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Abstract: The advent of hyperspectral cameras has popularized the study of hyperspectral video
trackers. Although hyperspectral images can better distinguish the targets compared to their RGB
counterparts, the occlusion and rotation of the target affect the effectiveness of the target. For instance,
occlusion obscures the target, reducing the tracking accuracy and even causing tracking failure.
In this regard, this paper proposes a novel hyperspectral video tracker where the double Siamese
network (D-Siam) forms the basis of the framework. Moreover, AlexNet serves as the backbone of
D-Siam. The current study also adopts a novel spectral–deviation-based dimensionality reduction
approach on the learned features to match the input requirements of the AlexNet. It should be noted
that the proposed dimensionality reduction method increases the distinction between the target and
background. The two response maps, namely the initial response map and the adjacent response
map, obtained using the D-Siam network, were fused using an adaptive weight estimation strategy.
Finally, a confidence judgment module is proposed to regulate the update for the whole framework.
A comparative analysis of the proposed approach with state-of-the-art trackers and an extensive
ablation study were conducted on a publicly available benchmark hyperspectral dataset. The results
show that the proposed tracker outperforms the existing state-of-the-art approaches against most of
the challenges.

Keywords: hyperspectral video tracker; double Siamese network; spectral deviation reduction;
adaptive weights; confidence judgment module

1. Introduction

Recently, machine learning-based target tracking [1,2] has become an important fron-
tier in the field of computer vision, with applications in different fields [3,4], such as
autonomous driving, aerospace, robotic navigation, and sports broadcasting. Most of
the target tracking algorithms use the characteristics of the target, in the initial frames
of a sequence, to predict the position of the target in the subsequent frames. However,
various factors, including illumination variance, environmental changes, occlusion, etc.,
may alter the appearance of the target between the subsequent frames, causing tracking
failure. Hence, it is important to design an appropriate target tracking model to adapt
to the complex and changing environments to achieve tracking robustness. Recently, the
development of hyperspectral imaging equipment with a high frame rate has popularized
the hyperspectral videos (HSVs) for effective target tracking. In comparison to the RGB
images [5], the hyperspectral images (HSIs) [6–8] pose the spatial and spectral information
to improve the descriptive dimension of the target. The similar colored targets and back-
grounds, which are indistinguishable in the RGB images, can be distinguished in the HSIs.
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This is because the HSIs use the spectral reflectance of the targets and backgrounds over
tens to thousands of wavebands.

In comparison to RGB image-based trackers, hyperspectral video-based trackers not
only use the features of the target in the spatial direction but also in the spectral direction. In
the design of trackers, hyperspectral video-based trackers give more emphasis on making
full use of spectral information. Xiong et al. [9] proposed a material-based HSV tracking
algorithm that uses the material features and spherical coordinate system to combine the
two-dimensional spatial [10] and one-dimensional spectral histogram of oriented gradients
(HOG). However, in such approaches, it is difficult to ensure tracking robustness due to
the limitations of the material library. Zhao et al. [11] fused the features, extracted using
the residual network (ResNet) [12] and three-dimensional linear spatial scale theory [13],
to robustly track the target. However, this method requires too many parameters and is
highly complex, resulting in the drifting of the target. Although Chen et al. [14] combined
different spectral filters for spatial-spectral feature extraction, the approach did not consider
the interference of the target analogs during tracking. Liu et al. [15] used two independent
branches to extract spatial features and spectral features, respectively, which solved the
problem of small-sample learning. Later, Liu et al. [16] introduced a spatial–spectral
cross-attention module to fuse the spatial and spectral features extracted from a RGB-based
tracker. However, these algorithms required a change in the number of network channels
and the retraining of the network.

In this research, to overcome the above-discussed problems, we adopt a fully-convolutional
Siamese network (SiamFC) [17] as the basic framework, and propose a hyperspectral video
tracker based on spectral deviation reduction and double Siamese network (SD-HVT). The
proposed tracker framework constitutes of four modules, namely dimensionality reduction,
feature extraction, matching, and the regression modules. The dimensionality reduction
module transforms the original HSIs to single-channel images, which are then fed to the fea-
ture extraction network. This research proposes a novel dimensionality reduction method
that adopts spectral deviation (DRSD) to effectively resolve the illumination variations and
to improve the background/target discrimination in the transformed space. The feature
extraction module obtains the characteristic features to distinguish the target from the back-
ground. This research proposes a novel double Siamese network (D-Siam) that generates
an adjacent template based on the original. Finally, the matching module is used to locate
the target, and the regression module could adapt to the scale variations of the target. It
should be noted that adaptive weights are employed in the matching module to fuse the
two representations yielded by the D-Siam to precisely locate the target. The regression
module adopts the traditional multiscale computation. To evaluate the performance of the
proposed SD-HVT, a series of real HSVs, discussed in [9], are used.

The four key contributions of the paper are summarized as follows:

1. A novel dimensionality reduction method, named DRSD, is proposed for HSIs. The
maximum and minimum spectral curves of the target in the first frame are used to
screen the spectral curves of the search area, and the spectral deviation between them
is used to reduce the spectral dimension. This method can enhance the tracked target
in advance and suppress the background. Compared with the traditional methods,
the proposed method can enhance the tracked target in advance and suppress the
background, which is helpful to the subsequent feature extraction.

2. A novel framework, named D-Siam, is designed to use the initial and adjacent frames
to accurately locate the target. In comparison to the original SiamFC, D-Siam has
higher accuracy and can better adapt to the changes in the appearance of the target
in motion. The D-Siam separates the template update process from the original
template, thereby reducing template contamination as compared to the traditional
linear update methods.

3. A new weighted fusion method is proposed for dual response map fusion, which au-
tomatically corrects the weights according to the changes of the target in the sequence.
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Hence, the approach provides better robustness for target tracking as compared to the
existing state-of-the-art approaches.

4. In order to judge whether the tracked results are reliable, a confidence judgment mod-
ule is set to effectively reduce the impact of excessive changes on subsequent tracking.

