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Abstract: Passive microwave remote sensing of soil moisture (SM) requires a physically based
dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant.
Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA
Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions.
However, Mironov 2009 suffers a challenge in deriving SM over organic soils, as it does not account for
the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, we presented
a comparative performance analysis of nine advanced soil dielectric models over organic soil in
Alaska, four of which incorporate SOM. In the framework of the SMAP single-channel algorithm
at vertical polarization (SCA-V), SM retrievals from different dielectric models were derived using
an iterative optimization scheme. The skills of the different dielectric models over organic soils
were reflected by the performance of their respective SM retrievals, which was measured by four
conventional statistical metrics, calculated by comparing satellite-based SM time series with in-situ
benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overestimate,
while those from mineral-soil-based models displayed dry biases. All the models showed comparable
values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019
exhibited a slight but consistent edge over the others. An integrated consideration of the model
inputs, the physical basis, and the validated accuracy indicated that the separate use of Mironov 2009
and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM <15%) and organic soils (SOM ≥15%)
would be the preferred option.

Keywords: soil moisture; dielectric models; SMAP; soil organic matter

1. Introduction

Passive microwave remote sensing is considered the most suitable tool for mapping
spatial soil wetness, owing to the negligible atmospheric influence and less interference
from canopy and surface roughness [1,2]. The remarkable performance of soil moisture
(SM) retrievals from spaceborne L-band radiometers (i.e., soil moisture and ocean salinity
(SMOS) [3] and soil moisture active passive (SMAP) [4]) has been substantiated by a number
of validation studies [5–9]. The mechanism that physically bridges the surface emission
at microwave bands and surface SM is based on the contrasting difference between the
dielectric constants of liquid water (~80) and dry soil (~4) [10]. The dielectric model that
quantitatively links the SM with the bulk dielectric constant of the soil–water–air system is
therefore critical in the retrieval algorithms of SMOS and SMAP.

Recently, numerous dielectric models were developed and applied for both spaceborne
microwave radiometers and in-situ electromagnetic sensors [11]. An ideal dielectric model
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is envisioned, to accurately account for the dielectric response of wet soils as a function of
all the relevant factors, including soil compaction, soil composition, the fraction of bound
and free water, salinity, soil temperature, soil particle size distribution, and observation
frequency, etc. [12]. However, the practical dielectric models are often established on a
limited set of soil properties and are unable to approximate proper dielectric constants for all
the surface conditions. Previous studies found that applying mineral-soil-based dielectric
models over organic soils could lead to a substantial underestimation of SM [11]. [13]
revealed a significant drop in SMAP retrieval quality in regions with soil organic carbon
(SOC) exceeding 8.72%. Given that Mironov 2009 [14], currently used in the SMOS and
SMAP operation algorithms, was developed exclusively on samples of mineral soils, an
update on the dielectric model that incorporates the effect of soil organic matter (SOM) is
pressingly required for areas with organic-rich soils.

The influence of SOM on the bulk dielectric constant of the soil–water system is often
summarized in two aspects. First, organic substrates have larger specific surface areas
than minerals, indicating that organic soil has a higher fraction of bound water relative to
mineral soil, when they contain the same amount of water [11,15,16]. As such, at the same
moisture, the dielectric constant of organic soil tends to be lower than that of mineral soil,
as the dielectric constant of bound water is much smaller than that of free water. Second,
organic soil is often marked by a larger porosity than mineral soil, due to its complex
structure [11,15–17]. Based on these principles, several organic-soil-based dielectric models
have been developed in recent years.

Although model developers pointed out the potential applicability of their models in
the retrieval of SM, assessment of the efficacy of these newly developed organic-soil-based
dielectric models in the derivation of passive microwave remote sensing of SM has not
been widely carried out. In light of these considerations, nine advanced dielectric mixing
models were selected and tested in the context of the SMAP single-channel algorithm at
vertical polarization (SCA-V) [18]. This study has two major objectives: (1) present the
differences between the available mineral- and organic-soil-based models, in describing the
complex dielectric behaviors of wet soils under various SOM conditions; and (2) evaluate
their performance in organic-rich soils. The latter was achieved by comparing the SCA-V
SM retrievals from different models against in-situ measurements scattered over Alaska,
where the soils are identified with a noticeably higher SOM (~25%) relative to the global
average level (Figure A1). The dielectric models considered here have been classified as
mineral-soil-based dielectric models, including Wang 1980 [19], the semi-empirical Dobson
1985 modified by Peplinski 1995 [12,20] (hereafter Dobson 1985), the prevalent Mironov
2009 [14], Mironov 2012 [21], and Park 2017 [22], and organic-soil-based dielectric models,
including the natural log fitting model in [11] (hereafter Bircher 2016), Mironov 2019 [23],
Park 2019 [16], and Park 2021 [24].

As introduced earlier, five mineral-soil-based dielectric models were selected for a
comprehensive survey of diverse models in the framework of the SMAP SCA-V algorithm
over organic-rich soils. Two of them, Mironov 2013 and Park 2017, have not been widely
examined under the SMOS and SMAP schemes [22,25]. In contrast, the other three classic
models have been extensively assessed in wide domains covered by mineral soils [26–28].
However, their performances over regions with high SOM proportions have not been
well-studied and compared with those of dedicated organic-soil-based models. In addition
to water volume, mineral-soil-based models primarily focus on the influence of soil texture,
commonly characterized by sand, clay, and silt. Yet, organic-soil-based models place a
greater emphasis on the SOM effect. Mironov 2019, for example, describes all parameters
as functions of SOM rather than the clay percentage used in Mironov 2009 [23]. Therefore,
incorporating more mineral- and organic-soil-based models may also help to construct
an impression of their systematic differences when describing the dielectric behaviors of
organic soils.

The paper is organized as follows. In Section 2, all the data sets and preprocessing
steps are presented. Next are the workflow of in-situ measurements screening and the
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partial SMAP SCA-V retrieval process used to derive the SM from the identical observations
and different models (Section 3). The results of the synthetic experiments, validation conse-
quences over Alaska, and a detailed discussion are subsequently displayed in Section 4.
Finally, the conclusions are followed by a brief summary presented in Section 5.

2. Data
2.1. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8

Launched on 31 January 2015, the SMAP mission was designed to map high-resolution
SM and freeze/thaw state by combining the attributes of L-band radar and radiometer.
However, the SMAP SM products presently rely on radiometer observations alone, due
to an unexpected malfunction of the SMAP radar in July 2015. With an average revisit
frequency of two to three days, the SMAP sensors cross the Equator at the local solar times
of 6 a.m. and 6 p.m.

SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8 (SMAP
V8) [29] was adopted in this study. Here, we only used the descending (6 a.m.) SM retrievals
derived using the SCA-V algorithm. A series of masking procedures were utilized to avoid
the application of SM retrievals of low accuracy and high uncertainty. Specifically, only
the retrievals flagged as the “recommended quality” were retained and employed in the
later analysis. Given Alaska, the focused region of this study, is located in the high-latitude
portion with a long-term frozen duration, we only considered those qualified SM retrievals
within the time intervals from June to August, between 2015 and 2021.

One noticeable improvement in SMAP V8 (relative to the older version) is the update
and extension of gridded soil parameters, ranging from SOC, silt and sand fractions to
bulk density. These newly added soil attributes originate from the SoilGrid 250 m [30] and
replace the earlier patched version composed of the National Soil Data Canada (NSDC),
the State Soil Geographic Database (STATSGO), the Australia Soil Resources Information
System (ASRIS), and the Harmonized World Soil Database (HWSD) [31]. Since these soil
attributes are often necessary inputs for dielectric models of soil, they were also extracted
from the SMAP V8.

2.2. In-Situ Soil Moisture Measurements

Ground-based SM measurements over Alaska were employed as benchmarks to
assess the skills of the diverse dielectric mixing models. Historical files of soil water
content observed by in-situ sensors were first downloaded from the Natural Resources
Conservation Service (NRCS), the National Water and Climate Center (NWCC) homepage
(https://www.nrcs.usda.gov/wps/portal/wcc/home (accessed on 7 April 2022)). At
present, there are more than 40 operating stations from the Snow Telemetry (SNOTEL) [32]
and Soil Climate and Analysis Network (SCAN) [33]. These stations are able to monitor
the sub-daily variations of SM and many other climatic variables in near real time.

However, some typical errors [34] of in-situ SM readings, such as breaks and plateaus,
were found before their application. As a response, the other authoritative data source of
in-situ SM, the International Soil Moisture Network (ISMN) [35,36], was also considered,
aiming at incorporating its flag information. Given the limited stations in Alaska, it is
expected that SM data from the above two sources (NWCC and ISMN) are mostly from the
same set of stations. Additionally, for the same station, the observed SM time series from the
NWCC and ISMN should be identical, as the ISMN only gathers data and harmonizes them
in units and time steps, without extra data processing. Given the frequently abnormal SM
readings (even after adopting the quality flag) and the necessity of checking the consistency
of SM measurements from two different sources, several rigorous pre-checking procedures
were applied (as described in Section 3.1) to filter out those suspicious observations where
possible in advance.

https://www.nrcs.usda.gov/wps/portal/wcc/home
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3. Methodology
3.1. Preliminary Examination of In-Situ Measurements

The quality of in-situ SM data is of great importance, as these ground measurements
are generally seen as the benchmark for evaluating remotely sensed and/or modeled
SM data sets [5–7]. However, monitoring SM dynamics over high-latitude regions is still
challenging, due to the long-term frozen periods and harsh environments. Such difficulties
have been reflected by the flat limbs and breaks frequently occurring in the SM time series
from the Alaskan stations. Given those, a careful examination of in-situ SM measurements
is necessary.

The general workflow of the preliminary examination steps is delineated in Figure 1.
Specifically, the in-situ SM data measured at the local time of 6 a.m. and 6 p.m. (temporally
align with the SMAP overpass time) were first extracted from the NWCC and ISMN
stations. SM measurements with the corresponding land surface temperature below 4 ◦C
were excluded, as [6] demonstrates that some sensors begin to behave abnormally under
this temperature. Meanwhile, the utilization of such a threshold would also be helpful
to filter out those SM measurements likely obtained during a period of active thawing
and re-freezing, where SM fluctuations are excessively unstable (e.g., Figure 3c in [34]).
Additionally, stations with a distance shorter than 36 km to large water bodies or oceans
were also masked, as the SMAP SM over those regions is likely influenced by water
contamination. The flag information from the ISMN was also incorporated to filter the
in-situ data of low quality.
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Figure 1. Flow chart of the preliminary examination of Alaskan in-situ soil moisture obtained from
the NWCC and ISMN.

The matched SM data of the overlapped stations from the NWCC and ISMN are antic-
ipated, and this greater consistency further enhances the reliability of these benchmarks.
Therefore, an automatic consistency checking procedure, constrained by three requirements,
was applied. Since breaks and plateaus still appeared on the SM time series after consis-
tency checking, a manual visual inspection was then performed to screen these suspicious
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measurements. After those, there were 21 qualified stations left, and we assumed that their
SM data from the NWCC and ISMN are interchangeable. Furthermore, pairing with the
SMAP observations removed nine stations, and the remaining 12 stations (Figure S1) were
used in the later validation steps.

3.2. Derivation of Soil Moisture from Various Dielectric Models

In the SCA-V algorithm, the SMAP SM value is determined when there is a minimized dif-
ference between the simulated and the observed reflectivity (rsmap) (reflectivity = 1 − emissivity)
of smooth soil. At each temporal step, the value of rsmap over a pixel is fixed, as the SMAP SCA
algorithm determines the radiative contribution from the canopy layer and the impact of surface
roughness before subtracting them from SMAP observed surface brightness temperature (TB).
Hence, the influence of adopting different dielectric constant models on SM retrievals can be
examined using the iterative feedback-loop procedure, to minimize the difference between the
simulated reflectivity (rest) and rsmap, and without the need to construct the whole process from
SM to TB, in consideration of simplicity.

However, rsmap is an intermediate product and unavailable in the original SMAP
data set. Given this, the values of rsmap were first estimated leveraging SMAP SM and
Mironov 2009. With these benchmarks, the SM retrievals of other dielectric models were
then acquired based on the optimization flow described in Figure 2. Notably, the SM
retrieval at a given time point is reproducible when the identical rsmap and model are used.
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Figure 2. Flow chart that describes the retrieval of soil moisture using different dielectric models,
based on identical SMAP observations.

3.3. Performance Metrics

The capability of the remote sensing SM data set has been described by four conven-
tional metrics, which are bias, root-mean-square error (RMSE), unbiased root-mean-square
error (ubRMSE), and the Pearson Correlation (R) [37]. These metrics could effectively reflect
the discrepancies in terms of magnitude, as well as the links of the temporal evolutions
between the SM estimations and the ground truth. The formulas used to compute these
metrics are shown in Equations (1)–(4), where E [ . . . ] represents the arithmetic mean; and
σopt and σref denote the standard deviations of SM retrievals of the respective dielectric
models and in-situ measured SM.

bias = E[smret]− E[smref] (1)
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RMSE =

√
E
[
(smret − smref)

2
]

(2)

ubRMSE =

√
RMSE2 − bias2 (3)

R =
E[(smret − E[smret])(smref−E[sm ref])]

σretσref
(4)

4. Results and Discussion
4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic Experiments

Synthetic experiments have the capability to afford complete dielectric responses to a
whole SM range, by artificially controlling all the inputs required for the dielectric models
(Table 1). With the SOM increasing from 0% to 75% at a step of 15%, the differences between
the dielectric constants estimated by mineral- and organic-soil-based dielectric models were
explored. These various dielectric responses were further transferred to their corresponding
thermal radiations of smooth soils, represented by the vertically polarized TB.

