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Abstract: Accurate and efficient estimation of forest volume or biomass is critical for carbon cycles,
forest management, and the timber industry. Individual tree detection and segmentation (ITDS) is
the first and key step to ensure the accurate extraction of detailed forest structure parameters from
LiDAR (light detection and ranging). However, ITDS is still a challenge to achieve using UAV-LiDAR
(LiDAR from Unmanned Aerial Vehicles) in broadleaved forests due to the irregular and overlapped
canopies. We developed an efficient and accurate ITDS framework for broadleaved forests based on
UAV-LiDAR point clouds. It involves ITD (individual tree detection) from point clouds taken during
the leaf-off season, initial ITS (individual tree segmentation) based on the seed points from ITD, and
improvement of initial ITS through a refining process. The results indicate that this new proposed
strategy efficiently provides accurate results for ITDS. We show the following: (1) point-cloud-based
ITD methods, especially the Mean Shift, perform better for seed point selection than CHM-based
(Canopy Height Model) ITD methods on the point clouds from leaf-off seasons; (2) seed points
significantly improved the accuracy and efficiency of ITS algorithms; (3) the refining process using
DBSCAN (density-based spatial clustering of applications with noise) and kNN (k-Nearest Neighbor
classifier) classification significantly reduced edge errors in ITS results. Our study developed a
novel ITDS strategy for UAV-LiDAR point clouds that demonstrates proficiency in dense deciduous
broadleaved forests, and this proposed ITDS framework could be applied to single-phase point
clouds instead of the multi-temporal LiDAR data in the future if the point clouds have detailed tree
trunk points.

Keywords: UAV-LiDAR; individual tree detection and segmentation (ITDS); individual tree detection
(ITD); individual tree segmentation (ITS); seed points; CHM; point clouds; mean shift; DBSCAN; kNN

1. Introduction

Global forest ecosystems provide ecological, social, and economic benefits by provid-
ing numerous ecosystem services including supplying productivity and regulating water
and carbon cycles [1]. Accurate assessment of forest volume and biomass is the foundation
of the timber industry and forest management [2–5]. Remote sensing approaches, through
non-destructive monitoring, are widely applied in forest research for volume and biomass
estimation in a range of spatial and temporal scales [6]. The current wide application of
light detection and ranging (LiDAR) sensors in forest research advances the quantification
of three-dimensional (3D) forests, as the collected 3D point clouds are able to directly cap-
ture the 3D information of forests [7], improving the estimation accuracy of forest volume
and biomass [7,8]. LiDAR is able to retrieve detailed forest structures parameters includ-
ing tree height [9], crown diameter [10], crown projected area [10], basal area [11], stand
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density [12], canopy volume [13], canopy cover [14], diameter at breast height (DBH) [15],
stem volume [5], tree species [16], and biomass [17]. UAV-LiDAR (LiDAR taken from
unmanned aerial vehicles) improves flexibility and has higher point density and lower
cost compared to airborne LiDAR [14,18–20], adding information to the quantification
of forest structure, volume, and biomass to the individual tree scale [19,21]. This adds
considerable information to conventional forest inventory at the individual tree level. For
either airborne LiDAR or UAV-LiDAR, individual tree detection and segmentation (ITDS)
is a key step to ensure the accurate estimation of single tree structural attributes, volume,
and biomass [22–24].

Two methodological categories, CHM-based (Canopy Height Model) and point-cloud-
based, are commonly applied to UAV-LiDAR data for single tree detection and segmen-
tation [24,25]. Although both CHM-based and point-cloud-based methods have satisfied
accuracy for ITDS from UAV-LiDAR [9,14,26], both have shown much lower accuracy
in broadleaved forests with irregular canopies, overlapping canopies, and/or multiple
stems [26–29]. The CHM-based method first applies search windows to find canopy
maxima and to identify tree locations using CHM data. Then segmentation algorithms
(e.g., watershed and region growing methods) are applied to delineate individual tree
crowns [23,30–35]. CHM-based methods significantly improved the accuracy for ITDS
when it was first constructed for airborne LiDAR data [36]. However, high commission or
omission errors for individual tree detection (ITD) from CHM brings bias into individual
tree segmentation (ITS) for broadleaved forests, especially in forests with complex and
overlapping crown structures [19,37,38]. To improve the accuracy of CHM-based methods
for single tree segmentation and detection, previous studies have applied marker-based wa-
tershed algorithms [29,39]. However, most of these methods require human intervention for
marker selection and threshold setting [38], limiting the use of automatic, batch processing.

Unlike CHM-based methods, the point-cloud-based method applies cluster algorithms
(e.g., Kmeans clusters) based on point clouds for searching 3D clusters as individual tree
segmentation [19,26,40]. Theoretically, point-cloud-based methods have higher accuracy
for ITDS, but require more computation time [41] comparing to CHM. Most of the point-
cloud-based methods require algorithms for seed point selections [42,43]. Trunk points
located at the base of trees were often selected as seed points for bottom-up ITS, which has
been proven to be more accurate than up-bottom segmentation especially in broadleaved
forests [28,44,45]. However, due to the high canopy cover in the growing season of decidu-
ous broadleaved forests or evergreen broadleaved forests, it is difficult to extract a seed
point from the bottom of the tree in this application. Various cluster algorithms have been
tested for ITS, including region growing [42], Kmeans [46], mean shift [47,48], normalized
cut [19], density-based spatial clustering of applications with noise (DBSCAN) [49], and
deep learning network [43]. Although these clustering algorithms are effective in forests,
their effectiveness relies heavily on the accuracy of ITD and thus remains a challenge
in broadleaved forests with overlapping tree canopies and similar height and density
distributions [7].