The remaining portions of this manuscript are organized as follows. Section 2 presents
a summary of the research related to hyperspectral target tracking. In Section 3, the frame-
work and background rationale of the proposed algorithm are presented in detail. Section 4
presents the experimental results of the proposed and other benchmark approaches on the
given hyperspectral sequences. Finally, conclusions are drawn in Section 5.

2. Related Works

In this section, we briefly discuss the research related to the three key modules of the
proposed HSV-based target tracker, namely, the dimensionality reduction, target tracking,
and template update.

Dimensionality Reduction. Among the different dimensionality reduction tech-
niques, the feature extraction-based approaches compute an optimal projection matrix
to reduce the dimension. On the other hand, the band selection-based dimensionality
reduction techniques select the most representative bands from the original bands. The
feature selection methods [18,19] are prone to lose the relevant spectral information as com-
pared to the feature extraction approaches. The principal component analysis (PCA) [20,21],
the most commonly used feature extraction approach, adopts a linear projection to map
the high dimensional data into a lower dimensional space, using fewer dimensions of the
data while retaining more of the original data points. In a similar work based on PCA,
Green et al. [22] proposed the maximum noise fraction approach, which adopted cascaded
PCA transformations to consider the noisy nature of the hyperspectral spectra. In a similar
research, Xia et al. [23] proposed kernelized PCA, which employed PCA after transforming
the original nonlinear data to a linear higher dimensional space. Unlike the PCA-based ap-
proaches, Villa et al. [24] proposed the independent component analysis for hyperspectral
image analysis, which transformed the data into separate components and employed fewer
components to describe the data. Although the above-discussed approaches transform
the data based on the data distribution, they ignore the class labels of the data. In this
regard, linear discriminant analysis (LDA) [25] was proposed to transform the data points
into a latent space where the different classes are distinguishable. Similarly, locally linear
embedding (LLE) [26] is a non-linear dimensionality reduction algorithm that preserves
the original stream structure. The Laplacian Eigenmap (LE) [27] is similar to the LLE algo-
rithm, due to the reason that the relationships between data are constructed from a local
perspective. Although Nielsen et al. [28] proposed the maximum autocorrelation factor for
feature extraction, the approach yielded poor performance for the hyperspectral data. In
order to improve the accuracy of hyperspectral data classification, Li et al. [29] proposed a
sparse penalty regularised linear discriminant method for dimensionality reduction, which
yielded good classification results on benchmark hyperspectral data sets. Huang et al. [30]
proposed a spatial–spectral popular reconstruction to preserve embedding. The unsu-
pervised dimensionality reduction method for classifying hyperspectral images is able to
reduce the effect of noise and reconstruct the weights. However, the algorithm is complex
and takes a long time to compute. Hong et al. [31] proposed a joint asymptotic subspace
analysis that could maintain a similar topology between the compressed and original data.
This method is used in the treatment of spectral variability.

Target Tracking. The tracking algorithm, proposed in the current study, is related to
mainly two classes of tracking algorithms, namely the correlation filtering-based [1,2,32–35]
and Siamese network-based trackers [17,36–39]. Among the correlation filtering-based
trackers, Bolme et al. [1] employed the sum of the minimum output squared error (MOSSE)
filter, which used raw gray-scale features. However, the approach did not take into account
the variations in the target scale and frequently lost the target in adverse conditions. In
order to overcome the limitations of the gray-scale features, Henriques et al. [2] proposed
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kernelized correlation filters (KCFs), which used HOG features [10] to replace the gray-scale
features. This type of algorithm relied on a circular matrix and did not give satisfactory re-
sults for multi-scale target tracking. Danelljan et al. [40] proposed the spatial regularization
discriminant correlation filter (SRDCF), which used a large detection region, in addition to
employing the filter coefficients for null regularization and penalizing the boundary regions.
However, this approach resulted in increased computational complexity and lowered the
processing speed. In this direction, Bertinetto et al. [41] used two complementary features,
the HOG and color features, for modeling the target. The tracking results are then fused to
improve the tracking performance. Li et al. [42] proposed a spatiotemporal Regularised
Correlation Filter, which can adapt well to large changes in the appearance of the target.
Nowadays, with the advent of deep learning, deep features are being widely used instead
of hand-crafted features. In this regard, Song et al. [43] employed deep features, derived
from ResNet, for target tracking to achieve better robustness as compared to the use of
conventional hand-crafted features.

Unlike the deep neural networks used in the correlation filtering-based trackers,
Siamese networks realize end-to-end trainability for the first time. Bertinetto et al. [17]
proposed SiamFC, an end-to-end tracking network, which used two fully convolutional
concatenated networks for target tracking, with both networks sharing the same weights.
Similarly, Bo et al. [36] proposed the Siamese region proposal network (SiamRPN) that did
not perform similarity calculations but selected the final target based on regression bias
and classification scores. The class imbalance problem in the training samples generally
limits the performance of the tracking algorithms. In order to solve the problem that only
relatively shallow convolutional networks can be used for conjoined network-based track-
ers, the SiamRPN++ network [39] adopted a position-balancing sampling to alleviate the
position bias problem during training. The network framework, proposed in our current
study, uses both initial and adjacent frames to fully localize the target, which offers higher
accuracy and better adaptation to the changes in the targets in motion. Wang et al. [44]
first used the transformer model for target tracking. The authors constructed two branches
of the transformer encoder and transformer decoder to create high-quality target track-
ing templates by using the attention-based features and efficient contextual information
utilization of the transformer model. In order to obtain more contextual information for
images, Lin et al. [45] used the structure of convolutional neural networks to improve
the traditional transformer model by using shifted windows to better match the image
information.

Moreover, to adapt to the changes in the size of the target during the tracking process,
the scale estimation module also plays an important role. Li et al. [46] proposed the fusion
of color names [47] and fast histograms of oriented gradient [48] features using a scale
adaptive multiple feature algorithm. The approach employed a pool of scale factors to
sample multiple image blocks of different scales. In this direction, Danelljan et al. [32]
proposed discriminative scale space tracking (DSST), which used a scale estimation module
along with the KCF to achieve scale adaptation. Inspired by the module independence,
the region proposal network (RPN) [36,39] was used as a scale estimation module for the
existing tracking frameworks. In addition, the refinement module [49,50] was also utilized
to replace the RPN in recent years to achieve better results.