Table 1. Input variables required for the nine dielectric models.

Model
Inputs

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Soil
Moisture

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Gravimetric
Soil

Moisture
(g/g)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Soil
Organic
Matter

/ / / / / /

Gravimetric
Soil

Organic
Matter (%)

Gravimetric
Soil

Organic
Matter (%)

Gravimetric
Soil

Organic
Matter (%)

Clay
Gravimetric

Clay
Fraction

(0–1)

Gravimetric
Clay

Fraction
(0–1)

Gravimetric
Clay

Fraction
(%)

Gravimetric
Clay

Fraction
(%)

Volumetric
Clay

Fraction
(0–1)

/ /
Volumetric

Clay
Fraction

(0–1)

Volumetric
Clay

Fraction
(0–1)

Sand
Gravimetric

Sand
Fraction

(0–1)

Gravimetric
Sand

Fraction
(0–1)

/ /
Volumetric

Sand
Fraction

(0–1)
/ /

Volumetric
Sand

Fraction
(0–1)

Volumetric
Sand

Fraction
(0–1)

Silt / / / /
Volumetric

Silt
Fraction

(0–1)
/ /

Volumetric
Silt

Fraction
(0–1)

Volumetric
Silt

Fraction
(0–1)

Bulk
Density

Bulk
Density
(g/cm3)

Bulk
Density
(g/cm3)

/ / / /
Bulk

Density
(g/cm3)

/ /

Frequency / Frequency
(Hz)

Frequency
(Hz) / Frequency

(Hz) / / Frequency
(Hz)

Frequency
(Hz)

Salinity / / / / Salinity
(‰) / / Salinity

(‰)
Salinity

(‰)

Soil
Temperature /

Soil
Temperature

(◦C)
/

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)
/

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)

Total
Number of

Inputs
4 6 3 3 7 1 4 8 8

Figure 3 presents the TB curves derived using different dielectric models, across the
range of SM from 0 to 0.8 m3/m3. Generally, the TB values estimated using organic-
soil-based models are greater than those derived using the mineral-soil-based models,
particularly when SOM exceeds 15% and the SM is higher than 0.1 m3/m3. In other words,
the SM retrievals from organic-soil-based models tend to be wetter than the SM retrievals
from mineral-soil-based models (e.g., Mironov 2009) given the same surface reflectivity (or
TB) of bare, smooth soil. The discrepancies between the simulated TB magnitudes from
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mineral- and organic-soil-based models further grow with the increase of SOM (Figure 3).
However, it should be noted that the estimated dielectric constants and their subsequent TB
values from mineral-soil-based models do not vary with SOM. The higher SM estimations
of organic-soil-based models relative to mineral-soil-based models could be attributed to
the fact that these organic-soil-based models assume a higher volumetric proportion of
bound water [11,15,16]. When the SOM is at 15% (and below), the simulated TB curves from
all the considered models are clustered together, bounded by Dobson 1985 and Bircher 2016
(Figure 3b). Therefore, the SOM of 15% might be treated as an appropriate demarcation
point for the separate use of mineral- and organic-soil-based dielectric models over mineral
soils and organic soils.
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Figure 3. Simulated brightness temperature of a silty clay with various soil organic matter, and the
accompanying table displays all the input values, where most soil parameters were directly taken
from the sample of silty clay used in [38]. (a–f) represent the simulated brightness temperature curves
variations across various soil organic matter with an increase step of 15%.

Moreover, similar features of the TB curves of those considered dielectric models
have been observed when a sandy sample is tested (Figure S2). Such a stable-magnitude
discrepancy between the red curves (organic models) and the blue curves (mineral models)
under contrasting textures (sandy and clay soils) can be attributed to the insensitivity
of the organic-soil-based dielectric models to soil texture. For example, Mironov 2019
only accounts for the effects of soil moisture, SOM, and soil temperature on the dielectric
permittivity of organic soils (Table 1). Although Park 2019 and Park 2021 incorporate both
textural and SOM information, the differences in their estimated TB values from sandy and
clay samples seem insignificant under the same SOM level (Figures 3 and S2).

Compared to Mironov 2019, the influence of organic content on the simulated TB
magnitude seem more pronounced for Park 2019 and Park 2021. When the SOM increases
from 0% to 75% and the SM values are smaller than 0.5 m3/m3, the TB curve of Park 2021
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jumps from the bottom to the top line, with a varying amplitude on the order of tens of
Kelvins (Figure 3). In contrast, as a response to the growing SOM, the estimations from
Mironov 2019 slowly move upward, approaching the TB curve of Bircher 2016. According
to Figure 3e,f, there is a rapidly dropping segment on the TB curve of Park 2019. Such
abnormal dielectric behavior can be attributed to the improper formulas used to calculate
the wilting point and porosity, with a detailed explanation in Section 4.4.

4.2. Evaluation of Dielectric Models over In-Situ Sites in Alaska

Here, SM measurements from 12 sites served as benchmarks to evaluate the skills of the
multiple dielectric models in the setting of SMAP observations and the SCA-V algorithm.
Before inter-comparison, it was found that the assessment metrics of the satellite-based
SM retrievals over the same pixel could vary a lot in different years. Using the time series
in Monument Creek as an instance (Figure 4), the R values ranged from 0.18 (2017) to
0.69 (2015). Hence, the obtained metrics (Tables 2–4) averaged over multiple years of each
station might be underrated, as they may have been compromised by abnormal behavior
in one year. Additionally, the amplitudes and frequencies of in-situ SM variations are
often more pronounced relative to the SM retrievals, as the latter reflects the changes over
a coarse spatial extent (Figure 4). SM variations at local scales often cannot be captured
by the 36 km-scale SM retrievals, due to the omission of spatial variability within the
footprint-scale area. As noted by [39], spatial mismatching between satellite SM retrievals
and point-scale in-situ measurements could adversely impact the perceived accuracy of
SMAP observations.
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Table 2. Bias of soil moisture retrievals using various dielectric models over in-situ sites in Alaska,
where biases from mineral- and organic-soil-based models tend to underestimate and overestimate
relative to in-situ measurements.