Thus, a gap remains for an efficient, accurate, and applicable ITDS method for
broadleaved forests. Previous studies have improved the accuracy for extracting for-
est parameters [16] and classifying tree species [50,51] by merging LiDAR point clouds
from leaf-off and leaf-on seasons to extract forest variables or classify forest species. How-
ever, few studies have focused on ITDS using multi-temporal UAV-LiDAR data. Since
trunk points contribute to improving the accuracy of ITD and bottom-up segmentation
methods [28,44,45], it is worthwhile to explore the potential for combining multi-temporal
ITDS point clouds in broadleaved forests; point clouds from leaf-off season could capture
dense tree trunk points and point clouds from leaf-on season would obtain detailed 3D
information of tree canopies.

To address the challenges mentioned by the utilization of UAV-LiDAR data in broadleaved
forests and to develop a more efficient, precise, and practical methodology, this study proposed
a new ITDS framework based on point clouds from multiple seasons in broadleaved forests.
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Our specific objectives are as follows: (1) to develop a strategy for automatic ITD from UAV-
LiDAR point clouds in leaf-off season; (2) to explore the best ITS strategy based on the seed
points from the automatic ITD and UAV-LiDAR point clouds in leaf-on season; and (3) to
improve the efficiency and capacity of the developed ITDS framework through a unique
refining process.

2. Materials and Methods
2.1. Study Area

Our research was conducted in a poplar (Populus deltoids) plantation in the eastern
part of Dongtai City, Jiangsu Province (120.82◦N, 32.87◦W, Figure 1). The plantation (stand
age 8–20 years) is located in a relatively flat region near the coast with elevation from 11
to 14 m (relatively flat terrain). The annual mean temperature is 15.4 ◦C and the annual
rainfall is 1494 mm [52]. The main soil type is desalinated meadow soil with sandy loam
texture [52].

Figure 1. Study area and fieldwork design. (a) The study area is in the coastal area of Jiangsu province,
China; (b) flight areas of UAV and the sample plots for fieldwork; (c) four RTK points were records of
each tree location; (d) reference tree position with mean center for the four RTK points for each tree.

2.2. UAV-LiDAR and Field Data Collection

UAV-LiDAR point clouds were collected in both leaf-off and leaf-on seasons (January
2021 and May 2021) using a Velodyne VLP-16 LiDAR sensor (wavelength: 903 nm) carried
by a six-rotor DJI M600 PRO UAV (Figure 2). This UAV-LiDAR system operates with a
pulse repetition frequency of 30 kHZ and a vertical scanning angle of ±15◦ and horizontal
scanning angle of 360◦. The UAV-LiDAR data for this study were collected with the flight
altitude of 70 m, flight speed of 3.6 m·s−1, flight interval of 60 m, and horizontal scanning
angle of ±70◦. We also recorded the point cloud densities in the above-ground part (higher
than 2 m; Table 1).
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Figure 2. Examples of UAV-LiDAR data in leaf-off and leaf-on conditions. (a) Eleven stand age poplar
plantation plots from the leaf-off season; (b) seventeen stand age poplar plantation plots from the
leaf-off season; (c) eleven stand age poplar plantation plots from the leaf-on season; (d) seventeen
stand age poplar plantation plots from the leaf-on season.

Table 1. Descriptions of poplar plot per site locations.

Plot ID Tree Number
Leaf-Off/Leaf-On

Planting
Spacing (m)

Point Cloud Density pts·m−2

Leaf-Off/Leaf-On

Tree Height (m) Leaf-Off

Max Min Mean

Y8-1 57/57 4 × 6 12.61/29.91 22.23 19.76 21.17
Y11-1 42/42 4 × 8 22.21/55.7 26.29 21.95 24.69
Y12-1 23/22 3 × 5 9.49/45.67 26.63 23.57 25.39
Y12-2 25/25 3 × 5 9.14/45.75 26.13 23.90 25.17
Y14-2 53/50 3 × 8 18.49/35.27 24.63 21.97 23.55
Y14-4 39/39 3 × 8 17.91/34.83 27.09 23.24 25.55
Y16-1 18/18 6 × 5 10.99/41.94 28.90 25.40 27.56
Y16-2 31/30 6 × 5 27.67/55.06 30.95 27.05 29.15
Y16-3 29/29 6 × 5 27.31/56.54 30.17 26.48 28.59
Y17-1 48/48 6 × 5 22.45/73.92 30.58 25.95 28.18
Y17-2 40/39 6 × 5 17.48/39.83 27.38 24.36 25.92
Y20-3 24/22 5 × 6 36.47/101.65 33.71 31.98 32.74

Fieldwork was conducted in January 2021, simultaneous with UAV-LiDAR collection
in leaf-off season. We established 12 sample plots in different stand ages with varying
planting spacing, tree height, and canopy structural characteristics (Table 1). In each sample
plot, we recorded the position of each tree based on four points: north, south, east, and west
around the tree base (Figure 1d). The center point of each tree was calculated by the mean
center of these four points (Figure 1d) and the number of reference trees in each sample
plot (Table 1) was used as the reference tree position for ITD of UAV-LiDAR point clouds
(Figure 1c). Due to planned and unplanned deforestation (forestry and wind) during the
two data collection periods, we updated the number of reference trees during the fieldwork
in May (Table 1).

