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Abstract: The rapid expansion of remote sensing provides recent and developed advances in monitor-
ing wetlands. Integrating cloud computing with these techniques has been identified as an effective
tool, especially for dealing with heterogeneous datasets. In this study, we conducted a systematic
literature review (SLR) to determine the current state-of-the-art knowledge for integrating remote
sensing and cloud computing in the monitoring of wetlands. The results of this SLR revealed that
platform-as-a-service was the only cloud computing service model implemented in practice for
wetland monitoring. Remote sensing applications for wetland monitoring included prediction, time
series analysis, mapping, classification, and change detection. Only 51% of the reviewed literature,
focused on the regional scale, used satellite data. Additionally, the SLR found that current cloud
computing and remote sensing technologies are not integrated enough to benefit from their potential
in wetland monitoring. Despite these gaps, the analysis revealed that economic benefits could be
achieved by implementing cloud computing and remote sensing for wetland monitoring. To address
these gaps and pave the way for further research, we propose integrating cloud computing and
remote sensing technologies with the Internet of Things (IoT) to monitor wetlands effectively.
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1. Introduction

Wetlands are transitional environments where terrestrial and aquatic zones exist and
some properties of the two zones are shared. Thus, they have an extremely crucial role
in the hydrological cycle. Moreover, wetlands have numerous similarities but differ in
size, location, and hydrology. They occupy around 10% of the global land surface area
and have been ranked as some of the most diverse ecosystems on Earth [1]. Additionally,
they are characterized by different water depths, hydric soils, and wetland-adapted flora
and fauna [2,3]. Therefore, in terms of definition and classification, wetlands have been
defined and classified differently by different nations and organizations, depending on
various perspectives, e.g., country policy, wetland application, vegetation types, or water
level [2,4–7]. One example of the classification is provided by the Canadian Wetland
Classification System [8], which identifies five types of wetlands:

1. Bog—an ombrotrophic peatland dominated by sphagnum moss species;
2. Fen—a minerotrophic peatland dominated by graminoid species and brown mosses;
3. Swamp—a peatland or mineral wetland dominated by woody vegetation;
4. Marsh—a minerotrophic wetland with periodic standing water or slow-moving water,

dominated by graminoids, shrubs, forbs, and emergent plants;
5. Shallow water—a minerotrophic wetland where water is up to 2 m deep for most of

the year and has less than 25% of emergent or woody plants.

Wetlands are included among the world’s most productive ecosystems. They provide
several eco-services, such as water purification, removal of pollutants, carbon regulation,
protection from natural threats, soil and water conservation, enhanced biodiversity, di-
verse wildlife habitats, recreational activities, fish and shellfish aquaculture, and flood
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mitigation [5–7]. These ecosystems are also home to one-third of at-risk vegetation and
animals [3,9].

Furthermore, from an economic perspective, wetlands are highly significant due to
the wide-ranging applications they provide to populations through the economy and their
support to the sustainability and pliability of communities [10]. These applications incorpo-
rate provisioning administrations (food, fresh water, and fuel), managing administrations
(climatic guidelines, hydrological guidelines, contamination control, disintegration security,
and relief of normal risks), social administrations (profound, instructive, and strict), and
supporting administrations (biodiversity, soil arrangement, and supplement cycling). In
addition, wetlands provide environmental benefits and are esteemed more profoundly than
many other biological systems on Earth [10]. Nevertheless, notwithstanding wetlands’ man-
ifold advantages, wetland conversion and depletion have surpassed 50% worldwide [11]
and reached up to 87% since the onset of the 18th century [11,12]. Furthermore, anthro-
pogenic activities such as drainage, groundwater extraction, intense irrigation practices,
and urban and agricultural land replacement have degraded wetlands globally [13].

Natural events such as climate change and natural catastrophes (i.e., wildfire, flood,
drought) have also contributed to wetland degradation [4]. Furthermore, global and
local wetlands have a substantial cycle (seasonal and annual). Due to disturbance, they
become inconsistent in their spatial extent, which is subject to variations in water balance
components (evapotranspiration, precipitation, and runoff) that result in fluctuations of
the water table and lead to changes in vegetation composition [14]. Therefore, monitoring
wetlands is crucial for obtaining precise, consistent, and up-to-date information about the
attributes of wetlands, such as the extent of change, type, and status.

Remote sensing (RS), in combination with wetland science, is currently better used
than in recent times for accurately quantifying wetland status and changes over time.
Wetland mapping utilizing earth observation data is critical for regional, national, and
global natural resource management, as RS technology captures data about the Earth’s
surface ranging from low to ultra-high resolutions. However, due to wetlands’ varied and
fragmented environments and the spectral similarities of different wetland types [15,16],
reliable wetland monitoring is complex, especially at a broad scale. Globally, precise, con-
sistent, and complete national- or provincial-scale wetland inventories are still insufficient,
with most research focusing on producing local-scale maps using limited remote sensing
data [17]. Therefore, one of the ways to effectively address the issues mentioned above is to
use cloud computing (CC) technology.

