using averaged data for the chl-a models developed with
offsets from 6 to 72 h and an α value of 0.50. We used k-fold validation with 10 folds
and 20 repeats to compute RMSE from the testing data. For most offsets, there are a few
more data pairs in the 90 m dataset. For most time windows, the 90 m dataset produces a
slightly smaller error, although this is not the case for all of them. In general, the errors are
essentially the same, except for time windows greater than 42 h, where the error for the
90 m dataset is slightly larger.

Table 6. Impact of pixel resolution with near-coincident measures on the median RMSE for models
with an α of 0.5 (chl-a).

Window Size
(Hours)

30 m
# Data Pairs

30 m
Test RMSE

90 m
# Data Pairs

90 m
Test RMSE

6 55 11.67 55 12.45
12 85 10.78 86 15.82
18 99 12.12 99 15.76
24 123 15.80 126 20.23
30 168 17.44 173 25.46
36 193 19.55 198 21.94
42 202 20.98 209 24.23
48 249 26.04 258 32.71
54 290 26.07 304 32.58
60 300 26.22 318 33.33
66 328 28.38 349 36.56
72 388 27.40 411 35.14

Tables 7 and 8 show the impact of the α values on the number of terms and RMSE
values for the 30 m and 90 m datasets, respectively. We did not use k-fold validation on
these data but computed the error for the entire dataset. This resulted in slightly different
values than those shown in Table 6. The 90 m data consistently resulted in models with
fewer terms than the 30 m models, for which slightly different RMSE values, both higher
and lower, were obtained for the chl-a and log(chl-a) models, respectively. While the
number of terms may be significant, the difference in RMSE is within the expected variation
of the data.

The use of the 90 m data rather than the 30 m data resulted in slightly better models,
for which there were fewer terms for a given α value and similar RMSE values. We attribute
this finding to the fact that in situ measurements are point values that may differ from the
average value over a pixel measured by a satellite. In addition, due to winds and currents,
algal blooms can move between the time the sample was taken and that of the satellite
overpass. In both cases, the 90 m data capture a greater degree of variation, though with
less precision. Hansen and Williams [15] suggested using 90 m data; while our results agree
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with this suggestion, they also show that users need to evaluate their data to determine the
impact of using average pixel values versus single pixel values for model development.

Table 7. A comparison of 30 m and 90 m versus α in calibrated chl-a models with a 12 h (3-day) time
window and using all the data.

Alpha 30 m Chl-a 30 m Chl-a 90 m Chl-a 90 m Chl-a

Values (α) Number of Terms RMSE Number of Terms RMSE

0.005 20 8.45 17 9.44
0.01 18 9.73 15 10.90
0.05 11 11.72 10 12.25
0.1 8 12.15 8 12.53
0.5 4 13.15 6 13.54
1 7 14.61 5 13.74
5 4 17.68 4 15.21
10 3 18.50 3 16.44
25 2 22.54 3 21.39
50 2 23.01 2 22.74

Table 8. A comparison of 30 m and 90 m data versus α in calibrated log(chl-a) models with a 12 h
(3-day) time window and using all the data.

Alpha (α) 30 m
Log(chl-a)

30 m
Log(chl-a)

90 m
Log(chl-a)

90 m
Log(chl-a)

Values Number of Terms RMSE Number of Terms RMSE

0.0001 22 55.76 20 53.47
0.0002 18 54.96 18 52.83
0.0005 15 54.39 14 51.88
0.0010 10 54.52 11 51.17
0.0022 10 54.48 7 50.87
0.0046 10 54.73 8 51.58
0.0100 9 56.04 7 52.86
0.0215 7 59.74 5 55.55
0.0464 4 59.87 4 60.24
0.1000 4 57.41 4 56.61

3.5. Model Comparisons

For this analysis, we generated both chl-a (Equation (2)) and log(chl-a) (Equation (3))
models using a time window of 12 h, which provided 24 h of data. These models were
generated using all the data, with no data reserved for error analysis. Errors were computed
for all the data (i.e., training data). We used α values of 0.5 and 0.04 for the chl-a and log(chl-
a) models, respectively, which yielded four or five model terms plus the intercepts for the
chl-a and log(chl-a) models, respectively. For all these models, chl-a concentrations are
provided in µg/L. As these are regression equations, the coefficients for each term in the
model have the correct units with which to be converted to µg/L; however, for conciseness,
we did not assign units to the model coefficients.