Template update. Template update is also a key issue in the tracking algorithms. The
simple linear update [2,51] is the generally adopted update method. However, the existing
update methods are unreliable when the appearance of the target changes. To resolve this
problem, Danelljan et al. [52] focused more on the recent frames rather than on the historical
frames. Danelljan et al. [53] divided the training samples into different subsets where each
of these subsets represented a distinct appearance. In recent years, researchers [54–56] have
employed online learning strategies to update the template. However, these methods failed
to effectively model the target when the shape of the target drastically changes. Therefore,
we use two templates to achieve the tracking task, namely initial template and adjacent
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templates. The initial template is not updated to ensure tracking accuracy, and the adjacent
template is fully updated to adapt to the changes in the appearance of the target.

3. Proposed Algorithm

This section discusses the details of the proposed algorithm. The overall framework of
the proposed algorithm is presented in Figure 1.
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Figure 1. The overall framework of the proposed algorithm.

In the proposed framework, the ground truth is first used to extract two spectral
curves, namely the maximum spectral curve (MASC) and the minimum spectral curve
(MISC). Both of these two curves are used to judge the possible range of the target spectral
curve, considering the influence of the light. Then, the dimensionality of the original
HSIs is reduced by computing the deviation between the target spectral curve and the
spectral range from MISC to MASC. Subsequently, the D-Siam framework is employed
to simultaneously compute the similarities of the search region with template 1 and the
adjacent template. These two results, namely the initial response map and the adjacent
response map, are obtained through feature extraction network and pixel-wise correlation.
Further, an adaptive-weight-based fusion is utilized to fuse these two response maps
to obtain the fused response map. Finally, the target scale is estimated by comparing
several fused response maps generated by different scale search regions. In addition,
confidence calculation module obtains the confidence of the predicted target, which is used
to decide whether to update the adjacent template in the threshold judgment module. In
Section 3.1, the proposed spectral deviation-based dimensionality reduction method is
introduced in detail. The SiamFC framework, adopted as a base framework in this study, is
briefly discussed in Section 3.2. In Section 3.3, the proposed D-Siam framework and the
target prediction approach are discussed, including weighted fusion and scale estimation.
Moreover, then, the threshold judgment method is discussed in Section 3.4. Finally, the
pseudocode of the proposed algorithm is given in Section 3.5.

3.1. Dimensionality Reduction Based on Spectral Deviation

To simplify the processing flow of the subsequent D-Siam module, we propose a
dimensionality reduction method based on the spectral deviation to reduce the input
dimensions and improve the separability between the target and background.
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Initially, two spectral curves are extracted from the local area in the ground truth of
the first frame, namely MASC and MISC. The ground truth is regarded as the real location
of the target, which is provided along with the tracking sequences. However, due to the
irregular nature of the target and the fact that the ground truth is a regular rectangle box,
there can be some background pixels in the ground truth. Therefore, the local area, a small
square area with size h× h at the center of ground truth, is used to represent the target
pixels. It may be noted that a large-sized local area may include the background pixels,
while a small-sized one will cause errors. Empirically, h is set to 3, hence, L ∈ R3×3×B

represents the local area of the target at the first frame, where B is the number of bands and
is 16 for the dataset [9] in the current study.

The spectral curves of all pixel points in L are counted, and the MASC and MISC are
obtained by counting the maximum and minimum values in each band. The ground truth
and these two spectral curves are shown in Figure 2.
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Figure 2. The pretreatment of the proposed dimensionality reduction method. (a) The given ground
truth of the first frame. (b) The extracted maximum spectral curve and minimum spectral curve from
the local region in the ground truth.

In order to minimize the effect of illumination variations on the dimensionality reduc-
tion and subsequent target tracking, the original hyperspectral image Iin ∈ RHin×Win×B is
de-averaged as:

Ci =
{

Cb
i | Cb

i = Iin
ib −mean(Iin

i )
}

i∈{1,...,Hin×Win},b∈{1,...,B}
(1)

where Ci is the de-averaged spectral curve of the i-th pixel, Cb
i represents the value in b-th

band of Ci and Iin
ib is the value of i-th pixel in b-th band of Iin; Hin and Win are the height

and width of the original hyperspectral image, respectively. mean(·) represents the average
function, which is calculated as

mean
(

Iin
i

)
=

1
B
×

B

∑
b=1

Iin
ib (2)

After obtaining the spectral curve of each pixel Ci, the spectral deviation of Ci and
the spectral range bound by MASC and MISC are calculated. This is used to estimate the
difference between Ci and the spectral curve of the target. The spectral deviation of each
band is computed as

Db
i =

(Cb
i − Cb

max)× (Cb
i − Cb

min)

(Cb
max + Cb

min)
2

(3)

where Db
i represents the spectral deviation value of the i-th pixel in the b-th band, Cb

i is the
b-th band of Ci, and Cb

max. Moreover, Cb
min represent the pixel values of MASC and MISC in

the b-th band, respectively.
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However, in practice, a deviation value Db
i of zero means there is no difference between

Ci and the spectral curve of the target in the b-th band, while a negative deviation value
also means the same. Therefore, Db

i is quantified as Qb
i .

Qb
i =

{
0 if Db

i ≤ 0
Db

i otherwise
(4)

where Qb
i is the quantitative deviation of Db

i . All negative values are set to 0, and the total
deviation of each pixel Qi can be obtained by summing Qb

i in spectral direction as:

Qi =
B

∑
b=1

Qb
i (5)

The dimensionality reduction is performed based on the total deviation degree of each
pixel as:

Ir =

{
Ir
i | Ir

i =

{
0 if Qi > T
1− Qi

T otherwise

}
(6)

where Ir denotes the result of the dimensionality reduction, Ir
i is the i-th pixel of Ir, and

T is the segmentation threshold. The larger the value of T, the wider the deviation range
contained in Ir, and the less obvious the target. Empirically, the value of T is set to half of
Qmax, and Qmax is the maximum value among all Qi.