2.3. Methodology

After the pre-processing of the UAV-LiDAR point cloud data, CHM and normalized
point clouds were generated (Section 2.3.1). Then, the accuracy of ITD and the seed point
selection for all three methods (local maxima, local minima, and mean shift algorithm) were
evaluated based on CHM or normalized point clouds in the leaf-off season (Section 2.3.2,
Figure 3). The method with the highest accuracy was applied to extract two seed point
types that could be used for the ITS in the leaf-on season (Section 2.3.3). After re-screening
the seed points, three seed-based ITS methods (Seeds + Kmeans, Seeds + Dalponte2016,
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Seeds + Silva2016) were conducted (Section 2.3.3), comparing four direct ITS methods
(Dalponte2016, Li2012, PTrees, LayerStacking). A new segmentation refining method was
used to improve the accuracy of crown delineation and ITS in all sample plots (Figure 3).

Figure 3. Methodology developed in this study. CHM: canopy height model; DBSCAN: density-
based spatial clustering of applications with noise; kNN classifier: k-Nearest Neighbor classifier.
Stage I: ITD and seed points detection under leaf-off conditions; Stage II: ITS in leaf-on conditions;
Stage III: Refining processing to final segmentation results.

2.3.1. Pre-Processing of UAV-LiDAR Point Cloud Data

The pre-processing steps of UAV-LiDAR point clouds we applied were georeferencing,
strip alignment, strip merging, de-noising, and the interpolation. The coordinates of the
initial point cloud data were generated based on two systems: real-time-kinematic (RTK)
antenna carried on the UAV and paired with the corresponding global positioning system
(GPS) base station; and the inertial measurement unit (IMU) in the inertial navigation
system (INS) system. All flight strips were merged based on the iterative closest point (ICP)
registration algorithm, and the noise points were filtered using the maximum distance
from the point to its neighbors. After ground points were classified using an improved
progressive triangulated irregular network (TIN) densification filtering algorithm [53], they
were interpolated to the digital elevation model (DEM) using the TIN interpolate algorithm.
Normalized point cloud data were generated by subtracting the DEM from the de-noised
point cloud, which represents the absolute heights of trees and other undergrowth above
the elevation. To eliminate spatial error caused by different time phases, we performed a
fine registration of the normalized point clouds for leaf-off and leaf-on seasons using the
ICP registration algorithm. CHM images with a spatial resolution of 0.1 m were generated
from the normalized point clouds based on the grid_canopy function in the lidR package in
R software [54].
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2.3.2. ITD and Seed Points Detection under Leaf-Off Conditions

To extract seeds from UAV-LiDAR data of the leaf-off season, three reliable methods
were tested (Figure 4). The first method is commonly applied and uses a local maximum
filter algorithm on the CHM images [55]. This method has been shown to have high
accuracy for ITD in coniferous forests based on different types of LiDAR data [25]. A
median value based on 7 × 7 pixel moving windows was chosen in this study using
the focal function in the raster package of R software. Because the CHM image has a
spatial resolution of 0.1 m, the actual size of this smoothing window is 0.7 × 0.7 m. The
local maximum algorithm was then performed in the smoothed CHM to identify treetops
(Figure 4a) based on a fixed circle window. The size of this circle affects the accuracy of
ITD, so we tested multiple window sizes adjusted to tree spacing in each plot and selected
the size with the best detection performance (Table 2).

Figure 4. ITD and seed extraction through a local maximum algorithm (a), a local minimum algorithm
(b), and a Mean Shift algorithm (c) in plot Y16-3 as an example. The yellow dots are seed points
extracted by the algorithm in (a); the purple dots are seed points extracted by the algorithm in (b);
the blue dots are seed points extracted by the algorithm in (c).

Table 2. Parameters of three ITD methods among sample plots in the leaf-off season. (Local Maximum:
a local maximum filter algorithm on the CHM; Local Minimum: A local minimum filter algorithm
on the normalized point cloud data; Mean Shift: a local density maxima detecting algorithm on the
horizontal point cloud data).

Plot Local Maximum–
Diameter (m)

Local Minimum–
Diameter (m)

Mean Shift–
Bandwidth (m)

Y8-1 5.5 5.5 2
Y11-1 5.5 5.5 2

Y12-1,2 5 5 1.7
Y14-2,4 5 5 2

Y16-1,2,3 6 6 2.5
Y17-1,2 6 6 2.5
Y20-3 6 6 2.5
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The second method is a smoothing window filtering method that is often used to
improve ITD accuracy in broadleaved forests [56]. Compared to the first method, this
approach searches for the lowest point rather than the treetop for a single tree. This
second method is often applied for bottom-up ITS methods, which have been shown to
have better ITS performance for broadleaved forests for their potential to eliminate errors
caused by complex canopy structure [44]. Specifically, a local minimum filter algorithm
was conducted in the normalized point cloud data instead of the CHM image (Figure 4b).
Circle window diameters for this second method were the same as those in the first method
(Table 2) and both were run in the locate_trees function from lidR package in R software.

The third method is a Mean Shift algorithm, a nonparametric feature-space analysis
technique for detecting the local maxima based on a probability density function of the
data [57]. Because it was applied by interactively shifting each point in the feature space
uphill until it reaches a mode, all the points were classified into a cluster with the same
mode. This approach is feasible for directly segmenting point clouds in 3D space [7,47]. The
primary parameter for this method is kernel bandwidth, which strongly impacts the cluster
results. Instead of adopting this technique on the 3D point cloud directly, we projected the
point clouds from the leaf-off season onto the horizontal plane (2D plane) first and then
conducted the Mean Shift algorithm from the sklearn.cluster library in Python (Figure 4c).
In this way it skips vertical bandwidth selection. Various horizontal bandwidth parameters
were tested by trial and error and the best horizontal bandwidth was selected for each plot
(Table 2).