Station/Bias
(m3/m3) N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana
River 72 0.058 0.025 0.046 0.044 0.039 0.195 0.142 0.104 0.085

Spring
Creek 37 −0.108 −0.153 −0.137 −0.137 −0.139 −0.022 −0.051 −0.105 −0.109

Atigun
Pass 81 0.047 −0.002 0.015 0.016 0.009 0.092 0.092 0.044 0.061

Coldfoot 156 −0.085 −0.133 −0.121 −0.121 −0.124 −0.030 −0.036 −0.083 −0.067

Eagle
Summit 320 −0.028 −0.068 −0.062 −0.061 −0.068 0.014 0.017 −0.033 −0.015

Gobblers
Knob 262 0.031 −0.010 −0.003 −0.003 −0.007 0.096 0.083 0.039 0.055

Monahan
Flat 121 −0.047 −0.093 −0.076 −0.077 −0.081 0.035 0.009 −0.029 −0.029

Monument
Creek 405 0.018 −0.022 −0.014 −0.014 −0.016 0.091 0.073 0.029 0.041

Mt.
Ryan 194 0.114 0.078 0.082 0.082 0.080 0.196 0.172 0.132 0.142

Munson
Ridge 383 0.018 −0.019 −0.015 −0.015 −0.016 0.096 0.075 0.034 0.045

Tokositna
Valley 253 0.014 −0.008 −0.006 −0.008 −0.008 0.147 0.093 0.062 0.046

Upper
Nome
Creek

283 −0.138 −0.180 −0.171 −0.171 −0.176 −0.086 −0.091 −0.138 −0.120

Mean 214 −0.009 −0.049 −0.038 −0.039 −0.042 0.069 0.048 0.005 0.011

Where the column of the number in bold font represents the dielectric model with the smallest absolute bias in
that station or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and
in-situ SM measurements used to calculate the bias for each station.

Table 3. ubRMSE of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.

Station/ubRMSE
(m3/m3) N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana River 72 0.0132 0.0164 0.0156 0.0154 0.0152 0.0209 0.0180 0.0169 0.0138

Spring Creek 37 0.0460 0.0457 0.0452 0.0454 0.0455 0.0408 0.0428 0.0446 0.0462

Atigun Pass 81 0.0311 0.0311 0.0311 0.0311 0.0311 0.0317 0.0311 0.0310 0.0310

Coldfoot 156 0.0736 0.0736 0.0736 0.0736 0.0736 0.0743 0.0737 0.0739 0.0737

Eagle Summit 320 0.0487 0.0490 0.0487 0.0487 0.0487 0.0480 0.0477 0.0482 0.0481

Gobblers Knob 262 0.0665 0.0663 0.0660 0.0662 0.0662 0.0622 0.0643 0.0628 0.0637

Monahan Flat 121 0.0722 0.0721 0.0720 0.0721 0.0721 0.0714 0.0718 0.0715 0.0722
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Table 3. Cont.

Station/ubRMSE
(m3/m3) N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Monument
Creek 405 0.0510 0.0509 0.0508 0.0508 0.0508 0.0505 0.0503 0.0504 0.0503

Mt. Ryan 194 0.0163 0.0177 0.0173 0.0172 0.0173 0.0262 0.0186 0.0237 0.0187

Munson Ridge 383 0.0499 0.0492 0.0490 0.0492 0.0492 0.0465 0.0475 0.0467 0.0478

Tokositna Valley 253 0.1295 0.1296 0.1295 0.1295 0.1296 0.1298 0.1294 0.1296 0.1296

Upper Nome
Creek 283 0.0122 0.0126 0.0124 0.0123 0.0126 0.0196 0.0129 0.0163 0.0160

Mean 214 0.0509 0.0512 0.0509 0.0510 0.0510 0.0518 0.0507 0.0513 0.0509

Where the column of the number in bold font represents the dielectric model with the best ubRMSE in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the ubRMSE for each station.

Table 4. R of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.

Station/R N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana
River 72 0.605 0.596 0.607 0.604 0.599 0.608 0.621 0.603 0.601

Spring
Creek 37 0.757 0.737 0.758 0.752 0.745 0.757 0.805 0.752 0.746

Atigun
Pass 81 0.342 0.348 0.344 0.344 0.344 0.341 0.333 0.347 0.347

Coldfoot 156 0.205 0.205 0.204 0.204 0.205 0.206 0.199 0.202 0.208

Eagle
Summit 320 0.375 0.353 0.372 0.376 0.368 0.376 0.429 0.368 0.372

Gobblers
Knob 262 0.571 0.557 0.571 0.570 0.564 0.571 0.603 0.575 0.577

Monahan
Flat 121 0.276 0.273 0.275 0.274 0.274 0.277 0.275 0.284 0.276

Monument
Creek 405 0.407 0.401 0.406 0.405 0.404 0.409 0.413 0.406 0.418

Mt.
Ryan 194 0.604 0.595 0.604 0.601 0.599 0.605 0.624 0.604 0.601

Munson
Ridge 383 0.608 0.597 0.606 0.604 0.602 0.610 0.624 0.611 0.611

Tokositna
Valley 253 0.177 0.171 0.174 0.172 0.170 0.172 0.176 0.172 0.171

Upper
Nome
Creek

283 0.416 0.398 0.418 0.420 0.410 0.416 0.477 0.421 0.416

Mean 214 0.445 0.436 0.445 0.444 0.440 0.446 0.465 0.445 0.445

Where the column of the number in bold font represents the dielectric model with the best R in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the R for each station.

Assessment metrics of the SM retrievals derived using identical rsmap values and
different dielectric models were computed by their temporally paired in-situ measure-
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ments. According to Table 2, the SM estimates from mineral-soil-based models tend to
underestimate, while the organic-soil-based models generally exhibit wet biases compared
to the ground recordings. In terms of both ubRMSE and R (Tables 3 and 4), all the models
show comparable accuracy levels, similar to the previous results in [27], whereas Mironov
2019 displays a slight but consistent edge over the other models. Compared to the other
dielectric models, the modest improvement in R of Mironov 2019 was likely due to its
simultaneous consideration of bulk density and SOM effects [23].

The other aspect that we attempted to evaluate for the predictive power of various
dielectric models was checking the correlations between the SM retrievals of different
models and SMAP observed vertically polarized TB. If the higher absolute R values between
the time series of SM and SMAP vertically polarized TB are assumed as a criterion that
reflects the better skill of a dielectric mixing model, Mironov 2019 presents an overwhelming
superiority over the other models in the 765 Alaskan pixels (Figure 5). Table S2 displays
that in-situ measured SM usually has a lower correlation with SMAP vertically polarized TB
relative to the correlations between satellite-based SM retrievals and SMAP TB. However,
it should be noted that such correlation-based results were inconclusive and functioned as
a reference only, since the impacts of vegetation disturbance and surface roughness were
entirely ignored.
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Figure 5. Boxplots of the absolute correlations between the soil moisture retrievals from various di-
electric mixing models and the SMAP vertically polarized brightness temperature over the 765 pixels
in Alaska. (a) and (b) represent the boxplots of absolute R values from 2015 to 2018 and 2019 to
2021, respectively.