It should be noted that the range of the values of Ir is from 0 to 1. However, to meet
the requirement of the subsequent D-Siam network, the values of Ir are mapped to a range
from 0 to 255 as:

I f = round(Ir ∗ 255) (7)

where round(·) denotes the rounding operation, and I f is the dimensionality reduced
image after mapping. One of the original hyperspectral images and the corresponding
dimensionality reduction results are shown in Figure 3.

(a) (b) (c)

Figure 3. The result of the proposed dimensionality reduction method. (a) The original hyperspectral
image in the dataset. (b) The dimensionality reduction result of (a) using DRSD. (c) The dimensionality
reduction result of (a) using PCA.

It can be seen from Figure 3 that the image data volume of the dimensionality reduction
result becomes one-sixteenth of the original hyperspectral image in this experiment. As a
result, the data involved in the calculation has been reduced to one-sixteenth of the original
amount, leading to a corresponding reduction in computational cost. Moreover, compared
with the result of PCA, the result of the proposed DRSD method can better suppress the
background and highlight the target.

3.2. Fully Convolutional Siamese Network

Fully convolutional Siamese network (SiamFC) consists of two sub-networks with the
same structure. The inputs to the Siamese network, considered in this study, are two images,
one is the template while the other is the search region. The template and the search region
are selected from the first and the subsequent frames of the sequence, respectively. Each
sub-network processes an image and uses the forward passes independently to generate
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the feature maps of the template and the search region. Subsequently, the cross-correlation
computation is performed using the similarity measurement function on the two feature
maps to yield a score map. Finally, the upsampling operation is performed on the score map
to transform it to the response map. The point with the highest value in the response map
is considered to be the center point of the object to be tracked in the subsequent frames. The
overall framework of the SiamFC is shown in Figure 4. Although SiamFC has a significant
improvement in real-time performance and accuracy, as Compared to the previous trackers,
it is still limited in its ability to handle significant changes in the appearance of the target
being tracked.

Score 

Map

Search Region

127×127×3

255×255×3

22×22×128

Search Region Feature

6×6×128

Template Feature

17×17×1

Response Map

272×272×1

Upsample

Correlation

Template

Feature Extraction Network

Feature Extraction Network

Figure 4. The overall framework of SiamFC.

3.3. Double-Siamese Network

The proposed D-Siam framework can be considered an improved version of the
SiamFC framework. On the basis of the comparison with the initial template, an additional
comparison with the adjacent template is also implemented. Therefore, unlike SiamFC,
the input of D-Siam is a group of three images, namely the template 1 z1 ∈ R127×127×3, the
adjacent template za ∈ R127×127×3 and the search region x ∈ R255×255×3. All three images
are, respectively, obtained from frame 1 I1 ∈ RHin×Win×B, the frame t It ∈ RHin×Win×B, and
the adjacent frame Ia ∈ RHin×Win×B. These three images are dimensionality reduced using
Equations (1)–(7), discussed in Section 3.1, to obtain the reduction result 1 E1 ∈ RHin×Win×1,
the reduction result t Et ∈ RHin×Win×1 and the adjacent reduction result Ea ∈ RHin×Win×1,
respectively. As the dimensionality-reduced images are single-channel images with the
same size, they are cropped to the specific size and are replicated three times to form
the three-channel images. Similar to SiamFC, AlexNet is also used as the backbone of
D-Siam, and the network weights are shared in all three networks. It should be noted that
the processing using AlexNet yields two response maps. One is the initial response map
Ri ∈ R272×272×1, which is obtained by calculating the latent space similarity between the
initial template and the search region. Another response map, named the adjacent response
map Ra ∈ R272×272×1, is also obtained using similar calculations between the adjacent
template and the search region. A group of the initial response map and the adjacent
response maps generated in the current experiments are shown in Figure 5.

As is evident from Figure 5, the peak area of the adjacent response map is more
concentrated than that of the initial response map. This is because the search region is
more similar to the adjacent template as compared to the initial template. However, the
initial template is also important to prevent tracking drift. Therefore, to obtain a more
robust tracking result, two response maps are fused with adaptive weights. As mentioned
in [35], the peak side lobe ratio (PSLR) of the response map is usually used to evaluate the
confidence of the final response map. However, considering the characteristic differences
between the two templates, the PSLR of each response map is further modified as:

ωi = Fp(Ri)×
t

2(t− 1)
(8)
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ωa = Fp(Ra)× Fc(ta) (9)

where ωi and ωa are the weights of Ri and Ra, respectively. Moreover, t is the frame index,
and the constant 2 in Equation (8) is used to limit the range of t

2(t−1) to less than 1. The Fc(·)
is the confidence calculation function, which will be introduced in Section 3.4. Moreover,
ta denotes the frame index of the adjacent frame, and it should be noted that ta is smaller
than t. Therefore, Fc(ta) is a value calculated in advance. However, for special cases, ωa is
set to be the same as ωi for the first frame to be tracked. In addition, Fp(·) is the function
for computing PSLR and is given as:

Fp(x) =
υmax

x − υmean
x

σx
(10)

where υmax
x is the maximum value of x, υmean

x denotes the average value of x, and σx is the
standard deviation of x.

(a) (b)

Figure 5. A group of the initial response map and the adjacent response map in the experiments.
(a) The initial response map. (b) The adjacent response map.

Additionally, to limit the range of the fused response map, ωi and ωa are normalized
to ω1 and ω2. Finally, the fused response map is calculated using ω1 and ω2, and the fused
result of the two response maps is shown in Figure 6.

R f = ω1 × Ri + ω2 × Ra (11)

ω1 =
ωi

ωi + ωa
(12)

ω2 =
ωa

ωi + ωa
(13)

where R f denotes the fused response map, and ω1 and ω2 are the normalized weights.
It can be seen from Figure 6 that the fused response map is more similar to the adjacent

response map. Moreover, the fused response map has a more small peak area compared
with the other two maps, which leads to a higher PSLR and a more robust judgment for
the location. After obtaining the fused response map, the centroid of the bounding box is
estimated to be the location having the maximum value in the fused response map. As for
the scale estimation, the conventional multi-scale selection method is utilized.
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Figure 6. The fused response map.