According to the National Institute of Standards and Technology (NIST), “Cloud
computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [18]. CC solutions offer extremely dependable data
centre design, including load balancing, real-time backup, remote disaster recovery, big
data service distributed via the internet, and computing service from anywhere [19]. CC
has been widely applied in RS for several years [20]. It is worth mentioning that, regarding
the efficiency and analysis process, CC delivers efficient and systematically arranged
information which directly impacts the final beneficiary of the process, as compared to
conventional computing. In this case, it is conducive for the beneficiaries (e.g., researchers,
scientists, and governmental organizations) to monitor the wetlands’ changes and processes,
providing instantaneous decision support.

CC is primarily defined based on two different aspects: the service model and the
deployment model, which can be private, hybrid, or public depending on the level of
privacy it supports. The CC model consists of the three most common service models:
platform as a service (PaaS), software as a service (SaaS), and infrastructure as a service
(IaaS). Apart from the three service models, there are some models associated with big data,
such as data storage as a service (DaaS) and function as a service (FaaS) [21].
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There are existing applications of cloud-based RS, such as Google Earth Engine (GEE),
Microsoft Planetary Computer, and Earth on Amazon Web Services (AWS). Cloud comput-
ing reduces the efforts spent in in situ measurements and processing time. Moreover, it
reduces human error while measuring and obtaining raw data, especially in wetlands (due
to their heterogeneity).

The main aims of this paper are to form state-of-the-art cloud computing applications
in wetland monitoring, highlight the importance of cloud computing for RS data, and show
the benefits of utilizing such a technology in wetland monitoring. The subsequent research
questions were formulated to accomplish these objectives:

1. Which cloud computing service model has been utilized in wetland monitoring?
2. How widely utilized are the different monitoring applications of remote sensing data

on wetlands using cloud computing, and what are their limitations and accuracy?
3. Which monitoring strategies were performed using cloud computing technology?
4. What economic gains can be realized from integrating cloud computing and remote

sensing data in the monitoring of wetlands?

This systematic literature review (SLR) is organized into several key sections. Section 2
outlines the methodology used to conduct the SLR and provides the conceptual framework.
Section 3 presents the results in two subsections: the first describes the general statistics
related to the included studies, and the second answers the research questions and dis-
cusses the findings. Section 4 identifies the limitations and potential threats to the review.
Sections 5 and 6 present the conclusion and future work, respectively.

2. Methodology

The present study adhered to a systematic methodology describing the framework
and structure of the research: (1) The initial step involved defining the principal aim of
the review clearly and concisely, reflecting the scope and purpose of the investigation;
(2) Forming the research questions to achieve the main aim; (3) Selecting the databases for
searching the literature; (4) Identifying the workflow for the article selection process, shown
in Figure 1. Since steps 1 and 2 were mentioned in the introduction, step (3) was executed
by selecting two databases, Scopus and Web of Science (WoS), where the publications
were searched. We used the following search string to narrow down the literature on the
searched databases, as shown in Table 1.

To be included in the study at least one of the terms “CLOUD COMPUTING” OR
“google earth engine” OR “MAAP” OR “Multi-Mission Algorithm and Analysis Platform
(MAAP)” OR “Giovanni” OR “NASA POWER” OR “earth data” OR “Nebula” OR “Coper-
nicus” and one of the terms “Wetland” OR “peatland” OR “bog” OR “fen” OR “swamp” OR
“mire” OR “marsh” had to appear in either the title, abstract, or keywords. Furthermore, we
included only peer-reviewed research articles on cloud computing applications and remote
sensing in the monitoring of wetlands published in English with no time constraints. The
process of retrieving relevant articles was performed in June 2022, thus encompassing all
published works on the topic until that time, as included in this review. Out of 265 articles
retrieved from the database search, 172 met the established criteria after removing duplicate
articles, and were considered for manual screening.

The last step of the screening phase was completed manually for the selected literature
records based on reading the full text. The articles had to meet the following selection
criteria: (1) Articles which utilized only remote sensing without cloud computing were
excluded; (2) Only full-text, original, peer-reviewed articles presenting in-depth experi-
mental results in English language were included; (3) The articles had to utilize both cloud
computing and remote sensing to be included; (4) Some of the studies displayed the terms
of search queries in the abstract and title for examples such as “FEN” and “Giovanni”, but
they did not investigate the wetlands or any of the other related features; thus, such articles
were excluded. After all these steps, 50 full-text articles (see Supplementary File for details)
were identified and analysed based on the following extracted data:

A. The number of annual published articles;
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B. The distribution of studies per country;
C. Utilized cloud computing platforms and remote sensing data;
D. Observed temporal coverage of time series analyses;
E. Frequencies of the spatial scales studied;
F. Frequencies of remote sensing platforms;
G. Frequencies of methods applied.
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Figure 1. Systematic literature review, schematic representation, and reasons for exclusion.