4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019

Mironov 2009 and Mironov 2019 were selected as the representatives for mineral- and
organic-soil-based dielectric models and were then compared with each other at the global
scale using one-week SMAP observations from 2 July 2018 to 8 July 2018. The one-week
SM retrievals of Mironov 2009 and Mironov 2019 were analyzed over more regions with
abundant SOM and were also used to acquire performance clues for applying Mironov
2019 to mineral soils.

According to Figure 6a,b, satellite-based SM data are usually unavailable in many
areas characterized by organic-rich soils, likely owing to dense boreal forests, steep surface
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roughness, as well as permanently frozen soils on the land surface [11,40]. The magnitude
differences between Mironov 2009 and Mironov 2019 yielded SM retrievals are commonly
above 0.05 m3/m3 generally when the SOM is over 10% (Figure 6b,e). In the case of extreme
dryness (SM < 0.1 m3/m3) over mineral soils (SOM < 5%), the SM retrievals from Mironov
2019 are likely lower than those from Mironov 2009. As illustrated in Figure 6d, there
is a limb where the SM retrievals of Mironov 2019 are nearly constant, while those from
Mironov 2009 vary, possibly because of the soil texture.

Figure 6. A global intercomparison of soil moisture retrievals from Mironov 2009 and Mironov 2019:
(a) the spatial distribution of soil organic matter (SOM) in percentage from a north polar view, (b) the
spatial distribution of mean differences between soil moisture estimations using Mironov 2009 and
Mironov 2019 (bias = SM Mironov2019 − SM Mironov2009), (c) the probability distribution function of
weekly mean soil moistures derived using the above two models, (d) scatterplot of soil moisture using
both models across the globe, where the color bar shows the number of pixels, and (e) boxplot that
describes the bias variations along with the increase of SOM that was organized into 6 groups (g1–g6).
The organic range of each group is 0–5% (g1), 5–10% (g2), 10–15% (g3), 15–20% (g4), 20–30% (g5), and
>30% (g6).

4.4. Discussion
4.4.1. The Applicable Range of Dielectric Models

Although the above validation results over in-situ sites in Alaska demonstrated the
slightly better performance of Mironov 2019 over the other models, it may be not the best
model across all landscapes and climatic conditions. The accuracy of a dielectric model
heavily depends on its respective applicable range. A dielectric model is likely to acquire a
better performance score when being applied over the samples used to develop it. In other
scenarios, potential degradation of the model skill can be expected. For instance, when
Dobson 1985 is adopted in soils that fall beyond the prototypal soils on which Dobson
1985 was established, some unrealistic dielectric constants were yielded [14]. According to
SMAP configurations and parameters, the frequency is confined to 1.4 GHz, while most
pixels in Alaska show SOM values spanning from 15% to 30%. However, it should be noted
that Mironov 2019 was designed for a surface soil layer with SOM ranging from 35% to
80% [23]. Meanwhile, the natural log calibration function from [11] was proposed for highly
organic soils and the Decagon 5TE (in-situ sensor), which is operated at 70 MHz. Such
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imperfect alignments between the applicable ranges of dielectric models and the actual
settings are surprisingly common, possibly leading to underestimations of the quality of
these dielectric models.

4.4.2. Organic-Soil-Based Dielectric Models

Similar to other empirical dielectric models [41–46] accounting for the influence of
SOM, SOM itself is not treated as a necessary input in Bircher 2016 to derive the dielectric
constants of organic soils. Mironov 2019, however, incorporates the dielectric impacts of
SOM and soil bulk density, while omitting the clay fraction. In contrast, Park 2019 and
Park 2021 consider both mineralogy and SOM. Though comprehensive, the confidence in
representing the dielectric interactions among various soil properties and the quality of
those global-scale soil databases greatly limit the practical uses of Park models. For example,
SOM, as the most critical index for classifying mineral and organic soils, was estimated by
multiplying the SOC content by a fixed factor of 1.724 [23,47]. However, the conversion
factor between SOC and SOM is unlikely a global constant, while [47] pointed out that this
conversion factor would vary from 1.4 to 2.5 across different geographical regions.

Additionally, mineral-soil-based dielectric models are usually based on the assumption
that the soil is composed of sand, silt, and clay, and thus the summation of their fractions is
100% [12,19,22]. However, this assumption is likely inappropriate over organic-rich soils,
where SOM has a great gravimetric contribution. Here, the texture fractions extracted from
the SoilGrids250m [30] were normalized. As a result, the summation of minerals and SOM
currently exceeds 100%, while a further re-normalization is difficult to proceed with, as the
SOM contents (sometimes over 100%) were empirically estimated. Despite these issues,
at this time, these data sets might be the most practical sources to support running those
dielectric models over a wide spatial coverage. Therefore, a soil property data set that
can accurately describe the gravimetric relationship among sand, silt, clay, and SOM is
pressingly needed.

4.4.3. Limitations of In-Situ Benchmarks

Besides the limits of the model applicable range and the quality of input data sets
of soil properties, the other critical factor that directly affects the assessment results is
the quality of the benchmarks, i.e., in-situ SM measurements. As mentioned, breaks,
missing values, and jumps were commonly found during the examination of the in-situ
SM time series. Furthermore, many of the calibration functions used to deduce in-situ SM
values were designed for mineral soils only, due to the unavailability of organic-soil-based
calibration functions over those regions. As a result, in-situ SM values might have an
underestimation issue.

Due to the limited availability of in-situ measurements over Alaska, only one ground
station was selected as the regional benchmark for each validation pixel. However, the
estimated SMAP retrieval performance over these areas was likely degraded given the un-
matched spatial representatives and measuring depths between the passive microwave SM
derivations and ground measurements [39]. Additionally, inconsistent SM variations from
the radiometer snapshots and the ground sensors may have arisen during the transition
period between two years (e.g., from the end of August 2015 to the beginning of June 2016),
adversely affecting the validation metrics. In spite of these factors, this study presents an
evaluation that maximizes the use of existing data sets and can serve as a valuable reference
for further investigations as more data become available.

4.4.4. Characteristics of Park Models

Compared to the other conventional semi-empirical dielectric models [12,16,19,21–23],
Park models describe the fractions of bound water and free water differently [16,22,24].
First, Park models use the wilting point as the beginning point where free water starts to
occur, whereas other models set that value using an independent term, named maximum
bound water fraction. When the volumetric SM is between the maximum bound water



Remote Sens. 2023, 15, 1658 14 of 19

fraction and porosity, most dielectric models fix the bound water content and the dielectric
contribution of bound water. However, in the same SM range, Park models assume that
the content of bound water and free water alters with the volumetric SM. Specifically, SM
is treated as a weighted summation of the bound water and free water, where the sum of
the weights of bound water (wb) and free water (wf) is constrained as one. It is assumed
that wb is one when SM is equal to the wilting point. On the contrary, wb declines to zero
when SM reaches porosity.