3.4. Model Update

As discussed in Section 3.3, the fused response map is more similar to the adjacent
response map. Therefore, a reasonable update strategy of the adjacent frame is the key
to the proposed algorithm. Too frequent updates will cause the tracking drift, while too
slow updates will reduce the effect of the proposed model and will make it similar to
the traditional SiamFC. Therefore, the confidence of the fused response map is used as
a criterion to determine whether to update the adjacent frame or not. The confidence
computing function is estimated as:

Fc(t) =
max

(
Rt

f

)
vt

r
(14)

where max(·) denotes the function for finding the maximum value, Rt
f is the fused re-

sponse map at t-th frame, and vt
r is the reference value at t-th frame. Additionally, vt

r is
calculated as:

vt
r =

max
(

Rt
f

)
max

(
Rt

f

)
≥ vt−1

r

µ×max
(

Rt
f

)
+ (1− µ)× vt−1

r max
(

Rt
f

)
< vt−1

r
(15)

where µ is a coefficient. The larger the value of µ, the slower the variation of vt
r. Through

experiments, µ is set to 0.05 in our experiments.
After calculating the confidence at the t-th frame, a threshold judgment module is

adopted to decide if the adjacent frame needs to be updated or not. The computation is
given as:

Ia =

{
It Fc(t) ≥ Tu

Ia Fc(t) < Tu
(16)

where Tu is the update threshold. The smaller the value of Tu, the more frequent Ia are the
updates. After experimental analyses, Tu is set to 0.7 in our experiments.

3.5. Pseudo Code

In this section, the pseudocode of the proposed algorithm is given to describe the
overall logic, which is shown in Algorithm 1.
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Algorithm 1 SD-HVT
Input: I1,It
Output: R f

1: Initialize the adjacent frame Ia ← I1
2: Extract MASC and MISC in I1
3: for pixels in I1, Ia and It do
4: Calculate the quantitative spectral deviation using Equations (3)–(5)
5: Obtain E1, Ea, Et from I1, Ia, It using Equations (6) and (7)
6: Crop z1, za, x from E1, Ea, Et
7: Obtain Ri ← SiamFC(x, z1)
8: Obtain Ra ← SiamFC(x, za)
9: Calculate the weight of Ri ← Fp(Ri)× t

2(t−1)
10: Calculate the weight of Ra ← Fp(Ra)× Fc(ta)
11: Normalize ω1 ← ωi

ωi+ωa

12: Normalize ω2 ← ωa
ωi+ωa

13: Fuse the fused response map R f ← R f = ω1 × Ri + ω2 × Ra
14: Calculate the confidence Fc(t) using Equation (14)
15: if Fc(t) ≥ Tu then
16: Update Ia ← It

17: return R f

4. Results and Analysis

This Section discusses the experiments with the proposed algorithm and the analysis of
the experiment results. In Section 4.1, the details of the experimental setup and experimental
sequences are introduced. The comparison of the proposed approach with the state-of-
the-art is presented in Section 4.2. Additionally, to verify the effect of each module, the
ablation experiments are given in Section 4.3. To verify the universality of the proposed
algorithm, more experiments are implemented in Section 4.4. Finally, Section 4.5 shows the
comparisons of the computational times of all algorithms.

4.1. Experimental Setup

The proposed and the benchmark state-of-the-art algorithms are all implemented
using MATLAB R2016b on the Ubuntu 16.04 operation system. The proposed algorithm
achieved a processing speed of 1.8 frames per second on a personal computer having an
Intel i5-8500 CPU (3 GB Hz main frequency), 16 GB RAM, and a TITAN V GPU (12 GB
graphics memory). Moreover, the MatConvNet 1.0-beta25 toolkit is used to implement
AlexNet, which is the backbone network of the proposed algorithm.

For the ablation experiments and comparative analyses, discussed in the current study,
a publicly available benchmark hyperspectral video tracking dataset, IMEC16, is used. The
details of the adopted dataset are discussed in [9], and the dataset can be downloaded from
www.hsitracking.com (The used dateset was accessed on 31 October 2020). The dataset
comprises 35 groups of testing and 40 groups of training sequences. The training sequences
are used to train the AlexNet model, and the testing sequences are used to verify the
performances for both the comparative analyses and ablation experiments. It should be
noted that the hyperparameters in the training process are the same as [17]. Both the testing
and training groups contain hyperspectral and false-color sequences having pixel-to-pixel
correspondence.

The hyperspectral sequences, used in this study, are obtained from the corresponding
hyperspectral videos, captured using a snapshot VIS hyperspectral camera. This camera
captures videos across 16 evenly distributed spectral bands ranging from 470 nm to 620 nm.
Moreover, the camera has a high-speed video capturing rate of 180 frames per second
(fps). However, for comparison with the benchmark target tracking approaches, all videos,
considered in this study, are captured at 25 fps.

www.hsitracking.com
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The testing sequences are so carefully selected as to have the various challenges in
the field of target tracking, such as scale variation (SV), occlusion (OCC), background
clutter (BC), in-plane rotation (IPR), out-of-plane rotation (OPR), illumination variation
(IV), low resolution (LR), and so on. These challenges are common difficulties in the field
of target tracking and are generally used to verify the performance and robustness of the
tracking algorithms.

4.2. Comparative Experiments

In this section, the proposed algorithm is compared with the state-of-the-art bench-
mark approaches. The five existing benchmark hyperspectral target tracking algorithms
considered in this study are MHT [9], MFI-HVT [57], DeepHKCF [58], HOMG [14], and
CNHT [59]. In MHT, spectral unmixing is used to extract the spectral features based on the
standard spectral curves of several materials. This algorithm distinguishes the objects based
on their material composition. In MFI-HVT, the HOG and deep features are jointly used to
improve the robustness of the target tracking. In DeepHKCF, original HSIs are transformed
to false-color images to meet the input requirement of the VGG-19 network. In HOMG, the
value differences between pixels in HSIs are directly used to extract more reliable HOG
features. In CNHT, a predetermined target region is employed as a convolution kernel to
extract convolution features from the subsequent frames.