The chl-a model that uses an α value of 0.5 and the data within 12 h of the satellite
collection is defined as follows:

chla = 3.03 + 2.10
1

ρblue
− 3.731

1
ρgreen

− 0.0139
1

ρNIR
+ 0.016

ρblue
ρNIR

(2)

where chla is the chl-a concentration in µg/L and ρx represents the mean Landsat Level 2
reflectance from band x.
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The log(chl-a) model generated using an α value of 0.04 and incorporating the data
within 12 h of the satellite collection is defined as follows:

ln(chla) = 3.66 + 0.84 ln(ρNIR) + 0.052
1

ρblue
− 0.0438

1
ρred

+ 0.005
1

ρNIR
− 0.257

ρblue
ρNIR

(3)

where chla is the chl-a concentration in µg/L and ρx represents the mean Landsat Level 2
reflectance from band x.

The models have three shared terms that appear in both models. The three shared
terms include two band inverse values, 1

ρblue
and 1

ρNIR
, and a band ratio, ρblue

ρNIR
. The chl-a and

log(chl-a) models have unique band inverse terms of 1
ρgreen

and 1
ρred

, respectively, while the
log(chl-a) model also has an ln(ρNIR) term.

Matthews [42] conducted an exhaustive literature search of water quality models. The
models he selected were not explicitly developed for optically complex waters, though a
few might have been. He reported 18 different models for estimating chl-a concentrations
and these models included 14 different terms, with half of the terms (7) being used only by
a single model and not by any of the other models. The most common terms, which were
used in more than one model, were blue, green, red, and NIR bands, which were used in
nine, six, four, and three models, respectively. The SWIR1 and SWIR2 bands, along with the
ratio of the blue and red bands ( ρblue

ρred
), were used in two different models. Matthews [42]

only specified if a band, band ratio, or a log of a band or band ratio was included in the
models. Therefore, the reported bands could have been band inverses (i.e., 1/band). If
this is the case, then the band ratio terms and the ρblue

ρNIR
terms from our models match the

reported bands, with only the ln(ρNIR) term not reported in this study.
Hansen and Williams [15] published three seasonal models specifically for Utah

Lake. These models were developed either using all available data or data from specific
seasons. The investigated hypothesis was that phytoplankton populations change with
seasons and present different spectral signatures. These models consisted of a whole-season
(Equation (4)), an early-season (Equation (5)), and a late-season (Equation (6)) model. All
three models estimated ln(chl-a):

ln(chl) = −1.53 + 2.55
ρNIR
ρblue

− 1.15 ln(ρblue) (4)

ln(chl) = −14.23 + 9.33
ρgreen

ρblue
+ 0.003 · ρblue − 0.004 · ρSWIR1 (5)

ln(chl) = 7.33− 0.004 · ρblue − 0.05
ρgreen

ρSWIR2
+ 0.01

ρred
ρSWIR1

(6)

where chla is the chl-a concentration in µg/L and ρx represents the mean Landsat Level 2
reflectance from band x.

In these three models there are nine unique terms, with only the blue band shared
between all three models; none of the other terms are shared. The ρNIR

ρblue
ratio term is in

both our models and in the whole season model [15]. Our models both include a 1
ρblue

term,
while their models include ρblue or ln(ρblue) terms, which are similar. These Utah Lake
models share the blue and SWIR bands with those reported by [42] but share none of the
other terms.

These comparisons show that the terms selected by L1 regularization are commonly
used in published chl-a models. However, our approach allows the model to select terms
that are generally not considered for model development, such as the log of band values.