According to Figure 3e,f, there are a few rapid drops in the curves of Park 2019 and
Park 2021 when the SOM exceeds 60%. Such scenarios could be explained by the wilting-
point and porosity calculation equations used in Park 2019 and Park 2021. As shown
in Figure S3, the porosity equation of Park 2019 could lead to a porosity greater than
1m3/m3 when SOM ranges from 30% to 35%. Meanwhile, in Park 2019, the derived wilting
point could surpass the porosity when the SOM is over 60%. Although the above issues
were substantially mitigated for Park 2021 with valid magnitudes of its derived porosity
and wilting point, an evident bending near the wilting point could still be observed in
its simulated TB curves at highly organic soils. Therefore, caution should be paid when
applying Park 2019 and Park 2021 over organic-rich soils.

4.4.5. Selection of a Globally Optimal Combination of Dielectric Models

In general, Mironov 2019 can be concluded as the prime dielectric model for use in the
SMAP SCA-V algorithm over organic-rich soils. Similar to [27], such a determination was
not only yielded from the validation results, but also incorporated the input parameters
and configurations of various models. Specifically, Mironov 2019 requires fewer input
parameters compared to Park 2019 and Park 2021, making it less susceptible to the uncer-
tainties introduced by different soil property data sources, while accounting for the SOM
effects. Additionally, Mironov 2019 was developed based on a physically refractive mixing
dielectric model, where the parameters were calibrated and validated across several soil
samples, with a SOM ranging from 35% to 80% [23]. In contrast, Bircher 2016 was derived
from straightforward regression analyses between two measured variables, while Park 2019
and Park 2021 lack effective calibration [11,16,24]. Furthermore, Mironov 2019 consistently
demonstrated a slight edge over the other models, in terms of the averaged ubRMSE and
R. This accuracy advantage of Mironov 2019 would likely extend to other regions with
organic-rich soils (Figure A1), given similar climatic conditions and vegetation types with
Alaska [48,49].

While the operational SMAP retrieval algorithms apply a single dielectric model
globally [50], finding a universal dielectric model that outperforms the other models
across all possible conditions seems overambitious. As described above, mineral-soil-
based dielectric models do not include the SOM effect on soil dielectric constants, whereas
organic-soil-based models often ignore the influence of soil texture. Although Park 2019
and Park 2021 consider both soil texture and SOM, they are prone to higher errors, due
to a few improper formulations and excessive uncertainties introduced by various input
data sources. Hence, based on the previous studies [15,27] and the results obtained here,
the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V algorithm over
mineral and organic soils is proposed. The selection of utilizing Mironov 2009 is somewhat
arbitrary, as Mironov 2009 has not been comprehensively assessed against Mironov 2013
and Park 2017 over mineral soils. The applicability of Mironov 2009 has been extensively
validated, and the use of Mironov 2009 will not further degrade the retrieval quality.

The simultaneous use of Mironov 2009 and Mironov 2019 requires a sophisticated
SOM threshold that can demarcate mineral and organic soils. However, there is presently
no rigorous set of rules for this threshold. [23] state that soil can be categorized into organic
soil if the SOM is more than 20%, whereas [51] and [52] declare that organic soil should
contain a SOM of at least 30% [11]. According to the results of the synthetic experiments, a
SOM of 15% might be an optimal threshold for distinguishing soil types, as the TB curves
of different models are closely clustered and the divergence between mineral- and organic-
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soil-based models seems to start after a SOM exceeding 15% (Figure 3). Such a threshold
conforms to [53] who classifies soils into organic soil or highly organic soil when the SOM
is more than 15%.

The utilization of an optimal organic-soil-based dielectric model (i.e., Mironov 2019
here) is anticipated to improve the overall precision of SMAP SM retrievals over organic
soils. Since SM is a crucial factor in determining carbon fluxes in boreal regions [18], having
precise knowledge of SM variations can effectively monitor the health of local ecosystems
and predict the trends in carbon storage. In the current context of global warming, the
snow extent has rapidly dropped in the Northern Hemisphere [54]. Consequently, more
snow-covered regions become bare soils, and the period of thawing seasons tends to last
longer. Hence, decreasing SM retrieval uncertainties over these high-SOM areas would
greatly aid in tracking the potential significant hydrologic shifts triggered by climate change
and permafrost thawing [55,56].

Meanwhile, the deficiencies in the quality of soil property products and in-situ data sets
in the Northern environment have been identified. For instance, the universal conversion
formula between SOC and SOM is still rudimentary, occasionally leading to an estimation
over 100%. As such, the limitations discovered in this study offer a strong motivation
and direction for developing soil property data sets with better applicability. Additionally,
the necessity for accurate SM in high-latitude areas highlights the need for more ground
stations and dense SM observation networks over the circumpolar zone.

4.4.6. Future Work

Here, the determination of the SOM threshold at 15%, based solely on synthetic
experiments, likely caused spatial inconsistencies at the boundary of the mineral and
organic soils. Hence, location/time-dependent SOM thresholds may be necessary to
produce smooth SM maps in high-latitude regions. An alternative approach would be the
mixed use of mineral- and organic-soil-based models over each pixel, provided that an
accurate relative proportion of SOM and clay is available in advance.

Although this study evaluated various dielectric models under the SMAP SCA-V algo-
rithm, their use in other radiative transfer model-based algorithms and with observations
from different polarizations, angles, and frequencies remains to be investigated. Of partic-
ular interest is the dual-channel algorithm (DCA), the current SMAP baseline algorithm,
which exhibited moderate edges over agricultural sites [18]. The objective of the DCA
algorithm is to achieve the optimal vegetation optical depth (VOD) and SM simultaneously,
by minimizing the aggregated differences between the simulated and observed brightness
temperatures at both horizontal and vertical polarizations. Thus, the alternation of the
dielectric model could indirectly affect the derived vegetation water content. In addition
to passive microwave remote sensing, the dielectric mixing model is also critical for other
fields, such as SMAP L4 and the European Centre for Medium-Range Weather Forecasts
(ECMWF) Community Microwave Emission Model (CHEM) [57,58]. Radar sensors also
require a dielectric model to simulate the backscatter coefficients [59]. However, there
is currently no clear consensus on the best dielectric model for these platforms, making
further investigations necessary and valuable.

5. Conclusions

In this study, the skills of nine dielectric models over organic soil in Alaska were
evaluated and compared in the context of the SMAP SCA-V algorithm. Four out of nine
models carefully account for the SOM effect on the complex dielectric constant of the
soil–water mixtures, while the remaining models were designed for use in mineral soils.
The dielectric responses (expressed in a form of TB) of those models to the increasing SOM
were comprehensively investigated through artificially controlling input values. At a given
SM over 0.1 m3/m3 and a SOM higher than 15%, the simulated TB values from organic-
soil-based dielectric models were higher than those estimated from the mineral-soil-based
dielectric models. In other words, relative to mineral-soil-based dielectric models, organic-
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soil-based models are inclined to obtain higher SM estimates from identical observed
radiations. The different magnitudes from the above two types of dielectric model were
relatively stable across soil textures (e.g., silty, clay, and sandy loam), as organic-soil-based
models are less sensitive to the proportions of sand, silt, and clay content. Furthermore,
a SOM threshold of 15% was suggested for the separate use of mineral- and organic-soil-
based dielectric models in the retrieval algorithm, as the divergence of TB curves of mineral-
and organic-soil models was observed when the SOM exceeded 15%.