2.3.3. ITS in Leaf-On Conditions

To explore the advantage of seed point detection in ITS in UAV-LiDAR point clouds
of broadleaved plantations in the leaf-on season, four commonly used ITS methods were
compared using the lidR and lidRplugins packages in R software [54]. The first ITS method
is an up-bottom segmentation method used by applying a regional growth algorithm on
the CHM raster [34]. This first ITS method requires the treetops first be identified from the
CHM, which is the same as the local maximum ITD method based on the CHM from the
leaf-off season. The diameter of the moving circle window was also determined in the trials
using tree spacing in each plot (Table 3). The two important parameters for judging growth
for this first ITS method (th_seed and th_cr) were kept as algorithm defaults (0.45 and 0.55)
in this study.

Table 3. Parameters of four segmentation methods among plots in the leaf-on season.

Plot Dalponte2016—
Diameter (m) *

Li2012—
Diameter (m) *

PTrees—
k1 *, k2 *

Layer Stacking—
w1 *, w2 *

Y8-1 5 5 500, 250 3, 1.5
Y11-1 5 5 600, 300 3, 1.5

Y12-1,2 4.5 4.5 600, 300 3, 1.5
Y14-2 4 4 400, 200 4, 2
Y14-4 4.5 4.5 600, 300 3, 1.5
Y16-1 5.5 5.5 700, 350 7, 3.5

Y16-2,3 4.5 4.5 600, 300 4, 2
Y17-1,2 5.5 5.5 700, 350 7, 3.5
Y20-3 6 6 1500, 750 7, 3.5

* Diameter is the size of search windows in the Dalponte2016 and Li2012 algorithms; k1, k2 are scale parameters in
PTrees algorithm; w1 and w2 are two search window sizes in the LayerStacking algorithm.

The second ITS approach is a regional growth method (an up-bottom), combined with
the threshold judgment, based on point cloud data rather than CHM raster [42]. For this
second ITS method, the important index that decides which point belongs to which tree is
the horizontal Euclidean distance between this point and treetops. Therefore, treetops need
to be first selected by a local maximum algorithm based on the normalized point cloud
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data for this ITS method as well (Table 3). The threshold parameters of dt1 and dt2 were set
as algorithm defaults (1.5 and 2).

The third ITS method is PTrees, which is a multi-scale point cloud segmentation
algorithm [58]. This method requires the absolute maxima be determined rather than the
local maxima. The fundamental principle is to apply a k-nearest neighbor algorithm on
the normalized point cloud and calculate the area of a convex hull from these k-nearest
points in the 3D space. The primary parameter for this third method is the k; two types of k
values (k1, k2) were set to meet multi-scale needs. The k values were selected based on the
trials and the point cloud densities for different sample plots (Table 3).

The fourth ITS method, layer stacking, is a segmentation algorithm based on the
normalized point cloud data [59]. The principle of this method is to first slice the point
clouds according to their heights, obtain the clusters in each layer, and finally locate the
position of each tree using the high-density area by overlapping all layers’ results. For
this fourth method, the layer thickness was set as default (0.5) and the sizes of two search
windows (w1 and w2) were determined by trial for each sample plot (Table 3). We set w1
as 2 × w2 and tested the performance of the algorithm on a scale of w2 (from 1 to 5) and
selected the best parameters.

We also designed a segmentation framework based on seed points extracted from
the leaf-off poplar plantation (see Section 2.3.2). The specific steps were as follows:
(1) re-screening seed points, (2) implementing the segmentation method, and (3) refin-
ing segmentation results. The initial seed points were determined with the method with
highest accuracy among all three ITD methods based on the LiDAR data from the leaf-off
season. To eliminate the error caused by deforestation, a k-nearest neighbor algorithm was
applied to evaluate whether each initial seed point is qualified. This is a re-screening of the
seed points to match those points calculated from LiDAR data in leaf-off season with that
in leaf-on season. The horizontal Euclidean distance between each seed point and its five
neighbors in the point cloud from the leaf-on season was calculated first, and then all the
distances from the target seed and its neighbors were summed. The sum of the distances
was compared with a threshold (1.5 m in this study) to judge whether the specific seed
point is valid (Figure 5).

Figure 5. Example of the initial seed point in the data view from leaf-off (a) and leaf-on (b) seasons
(the seed point in the red circle was removed by the re-screening method).

During the second step, three segmentation methods (seed points could be applied to
these methods) including Kmeans, region growth, and Voronoi polygon were compared.
Kmeans, a common clustering method, determines optimum clusters by continuously
iterating center points (iteration times were set to 10 by default). A good starting center
point has a strong capacity to achieve good segmentation results from point clouds based
on the Kmeans method [46]. We used the center point obtained after clustering with
the Mean Shift algorithm (Figure 6a) as the seed point for the Kmeans algorithm. The
region growth [34] is an ITS method based on the regional growth of the seed points.
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Since the initial growth point for this method is the highest location in a specific region, we
clustered around the seed points and took those with the highest z-value (where the z-value
represents the height of normalized point clouds) in each cluster as the new growth point
(Figure 6b). The diameters of the circle moving window in this regional growth method are
the same as Dalponte2016 (Table 3). Thus, the segmentation of the Dalpnote2016 algorithm
was conducted using accurate seed points which were treetop points extracted by ITD in
the leaf-off season.

Figure 6. Illustration of the two types of seed points using plot Y8-1 as an example. (a) The cluster
created by the Mean Shift algorithm based on the LiDAR data from the leaf-off season; (b) the treetops
of each tree cluster from the red rectangle from (a); (c) the reference tree positions (red), the Mean
Shift center points (blue), and the treetop points (green) in the data view of the leaf-on season.