The qualitative performance of the proposed and the five benchmark approaches are
analyzed in Figures 7–11. The colored rectangular boxes, in the given Figures, correspond to
the tracking of the benchmark algorithms used in the experiments. It should be noted that
the white colored boxes represent the ground truth, which denotes the standard location of
the target. Therefore, the closer the tracking bounding box of an algorithm is to the white
rectangular box, the better the performance of the corresponding algorithm.

Ours DeepHKCFMHT HOMGMFI-HVT CNHT Groundtruth

Figure 7. Qualitative results on the coke sequence in comparative experiments.

Figure 7 shows the results of the proposed and benchmark tracking algorithms on the
coke sequence. The main tracking challenge of this sequence is the rotation (RO), which
constitutes IPR and OPR challenges. The tracking target is a coke can, which keeps rotating
throughout the whole sequence. As is evident from frames 388, 437, and 567, the continuous
rotation of the coke can significantly change the horizontal-to-vertical ratio (HVR) of the
target. However, the existing algorithms do not have a proper scale estimation module that
can track the target despite the changes in HVR. Hence, as is evident from the results, all
five benchmark algorithms do not give proper tracking results.

Figure 8 shows the results of the proposed and the benchmark approaches on the
fruit sequence. The main tracking challenge of this sequence is BC. The tracking target is
a hand-held fruit with many weeds around the fruit, resulting in significant background
clutter interference. As the target suffers from serious background clutter interference,
spatial features are unreliable. Among the benchmark algorithms, discussed in the current
study, CNHT uses a predetermined target region as the convolution kernel, and DeepHKCF
transforms the original HSIs into false-color images. Hence, these two methods only use
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spatial features and ignore spectral information. As a result, CNHT and DeepHKCF lose
the tracking target early at frame 197 and frame 336, respectively. However, as the other
algorithms use spectral features, they track the target well in this sequence.

Ours DeepHKCFMHT HOMGMFI-HVT CNHT Groundtruth

Figure 8. Qualitative results on the fruit sequence in comparative experiments.

Figure 9 presents the results of the proposed and the benchmark approaches on
the playground sequence. The main tracking challenge of this sequence is OCC. In this
sequence, two men are running around the playground and they block each other circularly
due to the placement of the camera. Among the approaches considered in this study, CNHT
fails to track the target in almost the whole sequence as the initial size of the convolution
kernel is too large to generate effective features. As is evident from the results, the black
rectangle box is always located in the lower left of the image which is the initial location
of the target. At frame 248, when the tracking target has been occluded by another man,
only the proposed algorithm successfully tracks the target. The better performance of the
proposed algorithm as compared to the state-of-the-art can be attributed to the usage of the
update judgment. At frame 427, when the tracking target occludes the other man again, all
of the other algorithms track the target again. However, with the continuous occurrence of
occlusion, the updated models of these algorithms become indistinguishable. As a result,
HOMG and DeepHKCF lose the target at frames 633 and 764 even if there is no occlusion.

Ours DeepHKCFMHT HOMGMFI-HVT CNHT Groundtruth

Figure 9. Qualitative results on the playground sequence in comparative experiments.

Figure 10 shows the results of the proposed and the benchmark algorithms on the
rider sequence. The main challenge of this sequence is SV. The tracking target is a rider who
rides the bike from far to near, resulting in the gradual enlargement of the target during the
whole sequence. Among the various algorithms considered in this study, MHT loses the



Remote Sens. 2023, 15, 1579 14 of 30

target at frame 157 when another rider enters the camera view. The sole dependence on the
material features affects the performance of the MHT algorithm. Similarly, the MFI-HVT
and DeepHKCF algorithms lose the targets at frames 172 and 207 as the large receptive
fields of the deep features fail to represent the small targets. Although the proposed
approach also uses deep features, the use of an adjacent template ensures the robustness of
the tracking process.

Ours DeepHKCFMHT HOMGMFI-HVT CNHT Groundtruth

Figure 10. Qualitative results on the rider sequence in comparative experiments.

Figure 11 shows the results of the proposed and the benchmark algorithms on the toy
sequence. The main challenge of this sequence is IV. From frames 165 to 208, as the light is
very low, only MHT and the proposed algorithm effectively track the target. The other four
algorithms do not consider the relationship between the bands, and the low light condition
makes it difficult to extract spatial features. Hence, at frame 237, when the light returns
to normal, these four algorithms lose the target. At frame 479, MFI-HVT and DeepHKCF
re-track the target as the target moves into their search regions.

Ours DeepHKCFMHT HOMGMFI-HVT CNHT Groundtruth

Figure 11. Qualitative results on the toy sequence in comparative experiments.

The proposed and the benchmark algorithms are quantitatively analyzed on the
benchmark datasets using the success rate and precision curves. The success rate curve
evaluates the overlap between the estimated target boxes and the ground truth. The x-axis
of this curve is the threshold from 0 to 1, and the y-axis is the percentage of the overlap
above the threshold. The precision curve evaluates the distance between the center of the
estimated target boxes and the ground truth. The x-axis of this curve is the threshold from
0 to 50, and the y-axis is the percent of the distance below the threshold. Area under curve
(AUC) is used to measure the performance of the tracking algorithms. As the ranges of the
x-axis value of these two curves are different, to eliminate the influence of the value ranges,
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the average value of y-axis is used to represent the AUC. Hence, the average y-axis value
can also be regarded as the score for evaluating performance. Figure 12 gives these two
curves of all 35 sequences. Similarly, Figures 13–17 illustrate the quantitative results on the
partial sequences with different challenges such as BC, IV, OCC, RO, and SV. Among these
figures, the performance scores are given in the legend following the tag of each of the
algorithms. Furthermore, to compare the performance of the proposed and the benchmark
algorithms more intuitively, the scores are listed in Tables 1 and 2.
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Figure 12. Quantitative results for all sequences in comparative experiments.
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Figure 13. Quantitative results for sequences with challenge BC in comparative experiments.
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Figure 14. Quantitative results for sequences with challenge IV in comparative experiments.