Table 1. Used search queries for searched databases.

Database Search Query

Scopus

TITLE-ABS-KEY (“Cloud Computing” OR “Google Earth Engine” OR “MAAP” OR “Multi-Mission Algorithm and
Analysis Platform (MAAP)” OR “Giovanni” OR “NASA POWER” OR “earth data” OR “Nebula” OR “Copernicus”)
AND TITLE-ABS-KEY (“Wetland” OR “peatland” OR “bog” OR “fen” OR “swamp” OR “mire” OR “marsh”) AND

(LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”))

Web of
Science

TS = (“Cloud Computing” OR “Google Earth Engine” OR “MAAP” OR “Multi-Mission Algorithm and Analysis
Platform (MAAP)” OR “Giovanni” OR “NASA POWER” OR “earth data” OR “Nebula” OR “Copernicus”) AND

TS = (“Wetland” OR “peatland” OR “bog” OR “fen” OR “swamp” OR “mire” OR “marsh”)

3. Results

This section presents key findings and responses to the research questions. Moreover,
it shows the general statistics related to the primary studies selected for this systematic
literature review (SLR).
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3.1. General Statistics
3.1.1. Annually Published Papers

Fifty primary studies met the eligibility criteria; thus, they were selected and included
in this review, as described in the supplementary material (Table S1). Figure 2 shows the
distribution of these studies by year of publication. The topics related to the application of
cloud computing and remote sensing in wetlands started in 2016, and their popularity has
increased in recent years: around 58% of articles (29 papers) were published in just one and
half years (from January 2021 till June 2022). The findings above illustrate the emerging
trend among researchers dealing with wetland monitoring to employ cloud computing
(CC) technology. As such, it is reasonable to anticipate a surge in research to develop
remote sensing CC-based applications for wetland monitoring soon.
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3.1.2. Retrieved Primary Study Classification Based on the Journal in Which the Articles
Were Published

The studies included in this SLR were published in twenty-three journals from eight
well-known publishers (Figure 3). First, most of the articles were published by MDPI (46%),
then by Elsevier (18%), Springer (12%), Taylor & Francis (8%), IEEE (6%), IOP (4%), and PLoS
(4%), followed by the American Society of Agricultural and Biological Engineers (ASABE, 2%),
arranged from the highest to the lowest contribution, respectively.

3.1.3. The Spatial Distribution of Studied Wetlands in the Selected Articles

Twenty-four percent of the articles were related to Chinese wetlands, while Cana-
dian and wetlands in the USA were represented by 22% and 18% of articles, respectively
(Figure 4). Countries such as Iran, Turkey, and Costa Rica had at least two studies associated
with each, whereas the rest contributed with a single study. It is noteworthy that several
studies were conducted in multiple countries, including Gxokwe et al.’s investigation [22]
spanning South Africa, Botswana, Mozambique, and Zimbabwe; Hardy et al.’s study [23]
conducted in various southern African nations such as Barotseland, Zambia, and the Zam-
bezi Region; and a further examination by Zhang et al. [24] which was implemented in
China, South Korea, and North Korea (Figure 4).

Although wetlands exist in most countries worldwide, in every climatic zone, from the
polar regions to the tropics and from high altitudes to dry regions, only CC and RS-related
studies on wetlands in 30 countries were reported in the selected literature. It is worth
mentioning that only three studies were placed in Europe, despite the significant number
of wetlands on this continent [1,12].
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3.1.4. Distribution of Selected Articles Based on First Authors

Canadian authors exhibited the highest published works among the included studies
(Figure 5). Specifically, Mahdianpari M. and Amani M. contributed three articles each, while
DeLancey ER contributed two. This value is relatively substantial compared to authors
from other nations, such as China and the United States, where different first authors were
credited for each published article.
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3.2. Which Cloud Computing Service Model Has Been Utilized in Wetland Monitoring?

All the papers included in this review used PaaS as a cloud computing model. PaaS
is a development platform allowing researchers to develop and build RS-based appli-
cations directly on the PaaS cloud. Thus, SaaS and PaaS differ in that SaaS only hosts
cloud applications that have already been developed, whereas PaaS offers a development
platform that hosts both cloud applications that have already been developed and those
that are still in development. PaaS must have a development infrastructure, including a
programming environment, tools, configuration management, and other components, and
an environment supporting application hosting to achieve this.