The third method is to construct a Voronoi polygon directly based on the seed points
(the center points) in each sample plot and split the point clouds in a 2D plane with
this polygon as reference [60]. We set the max value parameter of a crown diameter
(max_cr_factor) at 0.6 in the segmentation using Voronoi polygon, so that the diameter will
not exceed 60% of the tree height, which was in line with the characteristics of the forest
and could reduce a certain degree of under-segmentation [60]. We located the position
difference between the two seed points (center and top) and the reference points by the
field RTK (Figure 6c).

After applying these three seed points based ITS methods, individual trees were
extracted. However, there were still some errors in the results, especially around tree edges
(Figure 7a). To improve accuracy for ITS, the DBSCAN algorithm was applied on the initial
individual tree points in the horizontal plane. According to the concept of the DBSCAN
algorithm regarding sample point tightness [61], the initial individual tree points were
divided into a variety of new point clusters (Figure 7b). Then, three tree-crown features in
a horizontal plane—the number of points of the cluster (N), the crown area of the cluster
(A), and the crown shape of the cluster (S)—were calculated to evaluate the right cluster for
the individual tree. Feature A was measured by the area of the convex hull by applying
a convex hull algorithm on each cluster from the initial individual tree points. Feature S
was measured by the proportion of the first eigenvalue in all eigenvalues by applying the
principal components analysis (PCA) on each cluster of the initial individual tree points (i.e.,
if the S of one cluster is high, its shape is more likely to be elongated which does not match
the actual shape of a tree). We set the condition that the core cluster would be selected as
the right tree from the initial tree points by the seed points based ITS method (Equation (1),
Figure 7b). The other clusters and the noise points instead of the core cluster are given a new
tree label in the 3D space based on the kNN (k-Nearest Neighbor classifier) classification
algorithm. An iterative method according to the different values of eps (0.4, 0.55, 0.7) in the
DBSCAN method was applied to improve the new segmentation results k from the kNN
classification (k value choose 5 points). Each point was identified several times to determine
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whether to change its tree label. Finally, a result with higher segmentation accuracy was
determined (Figure 7c).

Tree =


Ni > 0.3 × N
Ai > 0.3 × A
Si = S_min

(1)

where Tree is the core cluster from the initial individual tree points, Ni is the number of
points of cluster i, Ai is the crown area of cluster i, Si is the crown shape index of cluster i,
N is the total number of the initial individual tree points, A is the total area of all clusters of
the initial individual tree points, and S_min is the smallest shape index among all clusters
of the initial individual tree points.

Figure 7. The process of refining segmentation results using plot Y16-2 as an example. (a) The initial
segmentation results using the Seeds + Silva2016 method; (b) core clusters (colored) and other points
(black); (c) the final segmentation results after improving accuracy using the novel strategy proposed
in this study.

To evaluate the improvement of the segmentation results from a data perspective, we
manually segmented 15 trees in sample plots of each stand age. Two quantitative indicators
were extracted, including the approximate horizontal projected area of the canopy crown
(using the product of x and y), and the vertical range of the tree (using the range of z). The
results of manual segmentation are compared with segmentation with the refining process
and without the refining process based on these two indicators (Figure 8).

Figure 8. Evaluation parameters to quantify the process of refining results. The left part is the sample
plot used for example (Y16-2). The right part is an individual tree example extracted manually (a),
segmentation with the refining process (b), and without the refining process (c). The values x and y
are the two sides of the horizontal projection of the tree, and z is the vertical range of the tree.
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2.3.4. Accuracy Evaluation

To evaluate the performance and sensitivity of the proposed ITDS strategy in this study,
ITDS results were compared with reference tree locations calculated by the four RTK points
at each tree. The numbers of true positives (TP), false negatives (FN), and false positives
(FP) were counted. TP is the number of trees detected from UAV-LiDAR data that matches
reference trees, FN is the unmatched reference trees (omission error), and FP is the un-
matched trees extracted from UAV-LiDAR data (commission error). Based on these three
indices (TP, FN and FP), the accuracy of the ITDS methods is evaluated using three indices
(r, p and F; Equations (2)–(4)).

r = TP/(TP + FN) (2)

p = TP/(TP + FP) (3)

F = 2(r × p)/(r + p) (4)

where r, recall of the results, is the proportion of ground reference trees detected; p, the
precision of the results, is the proportion of detected trees that match ground reference
trees; and F is an index of the overall accuracy that is calculated with r and p.

3. Results
3.1. ITD Results and Seed Points Selection from the UAV-LiDAR Data in Leaf-Off Seasons

Based on the accuracy assessment results for poplar plots among stand ages (Table 4),
both Local Minimum-PCD and Mean Shift methods showed better performance for ITD
and seed point selection than the Local Maximum-CHM method. Among all the sample
plots with six different stand ages, the Local Maximum method had an average detection
rate, r, of 0.92, an average accuracy rate, p, of 0.94 and an overall accuracy, F, of 0.93 (Table 4).
Compared to the Local Maximum-CHM method, the Local Minimum-PCD and Mean Shift
methods have higher accuracy for ITD and seed point selection (i.e., the overall value of
r, p, F for both are 0.99; Table 4). Assessing the accuracy of all the plots, the Mean Shift
method gave slightly better performance than the Local Minimum-PCD for ITD and seed
point selection (except for plots Y14-2 and Y20-3; Table 4).

Table 4. Accuracy assessment for ITD in poplar plots of different ages under leaf-off conditions.