The predictive power of each dielectric model was represented using several statistic
metrics computed by comparing the SM retrievals with in-situ measurements. Compared
to satellite products reflecting SM variations over a large spatial extent, in-situ point-based
SM measurements exhibited more temporal variability. Additionally, even over the same
location, the annual correlations between satellite-based SM retrievals and in-situ data
fluctuated a lot. Consistent with the results from the synthetic experiments, organic-
and mineral-soil-based models tended to induce wet and dry biases. In an integrated
evaluation, Mironov 2019 presented a slightly, but consistently, better performance over
the other dielectric models, which showed a mean ubRMSE of 0.0507 m3/m3 and a mean R
of 0.465.

Furthermore, an inter-comparison between the SM retrievals within a one-week time
interval from mineral- and organic-soil-based dielectric models was conducted at a global
scale. Such a comparison would be useful to capture clues about the performance of
organic-soil-based models over mineral soils. Mironov 2009 and Mironov 2019 were elected
as the representatives of mineral- and organic-soil-based models, respectively. As a result,
SM estimates from Mironov 2019 were at least 0.05 m3/m3 higher than those from Mironov
2009. When the SM was below 0.1 m3/m3, the SM retrievals from Mironov 2019 were
occasionally smaller than the SM retrievals from Mironov 2009 in mineral soils.

It should be noted that the performance of each dielectric model heavily depends on
its designed application range, the quality of the input data sets, as well as the accuracy of
in-situ benchmarks. Different assessment results might be obtained with the updating of
the dielectric models, in-situ measurements, and soil parameters. Given the contrasting
sensitivity of mineral- and organic-soil-based models to soil texture and SOM, it is of
great importance to ensure a consistent source of soil ancillary data. As such, a routine
evaluation study that incorporates all the potential dielectric models and the most recent
soil auxiliary data sets is recommended. In an integrated consideration of model inputs,
the model physical foundation, and the practical accuracy, the separate use of Mironov
2009 and Mironov 2019 in the SMAP SCA-V algorithm for mineral soils (SOM < 15%) and
organic soils (SOM ≥ 15%) would be the optimal option at this time. Considering the SOM
magnitudes at the 36 km scale, developing a sophisticated dielectric model accounting for
a variable SOM from 10% to 30% is required for passive microwave remote sensing of SM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15061658/s1, Figure S1: The geographical distributions of all
the 12 stations finally used for validation. Figure S1: Simulated brightness temperature of a sandy
loam with various soil organic matter, and the accompanied table displays all the input values where
most of soil parameters are directly taken from the sample of sandy loam used in [38]. (a)–(f) represent
the simulated brightness temperature curves variations across various soil organic matter with an
increase step of 15%. Figure S2: Variations of wilting point and porosity estimated from Park 2019
and Park 2021 with increasing soil organic matter with assumed volumetric textural compositions.
Table S1: Detailed information of all in-situ stations investigated in this study. Table S2: Annual R
values between soil moisture retrievals from various dielectric models and in-situ measurements and
the SMAP vertically polarized brightness temperature.

Author Contributions: Conceptualization, R.Z, S.C., R.B. and V.L.; methodology, R.Z., S.C. and R.B.;
data analysis, R.Z. and S.C.; writing—original draft preparation, R.Z.; writing—review and editing,
S.C., R.B. and V.L. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/rs15061658/s1
https://www.mdpi.com/article/10.3390/rs15061658/s1


Remote Sens. 2023, 15, 1658 17 of 19

Funding: This investigation was funded as a university subcontract under the NASA Making Earth
System Data Records for USE in Research Environments (MEaSUREs) Program.

Data Availability Statement: Publicly available data sets were analyzed in this study. SMAP L2
data were downloaded from National Snow and Ice Data Center (https://nsidc.org/data/data-
access-tool/SPL2SMP/versions/8, access date: 14 April 2022). In-situ soil moisture measurements
are freely available on the Natural Resources Conservation Service (NRCS), the National Water and
Climate Center (NWCC) homepage (https://www.nrcs.usda.gov/wps/portal/wcc/home, access
date: 7 April 2022), and the International Soil Moisture Network (ISMN) (https://ismn.earth/en/
networks, access data: 10 April 2022), respectively.

Acknowledgments: We thank Chang-Hwan Park (Ajou University) for providing his model scripts
with detailed explanations. We are also grateful to all contributors to the data sets used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 20 
 

 

brightness temperature curves variations across various soil organic matter with an increase step 

of 15%. Figure S2: Variations of wilting point and porosity estimated from Park 2019 and Park 

2021 with increasing soil organic matter with assumed volumetric textural compositions. Table S1: 

Detailed information of all in-situ stations investigated in this study. Table S2: Annual R values 

between soil moisture retrievals from various dielectric models and in-situ measurements and the 

SMAP vertically polarized brightness temperature. 

Author Contributions: Conceptualization, R.Z, S.C., R.B., and V.L.; methodology, R.Z., S.C. and 

R.B..; data analysis, R.Z. and S.C.; writing—original draft preparation, R.Z.; writing—review and 

editing, S.C., R.B., and V.L. All authors have read and agreed to the published version of the man-

uscript.  

Funding: This investigation was funded as a university subcontract under the NASA Making Earth 

System Data Records for USE in Research Environments (MEaSUREs) Program. 

Data Availability Statement: Publicly available data sets were analyzed in this study. SMAP L2 

data were downloaded from National Snow and Ice Data Center (https://nsidc.org/data/data-access-

tool/SPL2SMP/versions/8, access date: 14 April 2022). In-situ soil moisture measurements are freely 

available on the Natural Resources Conservation Service (NRCS), the National Water and Climate 

Center (NWCC) homepage (https://www.nrcs.usda.gov/wps/portal/wcc/home, access date: 7 April 

2022), and the International Soil Moisture Network (ISMN) (https://ismn.earth/en/networks, access 

data: 10 April 2022), respectively.  

Acknowledgments: We thank Chang-Hwan Park (Ajou University) for providing his model scripts 

with detailed explanations. We are also grateful to all contributors to the data sets used in this study. 

Conflicts of Interest: The authors declare no conflicts of interest.  

Appendix A 

 

Figure A1. Global distribution of soil organic matter (SOM), where the inset describes the probabil-

ity distribution function (PDF) of SOM at the global scale and in Alaska. 