An example of PaaS is Google Earth Engine (GEE), which is most commonly used
to implement the study and achieve the goal of CC [22,25–32]. GEE is a freely available
platform with open-sourced scripting frequently used to automate the RS data for the
area of interest, mainly at a big scale. It has a vast dataset for the world, mainly from
satellites with a variety of spatial resolutions, from coarse (1 km, MODIS) to high (10 m,
Sentinel 2), which are good enough for monitoring wetlands at different scales, from the
local and regional to the continental and global scales. At a local scale, which is often the
wetland level where some research infrastructure and experimental sites with small plots
are located, wetlands can be monitored either by application of CC on the SaaS model
(time and cost-efficient) or by the traditional methods, i.e., carrying out the ground-based
measurements using the instruments in the field (time and not cost-efficient). However,
using dedicated CC-based software, data from the fixed sensors in the study area can be
read and analysed, and then quantitative and visualized results can be shown in real time.
These time and cost-savings help researchers and professionals closely track the wetland
status and minimize potential risks (e.g., fire) and maintenance costs. PaaS and RS can
integrate a vast quantity of data, tools, and programs; then, by linking many wetlands with
the same technology, global monitoring and tracking of the changes of those study areas
will be possible and straightforward, thanks to Digital Twin, IoT, and CC.

3.3. How Widely Utilized Are the Different Monitoring Applications of Remote Sensing Data on
Wetlands Using Cloud Computing, and What Are Their Limitations and Accuracy?

The requirements of the data needed to monitor an ecosystem depend on the purpose
of its monitoring. Five types of monitoring purposes have been selected as subclasses of
wetland monitoring in the articles analysed (Table 2).
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Table 2. The subclasses of wetland monitoring strategies in the analysed articles.

Monitoring Strategies References

Prediction (1 article) [33]
Time series analysis (6 articles) [28,30,34–37]
Mapping (11 articles) [23,24,31,35,38–44]
Classification (15 articles) [9,17,22,27,45–55]
Change detection (17 articles) [25,26,29,56–69]

In most of the studies, satellite data is the most used; it has been used alone or in
combination with other types of remote sensing data (airborne, UAV, or in situ), indepen-
dent of the monitoring strategy applied (Figure 6). The satellite data’s widespread use is
thanks to the open-access products of space agencies such as the European Space Agency
(ESA) and the National Aeronautics and Space Administration (NASA), providing products
with spatial resolutions of 10 m (Sentinel 2) or temporal coverages since 1972 (Landsat 1).
These products were mostly used for the detection of changes in wetlands (34% of articles),
wetland classification (30% of articles), and wetland mapping (22% of articles).
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Only one article focused on predicting changes in wetlands, where a combination of in
situ measurements and satellite data were applied to monitor plant phenology. However,
weather conditions such as fog, made it impossible to use historical data to predict sea-
sonality [33]. Additionally, climate change, with the variation in weather and seasonality,
makes it more difficult to use historical data to predict future plant phenology as the future
climate is unknown and unpredictable in the long term. Thus, approximately 12% of the
articles primarily analysed time series data derived from satellite products. Three of them
indicated problems with the number of images available [36], their spatial resolution [30],
or the high level of moisture affecting vegetation index performance [37], but the average
accuracy surpassed 90%. The accuracy refers from this point to the values provided by
the authors in each publication, where accuracy is calculated from the percentage of hints
compared to an already published result in the form of Corine land cover or ground control
points grouped and averaged. The satellite products’ low number of images and low
spatial resolution was also a problem faced in combining satellite and airborne data [34].
Differences among wetland sites were identified as the next source of uncertainty when
multiple watersheds or wetlands are studied combined and treated equally, where the
addition of in situ measurements is recommended to avoid errors [28]. However, in situ
data in combination with low spatial resolution satellite products has reported the problem
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of pixels being too big [36], indicating that the combination with in situ data may still
require high-resolution imagery either airborne or satellite. Furthermore, the accuracy was
not reported in the studies combining airborne with satellite, and performing time series
analysis [23,25,27]; hence, this SLR could not evaluate the accuracy.

In the case of wetland mapping, satellite data cannot provide enough information to
differentiate among wetland classes, as it occurred for bogs and fens [42], and wetland
types [32,44]. Another problem derived from satellite spatial resolution for mapping is
the inability to distinguish water bodies, often masked by highly dense vegetation [23,43],
or the inability to differentiate small fires; they are accounted for as giant fires, clustering
several of them instead of treating them as small individual ones when burn severity is
studied [39]. Five out of seven studies using satellite data for wetland mapping specifically
reported problems with the spatial resolution of the imagery. In the only article using
satellite data in combination with in situ measurements, a problem was reported with
skewed data: a non-representative set of ground-based values was overestimating high
values of soil organic carbon, for example, and underestimating low ones [41]. With the
use of UAV data, the spatial resolution increased; however, when combined with satellite,
the results faced issues with noise-free images to monitor phenology [24]. When combined
with airborne data, multi-source satellite data were still needed for mapping due to the
structural heterogeneity of some wetlands, such as peatlands [40].