As shown in Figures 12–17 and Tables 1 and 2, the proposed algorithm has achieved
the best performance as compared to the other five algorithms. For the 35 groups of
sequences, the proposed algorithm achieves a 0.615 success rate and 0.859 precision, and
both these values rank first among all 6 algorithms. Moreover, in comparison with MHT,
the best existing hyperspectral video tracking algorithm, the proposed algorithm yields
0.031 higher success rate and 0.014 higher precision. As for the partial sequences with the
given challenges, the success rate of the proposed algorithm ranks first in BC, IV, OCC,
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and RO. Additionally, the precision of the proposed algorithm ranks first in BC, IV, OCC,
and SV. However, due to the different tracking difficulties caused by different challenges,
the relative value is better than the absolute value to measure the performance of tracking
algorithms when facing certain challenges. In this regard, the proposed algorithm has
the better ability against BC challenge, especially 0.156 success rate and 0.022 precision
higher than the second-highest score. This is because the D-Siam model used in the
proposed algorithm can effectively reduce the influence of the background. However, when
against RO challenge, the performance of the proposed algorithm is 0.006 lower than the
highest score.
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Figure 15. Quantitative results for sequences with challenge OCC in comparative experiments.
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Figure 16. Quantitative results for sequences with challenge RO in comparative experiments.
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Figure 17. Quantitative results for sequences with challenge SV in comparative experiments.
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Table 1. The details of success rate results in comparative experiments. The suffixes mean that the
measurements are only counted in the sequences with the corresponding challenges. The best and
the second-best results are marked in red and blue, respectively.

Methods Suc Suc_BC Suc_IV Suc_OCC Suc_RO Suc_SV

Ours 0.615 0.702 0.718 0.636 0.643 0.649
MHT 0.584 0.48 0.679 0.603 0.63 0.691

MFI-HVT 0.579 0.546 0.657 0.544 0.624 0.605
DeepHKCF 0.386 0.359 0.548 0.285 0.454 0.326

HOMG 0.571 0.518 0.6 0.596 0.637 0.597
CNHT 0.158 0.1 0.289 0.0753 0.224 0.0855

Table 2. The details of precision results in comparative experiments. The suffixes mean that the
measurements are only counted in the sequences with the corresponding challenges. The best and
the second-best results are marked in red and blue, respectively.

Methods Pre Pre_BC Pre_IV Pre_OCC Pre_RO Pre_SV

Ours 0.859 0.936 0.917 0.863 0.906 0.932
MHT 0.845 0.914 0.914 0.851 0.908 0.922

MFI-HVT 0.824 0.829 0.852 0.766 0.88 0.857
DeepHKCF 0.676 0.757 0.734 0.531 0.776 0.849

HOMG 0.809 0.835 0.811 0.801 0.912 0.798
CNHT 0.346 0.393 0.542 0.216 0.461 0.273

4.3. Ablation Experiments

This section discusses the ablation experiments to verify the effect of different modules
of the proposed algorithm. It should be noted that four different incomplete algorithms,
namely, Orimodel, Nojudgment, FalseColor, and Siam, are used for the ablation analyses.
These algorithms lack certain modules to illustrate the significance of those modules.
Among these, the Nojudgment algorithm updates the adjacent template for every frame,
while the FalseColor algorithm uses the false-color sequences instead of the dimensionality-
reduced sequences. The Siam algorithm uses the traditional SiamFC framework, which
is the baseline of the proposed algorithm. Finally, the Orimodel utilizes the original
network weights given by [17]. Hence, the Nojudgment, FalseColor, and Siam modules
are, respectively, used to verify the effects of the threshold judgment module, dimensional
reduction module, and D-Siam model. Additionally, the Orimodel is employed to verify
the effect of the training sequences mentioned in Section 4.1.

Although the ablation experiments are implemented on all 35 groups of the sequences,
only results for certain sequences are presented in this manuscript. Moreover, in order to
facilitate proper visualization, the effects of different ablation analyses on the same five
sequences in Section 4.2 are presented. The qualitative results of ablation experiments are
illustrated in Figures 18–22.

As shown in Figure 18, all of the algorithms discussed in this section are not able
to adapt the HVR. However, except for HVR adaptation and scale estimation, all of the
algorithms yield satisfactory target localization. Similar observations can also be inferred
from Figures 19 and 22. Moreover, in the frames from 165 to 208, not shown in Figure 22,
the FalseColor algorithm loses the target due to sole reliance on the spatial information.
Hence, when the light is too low to distinguish the spatial information, the rectangle box
of the FalseColor algorithm will be stuck until the light returns to normal. As is evident
from Figure 20, the Nojudgment and Siam algorithms lose the target at frame 248. This
loss of target can be attributed to the inability in resolving the OCC challenge as both these
algorithms update the templates at every frame. At frame 567, the FalseColor algorithm
loses the target as the spatial information is not sufficient to distinguish the target and
the background. Hence, False-color algorithm has a high probability of tracking failure
and is reflected in frame 567. In Figure 21, only Nojudgment and the proposed algorithm
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successfully track the target during the whole sequence. As the target does not change
significantly during the sequence, the threshold judgment module has no significant role.
It should be noted that the other three algorithms lose the target at frame 157 due to the
incompleteness of the framework.

Ours FalseColorOrimodelSiam GroundtruthNojugdment

Figure 18. Qualitative results on the coke sequence in ablation experiments.

Ours FalseColorOrimodelSiam GroundtruthNojugdment

Figure 19. Qualitative results on the fruit sequence in ablation experiments.

Ours FalseColorOrimodelSiam GroundtruthNojugdment

Figure 20. Qualitative results on the playground sequence in ablation experiments.
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Ours FalseColorOrimodelSiam GroundtruthNojugdment

Figure 21. Qualitative results on the rider sequence in ablation experiments.