Figure 9 compares the errors of our L1-created models and the models developed by
Hansen and Williams [15]. Figure 9 shows the results from the L1 models that were trained
using the data with a 12 h offset and α values of 0.5 and 0.04 for the chl-a and log(chl-a)
models, respectively. We applied the L1-created Hansen and Williams [15] models to data
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with a time offset of 6 to 72 h. For the L1 models, this means that any data with time offsets
of greater than 12 h had not been used in training and constitute a test set.
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Figure 9 shows that both the L1 and L1-log models closely match, and are slightly
superior to, Hansen and Williams’ [15] whole-season model and are better than the seasonal
models. We did not fit L1 seasonal models for this paper nor did we compute errors
for the Hansen models only concerning seasonal data, but we expect that the results
would be similar. Hansen and Williams [15] showed that the seasonal models adequately
corresponded to the seasonal data and outperformed the models generated on all the data;
however, seasonal models are limited by the fact that there are often only very limited
datasets for any given season. The L1 models trained on any given dataset generally
perform worse than the whole-lake model on data from larger time offsets, though not
always. As shown in Figure 9, if the L1 models are trained on the same data, they perform
essentially the same as the whole-season model.

3.6. Optically Complex Water and SWIR1

Our goal in exploring the use of L1 regularization for the creation of remote-sensing
models was to determine if this approach would be useful for optically complex waters
where non-standard bands may be useful. Specifically, we sought to determine whether it
would choose bands or other features that would not be selected based on the expected
physics of the problem. Figure 10 demonstrates an example of where this might occur. For
the following discussion, we have no ground truth, but the image supports our hypothesis.

Water has very high absorbance in the SWIR wavelength; therefore, its atmospherically
corrected surface reflectance values are low. For example, at a wavelength of 1640 nanome-
ters, which is about equal to that of the SWIR1 band for Landsat images, the absorption
coefficient is 6.35/cm; thus, only about 0.01 (1%) of the light is reflected from a depth
of ~0.36 cm below the water surface [40]. SWIR2 is similar but with a higher level of
absorbance. This means that SWIR1 or SWIR2 can only interrogate a few millimeters of
the top of a body of water. For this reason, these bands are not included in remote-sensing
models for the chl-a concentrations in water. While our final model did not include either
SWIR1 or SWIR2 bands, Figure 8 shows that the SWIR1 band is selected as the 17th and 12th
most common parameter for all models for the chl-a and log(chl-a) models, respectively.
The SWIR2 band is selected as the 14th and 11th most common parameter for all models
for the chl-a and log(chl-a) models, respectively.
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Figure 10. A Landsat image from 17 July 1986, with visual imagery from the RBG Landsat bands and
estimated chl-a concentration maps on the right and left panels, respectively. Water from Hobble
Creek flows into area B, resulting in relatively clear water in Provo Bay, which is shown in the ellipse
labeled “B”; the remainder of the lake exhibits significant amounts of sediment from a recent storm,
especially the area in the ellipse labeled “A”. The clear water in “B” has a significant estimated chl-a
concentration, while the water in “A” has a very low, ~0, chl-a concentration.

Figure 10 is an image based on the RGB Landsat bands from July 17, 1989, that
demonstrates why a model created with L1 regularization might include the SWIR1 or
SWIR2 bands. The left panel is a real-color image of Utah Lake. Area A contains a large
silt plume precipitated by a recent storm. Utah Lake is shallow, with depths less than 3 m,
and has a long fetch and reach on the order of 40 and 15 km, respectively. Accordingly,
wind generates very large waves that suspend significant amounts of sediment (Area A).
Area B is where Hobble Creek, a larger tributary, flows into Provo Bay. The water in Area
B is relatively clear, as indicated by the darker color, as light is reflecting from the bottom
of the bay. The right panel of Figure 10 shows the estimated chl-a concentration on the
same date using the model given in Equation (3). This panel shows that Area A has a chl-a
concentration of approximately 0, while Area B has a relatively high concentration, up to
15 µg/L. While we have no ground truth, the sediment concentration in Area A is high
enough to reflect light in the SWIR1 and SWIR2 bands, while the relatively clear water in
Area B does not reflect light in these bands. We have obtained field data with Secchi disc
readings of less than 10 cm that support this idea that suspended sediments significantly
affect the refection and absorption normally associated with water.