Plot
ID

Reference
Trees

Local Maximum-CHM Local Minimum-PCD Mean Shift

TP r p F TP r p F TP r p F

Y8-1 57 57 1.00 1.00 1.00 57 1.00 1.00 1.00 57 1.00 1.00 1.00
Y11-1 42 42 1.00 0.91 0.95 42 1.00 0.98 0.99 42 1.00 0.98 0.99
Y12-1 23 18 0.78 1.00 0.88 22 0.96 0.92 0.94 23 1.00 0.92 0.96
Y12-2 25 21 0.84 0.95 0.89 24 0.96 1.00 0.98 24 0.96 1.00 0.98
Y14-2 53 47 0.89 0.90 0.90 51 0.96 1.00 0.98 50 0.94 0.98 0.96
Y14-4 39 34 0.87 0.89 0.88 38 0.97 0.97 0.97 39 1.00 1.00 1.00
Y16-1 18 18 1.00 0.86 0.92 18 1.00 1.00 1.00 18 1.00 1.00 1.00
Y16-2 31 27 0.87 0.96 0.92 31 1.00 1.00 1.00 31 1.00 1.00 1.00
Y16-3 29 27 0.93 0.93 0.93 29 1.00 1.00 1.00 29 1.00 1.00 1.00
Y17-1 48 45 0.94 0.98 0.96 48 1.00 1.00 1.00 48 1.00 1.00 1.00
Y17-2 40 37 0.93 1.00 0.96 40 1.00 0.95 0.98 40 1.00 1.00 1.00
Y20-3 24 22 0.92 0.92 0.92 24 1.00 1.00 1.00 23 0.96 1.00 0.98

All Plots 429 395 0.92 0.94 0.93 424 0.99 0.99 0.99 424 0.99 0.99 0.99

3.2. ITS Results from UAV-LiDAR Points under Leaf-On Conditions

The three seed points based ITS methods (i.e., the seed points based Kmean method:
Seeds + Kmeans, the seed points based Dalponte2016 method: Seeds + Dalponte2016, and
the seed points based Silva2016 method: Seeds + Silva2016) using seed points extracted
during the leaf-off season are more effective than the four ITS methods (Dalponte2016,
Li2012, PTrees, LayerStacking) for ITS from UAV-LiDAR data during the leaf-on season
(Figure 9 and Table 5). The F score for the three seed points based ITS methods are all
stable (i.e., exceeding 0.9; Figure 9). The results of these three seed points based ITS
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methods are significantly different for the Y16-2 sample plot (F = 1.00, 0.97, and 0.93 for
Seeds + Silva2016, Seeds + Dalponte2016, and Seeds + Kmeans, respectively). All three
seed points based ITS methods have the same F score in the sample plots of Y8-1, Y12-1,
Y12-2, Y14-2, Y14-4, and Y17-2 (Figure 9). In contrast, the F score for the four ITS methods
without seed points varied widely among sample plots with significantly low accuracy
in the sample plot of Y12-2 (Figure 9). Overall, Seeds + Silva2016 performed best for ITS
(418 trees are correctly segmented of a total of 421 trees from the UAV-LiDAR data during
leaf-on conditions; Table 5). The Seeds + Silva2016 method also had the highest overall
F score (0.99, Table 5), compared to the Seeds + Kmeans and the Seeds + Dalponte2016
methods (0.98, Table 5). For the four ITS methods without seed points, the Dalponte2016
and Li2012 methods performed better (i.e., with the overall F score of 0.91; Table 5) than
the other two ITS methods (Table 5).

Figure 9. The accuracy tested by F score for all seven individual tree segmentation (ITS) methods.

Table 5. The summarized accuracy for all seven individual tree segmentation (ITS) methods.

Methods TP r p F

Dalponte2016 382 0.91 0.91 0.91
Li2012 383 0.91 0.91 0.91
PTrees 370 0.88 0.89 0.88

Layerstacking 375 0.89 0.91 0.90
Seeds + Kmeans 412 0.98 0.97 0.98

Seeds + Dalponte2016 415 0.99 0.98 0.98
Seeds + Silva2016 418 0.99 0.99 0.99

3.3. ITS Results Improvement Based on the Process of Refining

Compared with the difference of the vertical range of individual trees, the difference
of the approximate horizontal projected area of the canopy between individual trees of
manually and initial segmentation (non_refine result) is larger (Figure 10). Specifically, the
initial segmentation result without refining process tends to have a result that is larger than
the reference value in both indicators. The process of refining has great improvement on
the initial segmentation result on the approximate horizontal projected area of the canopy
crown (Figure 10a) and has a slight improvement on the vertical range of the tree extracted
(Figure 10b). The mean and median value of these two parameters of each plot will be
closer to the manual segmentation result after refining process (Figure 10).
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Figure 10. Boxplot of two indicators (horizontal area (a) and vertical range (b) of segmented individ-
ual trees) of the three methods (manually, segmentation with the refining process, and segmentation
without the refining process).

4. Discussion
4.1. The Extraction of Seed Points by the ITS Methods

It is difficult to select the optimal threshold for ITDS from LiDAR data in a dense
forest, especially when applying these methods to 3D point clouds rather than a CHM
raster [41]. However, the identification and segmentation of individual trees during the
leaf-off season is relatively easier and the accuracy of ITD is easier to judge. In the leaf-off
condition, trunk points and thresholds for the ITD methods are relatively simple to identify
using our method.