Additionally, the low availability of airborne images per year could not capture rapid
changes, such as inundation status, to map these processes [31]. Using satellite data with a
higher resolution to validate results [38] can result in overestimating the actual accuracy
(93.2% accuracy estimated), as it should be obtained from the comparison with ground-
based data and not another remote sensing dataset. High-resolution data from UAVs or
airborne missions have time, scale, and sometimes even price limitations, so their use also
faces challenges [61]. Satellite data used for change detection analysis on wetlands faced
the same problems with the heterogeneity and density of wetland vegetation, i.e., mapping,
although the average accuracy of the results is higher (Table 3). However, the result can
be biased because of the difference in the amount of articles for each monitoring type
(Figure 6). The difference in spatial distribution and the spectral similarities among types of
wetlands also caused challenges in change detection studies as it was impossible to select a
specific shape and spectral indices to perfectly extract the changes over time [62,64,66]. The
same can be observed when combining airborne and satellite datasets, [29,63] and satellite
and in situ [65]. In contrast, for wetland mapping, the main challenge faced within change
detection studies on wetlands was the processes of rapid changes caused by extreme events
and strong seasonality of wetlands, with satellites not providing a high enough temporal
resolution to monitor them [56,61,67]; the same occurred when combining it with airborne
data [59]. The harmonic time series analysis can be used as a solution [68], increasing
the accuracy from the average of 89% to 93.35% or by combining with UAV imagery,
with 92% accuracy [69]. It is worth noting that the utilization of higher resolution satellite
images for validating the results can potentially lead to an overestimation of accuracy. This
is exemplified by the inundation and detection disturbances in land cover and their study
of associated changes, which achieved a validation accuracy of 91.1% when using imagery
from a private satellite, as opposed to in situ data [57].

Wetland classification was the second most used monitoring approach, with 15 articles,
and was only surpassed by change detection (Figure 6). While not all articles in the
remaining sections provide estimates of result accuracy due to insufficient ground-truth
measurements, it is noteworthy that all classification analyses carried out in these studies
include such estimates. The spectral similarities among wetland types or types of vegetation
were again a source of errors (accuracies: 86–96%) [27,46]. However, the heterogeneity and
complexity of the wetland ecosystem represented a more significant source of errors (with
lower accuracies: 77–88%) [9,17], even with water bodies masked by dense vegetation [53].
The use of harmonic models can decrease the effect of these errors with accuracies of up to
91% [49]. High accuracies have been reported as average, though; sometimes, this is due to
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the use of other satellite-based classifications to validate the result instead of in situ data [47].
A lack of ground-truth data can affect the validation of the study, decreasing the overall
accuracy (72%) [54]. Similarly, training data are needed when applying deep learning
techniques. If the training data are not enough, the classification out of the algorithm shows
a lowered accuracy (68.7–77.1%) [22,45]. Using a satellite topography data approach to
classify wetlands dropped the accuracy of a land cover classification (81.85%) due to the
heterogeneity and complexity of wetlands [52]. However, some benefits are added when
simultaneously merging synthetic aperture radar (SAR) and optical remote sensing data
(82.7% accuracy), as the number of variables used for classification increased [50]. The
addition of multiple satellite sources (>4), including private ones with high resolution,
especially in combination with ground-truth data, allows wetland classifications with the
high level of resolution needed (e.g., for studying floristic composition). These analyses
perform with very high accuracy (96%), and an increase in the number of in situ variables
is suggested to approach even higher accuracy [51]. The combination of ground-truth data
and satellite images, including in situ data, can reach up to 97% accuracy in classifying
vegetation types on wetlands, despite some confusion between wetland and non-wetland
vegetation [48].

Table 3. Average accuracy per monitoring strategy for each type of remote sensing data. Note: air-
borne data were excluded, as only one article used this data type, and the accuracy was not reported.

Monitoring Strategy Satellite Satellite + Airborne Satellite + In Situ Satellite + UAV Total

Prediction NA * NA * 67% NA * 67%
Time series analysis 94% NA * 85% NA * 91%
Mapping 82% 94% 83% 94% 86%
Classification 84% NA* 97% NA * 85%
Change detection 89% 86% 89% 92% 89%
Average total 85% 91% 87% 93% 86%

* NA= not available.

The same sources of uncertainty are usually present independently of the type of
monitoring used. The only exception appears with temporal-coverage-related uncertainties
present for those using time series analysis, predictions, and detection of wetland changes.
In most cases, the overall accuracy has been observed to increase over time due to enhance-
ments in the quality of satellite data. For instance, in a study of land cover changes in a
Chinese swamp, estimation accuracies improved from 82% in 1984 to 92% in 2018 [60].
However, no remote sensing data source can perform perfectly by itself. Additionally, ap-
plying robust algorithms in large areas implies a large use of computational resources [55].
Consequently, to better assess the uncertainties and improve the monitoring performance,
a combination of automatic in situ meteorological stations and satellite and airborne/UAV
data, validated with enough reliable in situ measurements using cloud computing services
such as GEE, is recommended.