The model generated using L1 regularization may have selected SWIR1 and SWIR2 to
differentiate between sediment plumes and algae plumes. In the left panel, Area A does
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have a “green” color that could be an algal bloom; however, the model clearly shows that
there are no algae present in this area. In contrast, Area B appears to have relatively clear
water in the image, but the model shows that its chl-a concentrations are significantly higher
than those in the lake. This is an example of why models created with L1 regularization
might select either the SWIR1 or SWIR2 bands, though we know that reflectance from
water in these bands should essentially be zero.

Due to the high absorption of water in the SWIR1 and SWIR2 bands, it is easy to use
this image as an example. We have surmised that similar issues are involved in the feature
selection process for models with only a few parameters. As discussed above, the features
selected by the L1 algorithm are similar to, but not the same as, most published chl-a
models. We have surmised that this is because of the very optically complex nature of Utah
Lake, where water does not look like water, as demonstrated in the left panel of Figure 10.

As an aside, Tanner, Cardall, and Williams [28] hypothesize that algal growth in Utah
Lake is light-limited and that blooms do not start in the turbid mid-lake waters. Rather,
they postulate that blooms generally start in the bays, where water is clearer and warmer,
and then move out into the lake.

4. Discussion
4.1. L1 Regularization

Our goal was to evaluate L1 regularization to determine if it is an appropriate method
for use in the exploration of a large parameter space. This is especially important in
cases where the number of features or predictors (p) is similar to, or larger than, the
number of observations (n). In many remote-sensing applications, there are a limited
number of in situ observations, and features or predictors are typically chosen using prior
understanding of the spectral behavior of the target features, such as chl-a concentrations.
Other constituents in optically complex water can interfere with the spectral signatures of
chl-a, so non-traditional terms might be useful for predictions.

Prior to performing this research, it was not clear if L1 regularization could be used
for models wherein the number of potential features and the number of measurements
were of similar magnitudes. Our model runs showed that an L1 model converges to the
same set of features, even over a large number of realizations. This allows the model to
explore the entire feature space. This is different than step-wise regression, where the order
in which the terms are presented to the algorithm is important and the modeler is required
to determine the order of importance of the selected terms.

L1 regularization evaluated model terms not commonly found in published models,
though most of the selected terms were similar. In the beginning of our study, we noted
that our initial search space included various engineered terms corresponding to the
SWIR1 and SWIR2 bands. We found that despite these models’ low error metrics, they
demonstrated significant noise when they were applied to the lake. Subsequently, we
re-explored the parameter space without these features and generated better models. Based
on this experience, we recommend L1 regularization for exploring large parameter spaces,
followed by the performance of an additional exploration of the selected features. One
of the strengths and weaknesses of L1 is that it selects features that are informative and
excludes other correlated features that may be useful in a model. In this study, L1 selected
the smallest number of features to achieve the highest predictive performance. This can
result in an acceptable model but may also result in a less robust or efficient model. In
general, L1 can be thought of as selecting features based on their interaction and main
effects on the target variable. This can occur because the main effects are not as informative
as the interactions. This can result in L1’s failure to select some useful variables. We
evaluated our L1 models on multiple samples from the same dataset using the k-fold
method and found that the sets of predictor variables that were returned were stable.
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4.2. Significance of Temporal Coincidence and Spatial Resolution

We explored the impact of time coincidence and pixel resolution on model develop-
ment using L1 regularization. Accuracy decreased and variability increased with increasing
time offsets. We attribute this to the fact that the in situ data and the satellite collection
data were measured at slightly different times, as conditions can rapidly change over
a three-day period. We performed an evaluation using the average of a 3 × 3 (9) pixel
grid to help mitigate issues associated with both spatial and temporal variances in algal
distribution. We found that the 3 × 3 grid slightly increased accuracy but to an extent well
within the variation computed using 200 k-fold realizations. For much of this paper, we
used the closest single pixel and varying offsets. For modelers using this approach, both
time offset and pixel average methods should be explored. Especially with regard to a
time offset, there are direct tradeoffs with respect to the number of data pairs available for
model development.