Although the seed points extracted by Local Minimum have satisfactory accuracy,
the Mean Shift method still performs slightly better with the exception of plots Y14-2 and
Y20-3. The influence of low trees at Y14-2 and the large branch gap at Y20-3 is responsible
for the slight decrease in the performance of the Mean Shift method. We selected the Mean
Shift method as the most accurate for seed points selection and ITD because the position of
seed points extracted by this algorithm is closer to the tree reference locations (Figure 4).
Seed points extracted by the Mean Shift method are more adaptive to the Seeds + Kmeans
and Seeds + Silva2016 methods (the two seed points based ITS methods). Although high
ITD accuracy is associated with the Local Minimum method (Table 4), the location of its
seed points typically deviated from the reference tree locations due to tree tilt.

By conducting the Mean Shift algorithm on point clouds in the 2D plane instead of 3D
space in our study, we reduced computational complexity. This speeds the process of Mean
Shift algorithm. The connectivity of some individual tree trunk points was poor even under
leaf-off conditions (examples in Figure 6b), which may have greatly affected the accuracy
of applying this algorithm on point clouds in 3D space [47]. If the Mean Shift method was
directly adopted in the 3D space, a great number of clusters would be generated, with its
own challenges and errors for ITD and seed points selection. It is for this reason that we
applied the DBSCAN algorithm on the point clouds in the 2D plane during the refining
process (Section 2.3.3).

We used a moving circular window of fixed size to extract tree top and tree bottom
points. Other studies have shown that an adaptive size moving window (typically imple-
mented by functions of tree height and window size) would perform better for ITD [62].
Due to the similar tree heights among sample plots in our study area, we did not explore
an adaptive size moving window. It is also worth noting that we did not investigate an
adaptive bandwidth size for the Mean Shift algorithm, which avoids parameter selection
problems due to different crown widths [63]. The similar canopy size of plantation trees
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and clear spacing between crowns in the leaf-off season made it easy to select different
bandwidths in each sample plot in our study.

Although we developed this ITS framework based on point clouds during both leaf-
on and leaf-off seasons, it is also promising to apply this framework to LiDAR data in
a single time phase with high density and connectivity of tree trunk point clouds. With
the development of UAV-LiDAR systems, several high-frequency LiDAR sensors have
tremendous capacity to detect tree trunks in deciduous forests during the leaf-on season [44].
There are many algorithms for forest tree trunk extraction [64,65], which suggest a new
direction for trunk-based seed points extraction in our research.

4.2. ITS Methods with or without Seed Points

Among all seven ITS methods we explored, the results of PTrees have the lowest
accuracy (Table 5), which appears to be due them relying on the kNN algorithm which is
sensitive to point cloud density [58]. Due to the unified point cloud density of all sample
plots calculated using a thinning algorithm, the parameters of the PTrees method are
difficult to set, resulting in poor ITS performance. We found a large difference among the
four direct ITS and three seed points based ITS methods in sample plot Y12-2 (Figure 9).
We attribute this to the accuracy of direct ITS methods clearly decreasing in dense forests or
forest plantations with similar tree heights (the planting spacing of the sample plot Y12-2
is small; Table 1). However, in this situation, the accuracy of the three seed points based
ITS methods remains stable (Figure 9). The low accuracy of the four direct ITS methods
in the sample plot Y12-2 may also be due to small trees (low poplars with small crowns)
beside larger individuals causing omission errors. It is worth noting that although Y12-1
also has the same low planting spacing, its segmentation is relatively high as the number of
surviving trees in this plot is small (Table 1).

The spatial resolution of CHM and the degree of CHM smoothing affect seed point
extraction and ITS results [66]. CHM with higher spatial resolution tends to have better
results [66], which is an advantage with UAV-LiDAR data because of its significantly higher
point density compared to airborne LiDAR. The re-screening process has little effect on
results because the difference in the number of trees between the two seasons is small
(Table 1). In addition, re-screening is not needed when applying this ITDS framework on
the UAV-LiDAR data from a single time phase or among seasons without new plantations
or harvested trees.

In addition to error sources from seed point selection point clouds during the leaf-off
season with the seed points based ITS methods, the errors in the Seeds + Kmeans method
also arose from iterating the central points. The purpose of the iterative process is to better
identify cluster centers, but the center points of some small individual trees in the sample
plot could move it to the wrong position (Figure 11b). For the Seeds + Dalpnote2016
method, two main error sources exist. First, the treetops of Mean Shift clusters during the
leaf-off season are sometimes extracted in the wrong position (i.e., errors from the ITD
process under leaf-off position), because of the branches from neighboring trees (Figure 11c).
Second, the process of CHM interpolation can also incur errors, and treetop positions can
differ between the leaf-on and leaf-off seasons (Figure 11c). The greatest problem for the
Seeds + Silva2016 method is segmentation of crown edges (Figure 7a). This is because it is
based on the Voronoi polygon that depends solely on Euclidean distance [60]. These errors
for the three seed points based ITS methods were highly reduced in the refining process, but
could not be totally eliminated for individual trees with high point cloud connectivity [66].
If the crowns of two neighboring trees overlap substantially, the refining process has limited
effectiveness. However, we were unable to test the application of our methods in forests
with more complex vertical structures in this study, as it may be difficult to accurately
segment individual trees that grow under a dense forest canopy. The extraction of these
parameters typically requires more advanced techniques [48].
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Figure 11. Errors for the seed points based ITS methods in the sample plot Y16-2. (a) The positions of
the center seeds, top seeds and the RTK references of tree locations. (b) Errors for the Seeds + Kmeans
method. The red rectangle is the segmentation error caused by iterative center seed points. (c) Errors
for the Seeds + Dalpnote2016 method. The red rectangle is the segmentation error caused by wrong
top seed points.