3.4. Which Monitoring Strategies Were Performed Using Cloud Computing Technology?

When deciding on the type of results, research can be classified according to two
approaches: holistic and atomistic. The scale in which the area is analysed determines
whether a generalized perspective is used (holistic), or a specific perspective is applied
(atomistic). The number of details inside an area or the area covered is often prioritized.
Thus, the type of wetland studied will vary with the scale. Minor scales usually focus on
a particular type of wetland (e.g., marsh, bog, fen) as the limited area will include only
that specific environment. With an increase in scale, the probability of identifying one
type of wetland inside the area decreases, and the focus of the study will probably switch
from specific vegetation identification to wetland delineation (Figure 7). From the articles
reviewed, these two main approaches can be distinguished:

1. Larger areas with a regional or national scale, including more than one type of wetland;
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2. Smaller areas focused on a specific protected area with no more than two types
of wetlands.
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The type of results varies depending on ecosystem characteristics, as the type of
vegetation [25,49,56], water surface changes [58,67], or even burn severity [39] are most
often limited to local scale studies. Wetland delineation [63,64], distinguishing types
of wetland [9,29,42,45,55], land use [65], or carbon content in the peat [41] are usually
completed for larger scale studies. The performance of cloud computing has been suitable
in each of the distinct scale–wetland combinations, although the challenges of using remote
sensing and cloud computing vary. At the regional scale, the main challenges reported
were the similarities between wetland types due to their spectral similarities and spatial
heterogeneity. The spectral similarities produced higher confusion among wetland types,
with an accuracy for bogs of 86%; reduced to 80% for fens [64]; and 80% in saline marshes
studied in China [65]. In a study in the Great Lakes, these spectral similarities induced
confusion among wetlands and uplands [27]. Small and highly vegetated wetlands as
potholes masked water bodies [43]. Spectral similarities did not allow the differentiation of
herbaceous vegetation [17]. The spatial heterogeneity of peatland constrained the results,
not allowing the proper distinction of bogs and fens in Canada and reducing the accuracy
to 69% [42]. Due to spectral similarities and spatial heterogeneity, the accuracy was reduced
to 77% in a Canadian wetland inventory map [9].

Furthermore, the difference in shapes and distribution made monitoring alpine wet-
lands and swamps in the same study complex [62]. The same occurred with bogs, fens,
swamps, and marshes on the island of Newfoundland [29], although bogs showed the
highest producer accuracies between 92% and 97%, and fens had the highest user accuracies
between 66% and 86%. At the national scale, the challenges were the lack of adequate
data with high resolution [45] and low noise [24], or both [30], and the high computational
resources for such large datasets [55]. The local-scale studies also faced challenges due to
spectral and spatial features. The use of NDVI in wetlands can be compromised by the
high moisture content, making it challenging to acquire the best results [37]. Problems
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with the moisture or water table level were commonly faced at this scale [52] or due to
its strong seasonality and fast changes [35,67]. The high heterogeneity of wetlands and
spectral similarities, together with the moisture level, makes it almost mandatory to use
multi-source approaches at local scales [40]. Apart from this, the same spectral similarities
that do not allow the fine distinction among wetland types at a regional scale could make
the reproducibility of algorithms hard when they are based on a particular type. Moreover,
although high accuracy (96.44%) was displayed at a specific local scale, there is a large
possibility that it will be restricted to a particular type of wetland [46]. The confusion
occurs due to several uplands and the small areas covered by peatland, making monitoring
difficult at the local scale [44,66].

For the excellent performance of the CC models, the generalization of scale adequacy
for the CC methodology and its accuracy need to be evaluated. The decreased complexity
in the analyses and the lower number of studies at the national scale resulted in the lowest
accuracy among all the scales (Table 4). The second lowest was at the local scale, but a more
comprehensive range of values for the standard deviation is shown in Table 4. Different
monitoring techniques and distinct types of wetlands can be found inside each scale, and
usually, the highest deviation is shown inside the groups with the most significant number
of papers. This is why almost no deviation occurs at the national scale, as only four papers
were found in this group. On average, individual (no more than two types) and mixed type
of peatland studies show similar accuracies, 86.0% ± 41.0% and 86.9% ± 22.0%, respectively,
but with a different number of papers analysed for each category (33 articles focused on
individual types of wetlands and 18 mixed). As previously noted, the scale of wetland
studies is often determined by the type of wetland under investigation, whether individual
or mixed.

Table 4. Accuracy distribution depends on the study’s scale, with the average represented as the
average value ± standard deviation.

National Regional Local

Average 81.8 ± 9.6% 86.9 ± 30.3% 87 ± 42.5%
Max 94% 98.2% 98%
Min 71% 69% 67%

Consequently, authors choose their study targets based on the specific wetland type,
and their selection depends on the most suitable location for their research objectives.
For this reason, accuracies are similar despite the number of types of wetlands studied.
However, an accuracy increase will be expected when only one type of wetland and
different performances depending on the type of wetland (with higher standard deviation
as the results) are studied.