4.3. Data Engineering and Feature Selection

The L1 models selected features that have been reported in the published literature
and performed very well, even with respect to the optically complex water of Utah Lake.
For actual model development, the normalization of some or all of the engineered features
may result in a more robust model. We minimally explored normalization with min–max
and z-scores (both of which are available in the notebook), but we did not examine this
in-depth because our research goal was to demonstrate the use of L1 regularization to
explore large feature spaces for optically complex models and not to generate the best
model for Utah Lake. Evaluating different normalization methods and determining which
variables to normalize would have added significant complexity to this paper without
adding any useful information, as most model builders are familiar with normalization and
each application would be data- and site-specific. Another potential approach, which we
did not explore, would be the use of offsets rather than minimum values for negative band
values. This would retain relative quantities, while setting these low values to a minimum
would not. We did not evaluate methods for addressing negative band values; as discussed
in Section 2.4, we simply replaced the negative values of the blue, red, NIR, and SWIR1
bands with values of 0.01, 0.01, 0.001, and 0.001, respectively. This probably affected the
models’ accuracy for low concentrations. Aside from normalization, another approach that
modelers should consider is the offsetting of all the values by a amount. This would result
in all positive values but have little impact on values above the median. This would also
allow the L1 models to include features in these bands to help address complexity caused
by the high concentrations of suspended solids, clays, calcite, and silts present in Utah
Lake (Figure 10).

4.4. Model Creation

We have shown that L1 regularization can be used for remote-sensing models and
to explore a feature space with a size similar to the data space, that is, where the number
of features and number of observations are similar. It is an efficient model development
approach, which is capable of generating hundreds of models on a desktop machine in
just a few minutes. This facilitates approaches such as the use/development of seasonal
models [15,43] and site-specific models that consider changing or complex optical character-
istics. However, we believe that modelers should be careful when accepting the first model
generated by the L1 methods. They should carefully evaluate input data and features. Tech-
niques such as normalization or other data-cleaning methods may aid model development.
After an performing an initial model evaluation in a very large feature space, it may prove
beneficial to explore a smaller feature space. For example, one could eliminate the top
features and determine if the model selects existing model features and a correlated feature
that had previously been excluded. A single model can be generated almost immediately,
so this type of exploration should be considered.
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L1 regularization with data that have correlated informative features tends to select
one feature and push the others toward 0. This results in a model that can omit significant
informative features. L1 regularization will often choose more features than are required
because of this issue. This can be gleaned by comparing the L1 model to the published
models. Our L1 models have four or five features, while the published models have only
two or three features.

5. Conclusions

The goal of this numerical experiment was to evaluate the ability of using L1 regular-
ization to generate remote-sensing models using a large feature space. This is important
because for most remote-sensing models, the availability of in situ observations is limited,
often amounting to only a few tens of measurements. We also briefly explored the impact
of non-coincident measurements and pixel resolution on model accuracy. We found that
L1 regularization is a useful technique and can be used to explore large feature spaces. L1
selects features based on which features have significant interaction effects, and generally
will not select two features that are highly correlated. This means that features that are
directly correlated with the target variable may not be selected. The evaluation of this
behavior is beyond the scope of this article, but it has been given an in-depth treatment
in [44].

In addition to demonstrating the application of L1 regularization to feature selection,
we provided an in-depth example of which types of analysis, visualizations, and other
approaches modelers should use if they adopt this method.

In addition to the manuscript, we have provided two Google Earth Engine Colab
notebooks. The first (Notebook1) demonstrates and provides tools for obtaining non-
coincident remote-sensing data, provided that a list of sample dates, values, and locations
is available. It provides computations for feature engineering, generating 90 features from
the 6 Landsat bands we used. Currently, the notebook retrieves Landsat data, but it can be
easily modified to operate with other sensors. The second notebook (Notebook2) applies
L1 regularization and generates a model that can be used to estimate target measurements.

Our explorations showed that L1 regularization is useful for exploring large feature
spaces and identifying features not traditionally used. This is especially useful for optically
complex waters. However, while L1 regularization is useful, the final model may not be
the best model that can be developed. We recommend evaluating the features L1 selects
along with traditional features and performing an analysis to create a final model.

Colab notebooks that implement and describe this approach are available on GitHub
at https://github.com/BYU-Hydroinformatics/ee-wq-lasso (5 March 2023). Occasionally,
these notebooks may be updated.
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