For the evaluation parameters result of the process of refining, it is noticeable that these
two parameters tend to have a bigger value in Y11 plot (Figure 10), which may be due to the
highest planting spacing in this plantation (Table 1). Because the larger space between trees
reduces the overlapping canopy, the extracted horizontal projection area is increased. It
also increases the likelihood that the point cloud will detect the tree trunk below the canopy,
thus increasing the vertical range. The parameter eps in DBSCAN has some impact on the
final results of ITS during the refining process. This parameter was not set to a fixed value
for all data due to variation in point cloud density among sample plots. Our method iterates
different eps values to improve the capacity of the refining process (Figure 12). The size
and interval of eps among iterations could be adjusted, although the preset eps values (0.4,
0.55, 0.7) can essentially meet the refining process in all plots. In addition, the coefficient
of Ni and Ai for the core cluster of initial individual tree points selection (Equation (1))
were derived by trial and error. Specifically, after conducting multiple experiments with
coefficients ranging from 0.2 to 0.8, we selected a value of 0.3 based on a comprehensive
visual analysis of the sampling sites. This selected coefficient was then uniformly applied
to all point cloud data. In theory, it is possible to adjust this parameter individually for each
site based on the initial segmentation outcomes. However, it is generally recommended
to choose smaller coefficients, as larger ones may lead to under-segmentation errors by
reducing the detection rate of the initial tree. In the process of relabeling point clouds for
non-core clustering, it was observed that when the value of k is small (less than 10), the
value of k seems to have little effect on the resulting classification results; but when k is
taken too large, it will increase the possibility of misclassification. Therefore, in this study,
the default value of k has been selected as 5 for the sake of consistency and practicality;
more details of k value selection can be found in Supplementary Materials A.

The whole processing time of the ITS methods based on 3D point clouds is significantly
higher than that based on CHM raster or point clouds in 2D plane (Table 6). Indeed,
the processing time of ITS methods based on 3D point clouds increases along with the
increasing of point cloud density because they are more sensitive to point cloud density.
Therefore, the commonly used ITS methods based on 3D point clouds from airborne
LiDAR need to be adjusted when applied to UAV-LiDAR point clouds with much higher
density. Voxelization, or down-sampling of 3D point clouds, is one approach to reduce the
processing time in this situation [43]. The proposed ITDS framework we used suggests that
the seed points based ITS methods significantly reduced the processing time of the direct
ITS methods based on 3D point clouds (Table 6). This improves our ability to apply the
method on point clouds with high density or large regions in future studies.
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Figure 12. The refining process (iterative classification). The horizontal projection (a) and the vertical
profile (b) of the core trees (purple and yellow) and the neighbor points (black) with the eps setting
of 0.4. (c) The reclassification results using the iterative classification process. (d) A new iteration
with the eps set to 0.55.

Table 6. The descriptive statistics of the processing time of all the sample plots for the four direct ITS
methods and the three seed points based ITS methods.

Methods Median Time (s) Maximum Time (s) Minimum Time (s) Mean Time(s)

Dalponte2016 0.47 5.66 0.23 0.88
Li2012 28.17 1070.41 5.59 196.88
PTrees 17.00 354.90 12.18 56.15

LayerStacking 38.38 1008.69 20.26 143.37
Seeds + Kmeans 3.88 10.81 3.28 3.97

Seeds + Dalponte2016 4.37 11.17 2.04 4.41
Seeds + Silva2016 4.00 10.87 1.98 4.06

5. Conclusions

In conclusion, in this study we developed a new ITDS strategy to effectively use UAV-
LiDAR point clouds in dense deciduous broadleaved forests. Seed points were extracted
by the Mean Shift method based on the leaf-off season point clouds, obtaining an initial ITS
result based on those points and the Voronoi polygon (Silva2016) from the leaf-on point
clouds. The initial ITS results were then re-segmented to improve accuracy by a DBSCAN
and kNN classification refining process. We find it promising that this method can be
applied to single-phase point clouds (i.e., if the data capture enough trunk points) with
improvements in UAV-LiDAR surveys—the higher density and higher echo point clouds
may better describe forest trunk points. Our detailed conclusions are as follows: (1) the
two point-cloud-based ITD methods (the Local Minimum (r = 0.99, p = 0.99, F = 0.99) and
Mean Shift methods (r = 0.99, p = 0.99, F = 0.99)) perform better for seed selection and ITD
from the LiDAR data during the leaf-off season than the CHM-based ITD method (Local
Maximum (r = 0.92, p = 0.94, F = 0.93). (2) The Mean Shift method performs slightly better in
different sample plots, because the position of seed points is closer to the reference location
of trees. (3) Compared to the four direct ITS methods (Dalponte2016: F = 0.91, Li2012:
F = 0.91, PTrees: F = 0.88, LayerStacking: F = 0.90), the three seed points (obtained from ITD
results using the Mean Shift method on the UAV-LiDAR data of the leaf-off season) based
ITS methods (Seeds + Kmeans: F = 0.98, Seeds + Dalponte2016: F = 0.98, Seeds + Silva2016:
F = 0.99) have significantly greater capacity for ITS from UAV-LiDAR data in leaf-on
seasons. (4) The Seeds + Silva2016 method achieves the highest overall accuracy because
its segmentation results are more stable based on seed points and better in plantations
with uniform crown sizes. (5) The refining process of DBSCAN and kNN classification
algorithms significantly mitigates edge errors and improves the ITS accuracy. (6) The ITDS
framework proposed in this study has an operation time advantage (median processing
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time of the three seed points based ITS methods are all less than 5 s), which enhances
its capacity to be applied on larger regions or more complex forests using high-density
UAV-LiDAR point clouds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15061619/s1, Supplementary Materials A: The explanation of k
value selection for KNN; python script; R script.
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