Random forest (RF) has been the most widely used when considering the
machine learning method (ML) applied, with 19 articles applying
it [9,17,24,27,28,32,40,44,45,47–51,55,56,61,64,65] (Figure 8). Ordered from the most to the
least repeated, the other ML techniques used have been classification/regression trees
(accuracy = 79.2%, [35,42,52,60]), clustering (accuracy = 98%, [31,66,67]), support vec-
tor machines (SVM, accuracy = 93.4%, [30,63]), and artificial neuronal networks (ANN,
accuracy = 96.4%, [46]). However, when the unique method used was not RF, the au-
thors preferred a mix of multiple ML techniques with lower accuracies than RF reported
as the average of all methods applied (accuracy = 85.9%, [22,25,29,41,43,54,68,69]). On
the other hand, not all the authors considered ML the technique needed, and index
thresholding [35,37,40], object-based image segmentation [38], trend analysis [37,59], or re-
gressions [33,53,57,62] have been successfully used for peatland monitoring
(accuracy = 88.8%, [23,26,58]). Because not all papers have reported accuracies, and the
number of papers between classes is not comparable, the analysis of the success of each
technique cannot be assessed. For example, not using ML presents almost the same average
accuracy as RF because only six articles from the thirteen included in this group reported
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this value, while all the authors provided accuracy when using RF. ANN and SVM methods
present the highest accuracies; this is not surprising considering that only three articles
used these techniques [30,46,63].
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3.5. What Economic Gains Can Be Realized from Integrating Cloud Computing and Remote
Sensing Data in the Monitoring of Wetlands?

Cloud computing provides benefits at two levels: the first is scaling, as the user
organizations save money because they purchase the cloud computing-related resources in
massive quantities at lower costs, and thus can provide the services to end users at a lower
cost. The second is the global reach of the companies/organizations, which also increases
by using cloud computing. As a result, the end users can avoid the substantial up-front
capital expenditure costs of purchasing their expensive infrastructure. As in other fields,
scientists, companies, and organizations related to wetlands also benefit economically from
implementing cloud computing and remote sensing data (Table 5).

Wetlands are ecosystems with very high productivity; thus, they are considered among
the most economically valuable ecosystems for society [70]. Wetlands are ecosystems that
offer a diverse array of ecosystem services and are regarded as vulnerable systems that
exhibit rapid responses to alterations in the surrounding environment [71]. Unfortunately,
in the last decades, wetlands have been lost worldwide [72], thus impacting the financial
services they provide. Economic valuations of wetland services may provide a better
understanding of the loss for an organization and government, but due to wetland location,
cost, and time, a field survey is generally not a viable option, especially for poor or
developing countries. Due to their significantly lower cost, time, and ability to monitor
a large area of wetlands and their resources, cloud computing and remote sensing data
may play a significant role in economic decision making by policymakers and stakeholders.
Using GEE, researchers reported a significant loss in semi-arid southern African wetlands
due to unsustainable use and poor management [73], thus pushing the authorities to act
differently to preserve their resources. The authors also showed how cloud computing
platforms might offer unique significant data handling and processing opportunities for
scientists or workers with limited resources. Thus, economically favourable policies can be
created for a wetland ecosystem using cloud computing and remote sensing.
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Table 5. Cloud computing- and remote sensing-highlighted benefits and the different economic
factors they influence in wetlands.

Factors RS—Without CC Benefits Due to CC + RS

Resolution Differs Differs
Coverage Varies High
Capital expenses High Less
Cost High Less
Time Long Less
Human resources High Less
Global Reach Limited High

4. Limitations and Potential Threats to the Validity of Cloud Computing

This review is restricted to the following parameters:

• Consideration of published data, as this study covers primary studies published until
June 2022;

• Type of literature, as this SLR encompasses peer-reviewed research articles only, while
conference, workshop, symposium proceedings, and grey literature, e.g., papers only
published in arxiv.org, blogs, and videos, were excluded from the paper pool;

• The perspective used to show the economic benefits was not fully covered in the SLR
due to the lack of accurate data to achieve this aim, but the main aim of the review was
not studying and completing a meta-analysis on the economic benefits of wetlands.

Another limitation of this SLR is excluding papers not written in English. Some
valuable studies may have been published in languages other than English, leading to
alternative viewpoints for defining and measuring cloud-based studies using remote
sensing. Finally, there are opportunities to extend our systematic review to consider the
various correlates of cloud computing and its integration with remote sensing and the
economic benefits.

5. Conclusions

The main aim of this SLR was to find out the state-of-the-art and identify the gaps in
the application of remote sensing and cloud computing technologies for the monitoring of
wetlands. Platform-as-a-service was the only cloud computing service model implemented
in practice to monitor wetlands. The remote sensing applications for wetland monitoring
implemented by CC were related to prediction, time series analysis, mapping, classification,
and change detection. Among different studies, only 51% of the literature performed
at a regional scale used satellite data. It should be highlighted that the up-to-date CC
and RS technologies are not integrated enough to fully realize the potential of CC in
wetland monitoring.