 

References 

1. Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. 

2. De Jeu, R.A.; Wagner, W.; Holmes, T.; Dolman, A.; Van De Giesen, N.; Friesen, J. Global soil moisture patterns 

observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. 

3. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: 

The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. 

4. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; 

Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. 

5. Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; 

Piepmeier, J. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 

4994–5007. 

Figure A1. Global distribution of soil organic matter (SOM), where the inset describes the probability
distribution function (PDF) of SOM at the global scale and in Alaska.

References
1. Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [CrossRef]
2. De Jeu, R.A.; Wagner, W.; Holmes, T.; Dolman, A.; Van De Giesen, N.; Friesen, J. Global soil moisture patterns observed by space

borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [CrossRef]
3. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture

and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [CrossRef]
4. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.;

Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [CrossRef]
5. Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.

Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [CrossRef]
6. Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.; Cosh, M.; Dunbar, R.; Dang, L.; Pashaian, L. Validation of

SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [CrossRef]
7. Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.

Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941.
[CrossRef]

8. Kim, H.; Wigneron, J.-P.; Kumar, S.; Dong, J.; Wagner, W.; Cosh, M.H.; Bosch, D.D.; Collins, C.H.; Starks, P.J.; Seyfried, M. Global
scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models
over forest and mixed irrigated/dryland agriculture regions. Remote Sens. Environ. 2020, 251, 112052. [CrossRef]

9. Zhang, R.; Kim, S.; Sharma, A.; Lakshmi, V. Identifying relative strengths of SMAP, SMOS-IC, and ASCAT to capture temporal
variability. Remote Sens. Environ. 2021, 252, 112126. [CrossRef]

10. Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Norwood, MA,
USA, 1986; Volume II.

11. Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.;
Kerr, Y.H. Soil moisture sensor calibration for organic soil surface layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125.
[CrossRef]

https://nsidc.org/data/data-access-tool/SPL2SMP/versions/8
https://nsidc.org/data/data-access-tool/SPL2SMP/versions/8
https://www.nrcs.usda.gov/wps/portal/wcc/home
https://ismn.earth/en/networks
https://ismn.earth/en/networks
http://doi.org/10.1016/0022-1694(95)02970-2
http://doi.org/10.1007/s10712-008-9044-0
http://doi.org/10.1109/36.942551
http://doi.org/10.1109/JPROC.2010.2043918
http://doi.org/10.1109/TGRS.2016.2561938
http://doi.org/10.1016/j.rse.2017.01.021
http://doi.org/10.1016/j.rse.2017.08.025
http://doi.org/10.1016/j.rse.2020.112052
http://doi.org/10.1016/j.rse.2020.112126
http://doi.org/10.5194/gi-5-109-2016


Remote Sens. 2023, 15, 1658 18 of 19

12. Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing
models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [CrossRef]

13. Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground
measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. [CrossRef]

14. Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and mineralogically based spectroscopic dielectric model for moist soils.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 2059–2070. [CrossRef]

15. Wigneron, J.-P.; Jackson, T.; O’neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.
Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS &
SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262.

16. Park, C.H.; Montzka, C.; Jagdhuber, T.; Jonard, F.; De Lannoy, G.; Hong, J.; Jackson, T.J.; Wulfmeyer, V. A dielectric mixing model
accounting for soil organic matter. Vadose Zone J. 2019, 18, 190036. [CrossRef]

17. O’Neill, P.; Jackson, T. Observed effects of soil organic matter content on the microwave emissivity of soils. Remote Sens. Environ.
1990, 31, 175–182. [CrossRef]

18. O’Neill, P.; Bindlish, R.; Chan, S.; Chaubell, J.; Colliander, A.; Njoku, E.; Jackson, T. Algorithm Theoretical Basis Document Level 2
& 3 Soil Moisture (Passive) Data Products, Revision G, 12 October 2021, SMAP Project, JPL D-66480, Jet Propulsion Laboratory,
Pasadena, CA. Available online: https://nsidc.org/sites/nsidc.org/files/technical-references/L2_SM_P_ATBD_rev_G_final_
Oct2021.pdf (accessed on 12 May 2022).

19. Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE
Trans. Geosci. Remote Sens. 1980, 18, 288–295. [CrossRef]

20. Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans. Geosci. Remote Sens.
1995, 33, 803–807. [CrossRef]

21. Mironov, V.; Kerr, Y.; Wigneron, J.-P.; Kosolapova, L.; Demontoux, F. Temperature-and texture-dependent dielectric model for
moist soils at 1.4 GHz. IEEE Geosci. Remote Sens. Lett. 2012, 10, 419–423. [CrossRef]

22. Park, C.-H.; Behrendt, A.; LeDrew, E.; Wulfmeyer, V. New approach for calculating the effective dielectric constant of the moist
soil for microwaves. Remote Sens. 2017, 9, 732. [CrossRef]

23. Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V.; Savin, I.V. Experimental analysis and empirical model of the complex permittivity of
five organic soils at 1.4 GHz in the temperature range from −30 ◦C to 25 ◦C. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3778–3787.
[CrossRef]

24. Park, C.-H.; Berg, A.; Cosh, M.H.; Colliander, A.; Behrendt, A.; Manns, H.; Hong, J.; Lee, J.; Zhang, R.; Wulfmeyer, V. An inverse
dielectric mixing model at 50 MHz that considers soil organic carbon. Hydrol. Earth Syst. Sci. 2021, 25, 6407–6420. [CrossRef]

25. Yi, Y.; Chen, R.H.; Kimball, J.S.; Moghaddam, M.; Xu, X.; Euskirchen, E.S.; Das, N.; Miller, C.E. Potential Satellite Monitoring of
Surface Organic Soil Properties in Arctic Tundra from SMAP. Water Resour. Res. 2022, 58, e2021WR030957. [CrossRef]

26. Suman, S.; Srivastava, P.K.; Pandey, D.K.; Prasad, R.; Mall, R.; O’Neill, P. Comparison of soil dielectric mixing models for soil
moisture retrieval using SMAP brightness temperature over croplands in India. J. Hydrol. 2021, 602, 126673. [CrossRef]

27. Mialon, A.; Richaume, P.; Leroux, D.; Bircher, S.; Al Bitar, A.; Pellarin, T.; Wigneron, J.-P.; Kerr, Y.H. Comparison of Dobson and
Mironov dielectric models in the SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3084–3094.
[CrossRef]

28. Srivastava, P.K.; O’Neill, P.; Cosh, M.; Kurum, M.; Lang, R.; Joseph, A. Evaluation of dielectric mixing models for passive
microwave soil moisture retrieval using data from ComRAD ground-based SMAP simulator. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2014, 8, 4345–4354. [CrossRef]

29. O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R.; Chaubell, J. L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture,
Version 8.; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]

30. Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.;
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