It is worth mentioning the economic benefits that could be achieved from implement-
ing cloud computing and remote sensing for the monitoring of wetlands—the cost and
time are much less than the traditional methods of wetland monitoring, apart from using
different techniques and multi-data sources with less effort.

6. Future Work

Table 6 summarizes the primary research needs and challenges for using cloud com-
puting and remote sensing in wetland monitoring. The identified research needs to include
integrating data, tools, and programs through platform-as-a-service (PaaS) and remote
sensing; the assessment of the effectiveness of combining different remote sensing data
types and monitoring strategies; and the economic valuation of wetland services using
cloud computing. The challenges include the high computational resources required for
large datasets, the lack of evaluation of the generalization of scale adequacy, and the lack of
standardization in data acquisition and processing protocols. Addressing these research
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needs and challenges will improve the effectiveness and efficiency of wetland monitoring
programs and enable proactive wetland management and conservation.

Table 6. Summary of Research Needs Identified in the SLR.

Research Need Description

Cloud computing adoption by
integration of data, tools,
and programs

Further research is needed to explore how CC and RS can integrate vast data, tools, and
programs to improve global wetland monitoring and tracking. Moreover, improved
efficiency, flexibility, and cost savings can be achieved using digital twins, IoT, and CC.

Effectiveness of combining different
remote sensing data types and
monitoring strategies

Research is needed to assess the benefits and limitations of different combinations of remote
sensing data types and monitoring strategies. Understanding this can improve the overall
effectiveness of wetland monitoring programs and enable proactive wetland management
and conservation.

High computational resources
required for large datasets

The challenges of high computational resources required for large datasets must be
addressed at a national scale.

Evaluation of generalization of
scale adequacy

Research is needed to evaluate the generalization of scale adequacy for the cloud computing
methodology and its accuracy.

Lack of standardization and
development of standardized
protocols for wetland monitoring

A lack of standardization in cloud computing and remote sensing for wetland monitoring
makes comparing data across different studies and regions difficult. Thus, creating standard
protocols for data acquisition and processing to improve comparability and reduce errors
is necessary.

Economic valuation of wetland
services using cloud computing

Research is needed to explore the economic valuation of wetland services using cloud
computing. Increased global reach, cost savings, improved resolution and coverage, less
time, and lower requirements in human resources can be achieved.

For future research, we proposed a structure of cloud computing and remote sensing
technology applications integrated with the Internet of Things (IoT) to be effectively applied
for monitoring wetlands to fill the gaps found (Figure 9).

Figure 9 consists of 4 layers: (1) The map shows global wetlands and potential dis-
tribution [12]. From the sites, a wetland site was zoomed in to show the proposed sensor
distribution at the site level, then it was generalized to the global scale (to the other wetland
sites); (2) The sensor nodes for vegetation and hydrology, the drone and the docker to be
controlled, charged, and flown remotely. Tower-based gas flux measurements are proposed
with the local weather station. All the sensors are linked to an IoT gateway, e.g., LoRa Wan,
through a WIFI connection and then from LoRa to a private cloud. The site’s shapefile
crops the satellite data to save storage capacity on the cloud. The private cloud is controlled
only by the researchers responsible for the specific wetland site; (3) Public cloud, which
allows the data to be shared between researchers from different wetland sites. It generally
pre-processes and processes collected data on the cloud and stores them in repositories;
(4) The last layer; it requires resources to provide CC services such as virtual machines,
servers, data storage, and security procedures. The cloud service provider oversees it. The
system’s backend elements help users manage all the resources required to provide the CC
services. The front-end is where the user interface and analytics are seen by the user, which
could be scientists, policymakers, and governments.

This system is particularly beneficial to standardize wetland measurements and is
relatively easy to apply, considering that the ground base measurements and drones can
validate the satellite data. Furthermore, it will help decrease the volume of software and
workforce spent on measurements and data analysis, as it assures easy ways to assess
data quality.

We propose the following directions to pave the way for further research:

• Development of more comprehensive remote sensing approaches at wetland sites and
linking them to capture data from these heterogeneous ecosystems automatically;

• Creating public criteria for measuring and evaluating the complex ecosystem charac-
teristics of wetlands;

• More focus on cloud computing and remote sensing, from different scenarios as
proposed structure;
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• Better cloud-based data sharing security and data usability for cloud analytics tools
and integration with remote sensing;

• Reproducibility and open science;
• The proposal can be made in an agreement between the countries (e.g., in Supplemen-

tary File Map S2) or the research communities in the same country to agree on which
collected data can be shared in the public cloud (e.g., in Supplementary File Map S1).

This SLR will be helpful for young researchers starting their careers in wetlands and
wishing to apply cloud computing and remote sensing for wetland monitoring.
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