Ours FalseColorOrimodelSiam GroundtruthNojugdment

Figure 22. Qualitative results on the toy sequence in ablation experiments.

Similar to Section 4.2, the effect of the different modules, discussed in this study,
are quantitatively analyzed in all 35 groups of sequences. Additionally, the quantitative
analyses of the different challenges are also illustrated to show the effect of each module.
If the algorithm lacking a particular module performs poorly in a challenge, it indicates
that the module plays a significant role against the corresponding challenge. The quanti-
tative results are presented in Figures 23–28. The quantitative scores are summarized in
Tables 3 and 4.
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Figure 23. Quantitative results for all sequences in ablation experiments.
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Figure 24. Quantitative results for sequences with challenge BC in ablation experiments.
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Figure 25. Quantitative results for sequences with challenge IV in ablation experiments.
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Figure 26. Quantitative results for sequences with challenge OCC in ablation experiments.
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Figure 27. Quantitative results for sequences with challenge RO in ablation experiments.
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Figure 28. Quantitative results for sequences with challenge SV in ablation experiments.

Table 3. The details of success rate results in ablation experiments. The suffixes mean that the
measurements are only counted in the sequences with the corresponding challenges. The best and
the second-best results are marked in red and blue, respectively.

Methods Suc Suc_BC Suc_IV Suc_OCC Suc_RO Suc_SV

Ours 0.615 0.702 0.718 0.636 0.643 0.649
Orimodel 0.574 0.531 0.712 0.601 0.598 0.593

Nojudgment 0.528 0.487 0.56 0.459 0.632 0.623
FalseColor 0.507 0.522 0.657 0.507 0.541 0.532

Siam 0.483 0.454 0.698 0.485 0.548 0.531

Table 4. The details of precision results in ablation experiments. The suffixes mean that the mea-
surements are only counted in the sequences with the corresponding challenges. The best and the
second-best results are marked in red and blue, respectively.

Methods Pre Pre_BC Pre_IV Pre_OCC Pre_RO Pre_SV

Ours 0.859 0.936 0.917 0.863 0.906 0.932
Orimodel 0.845 0.895 0.913 0.852 0.888 0.857

Nojudgment 0.75 0.722 0.763 0.695 0.909 0.816
FalseColor 0.78 0.904 0.89 0.798 0.848 0.789

Siam 0.723 0.808 0.904 0.723 0.84 0.783

As shown in Figures 23–28 and Tables 3 and 4, compared with the incomplete algo-
rithms (lacking certain modules), the proposed algorithm achieves the best scores. However,
when against the RO challenge, the proposed algorithm yields a precision score of 0.003
lesser than that of the Nojudgment algorithm. This is because the rotation may cause
significant changes in the target shape and the judgment module will wrongly block the
update of the adjacent template. Expect for the RO challenge, the proposed algorithm
ranks first against all challenges in terms of both success rate and precision. It should be
noted that the Orimodel algorithm yields the second-best performance against the various
challenges indicating that the missing modules have the least impact on the tracking results.
This can be attributed to the fact that the training data are not sufficient enough to produce
a significant difference from the original network model. The scores of the proposed al-
gorithm are much higher as compared to the FalseColor algorithm against the OCC and
SV challenges. Specifically, the success rate and precision of the proposed algorithm are,
respectively, higher by 0.129 and 0.065 as compared to the FalseColor algorithm against
the OCC challenge. Similarly, the success rate and precision are higher by a score of 0.117
and 0.143 respectively against the SV challenge. As is evident from the results, these two
challenges adversely affect the spatial features, hence, the proposed algorithm achieves
better results due to the exploitation of the rich spectral information. Compared to the
Siam algorithm, the proposed algorithm achieves great improvements in every challenge
except for the IV. For the sequences with the IV challenge, spectral features can easily
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distinguish the target from the background. Hence, the additional adjacent template does
not play a significant role in the tracking process. However, for the sequences with other
challenges, adjacent template plays a very significant role. As a result, the proposed D-
Siam model yields maximum improvement in the tracking performance, illustrating that
the DRSD module and the threshold judgment module play an important role in certain
challenges. These results also indicate that the improvement due to the training network
model is minimal.

4.4. Universality Experiments

In this section, experiments are carried out in the IMEC25 dataset [60] to verify the
universality of the proposed algorithm. This dataset contains 80 hyperspectral sequences
for testing and 55 hyperspectral sequences for training, which are obtained using a near-
infrared hyperspectral camera. The sequences are captured at 10 fps and each image in the
sequences contains 1080× 2045 pixels in 25 bands distributed spectral ranging from 680 nm
to 960 nm. As the IMEC16 dataset and IMEC25 dataset have different band numbers, some
algorithms in Section 4.2 cannot work in IMEC25. For example, MHT extracts material
features using a material library determined in advance and this library can only work
for 16-band hyperspectral images. Therefore, some other state-of-the-art algorithms are
considered, which are BAE-Net [61], SST-Net [62], transformer [44], and DeepHKCF. BAE-
Net tracks the target in each band and integrates the tracking results by band attention.
SST-Net considers the spectral, spatial, and temporal features of the target. Both BAE-Net
and SST-Net are trained using the training sequences in IMEC25. Transformer is the cutting
edge in the field of target tracking. DeepHKCF is another algorithm that can be applied
to two datasets due to the use of false-color images. Moreover, the transformer uses the
same method of converting false-color images as DeepHKCF. Partial qualitative results are
shown in Figures 29–33.

Figure 29 shows the results of the airplane sequence, the main challenge of this
sequence is low resolution (LR), the target size in this sequence is only 4× 3. Due to the
small size in space, the transformer cannot extract distinguishable features without spectral
information. As a result, the transformer loses the target at frame 57. Other tracking
algorithms can accurately track the target.

Ours DeepHKCFBAE-NetTransformerSST-Net Groundtruth

Figure 29. Qualitative results of the airplane sequence in universality experiments.
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Ours DeepHKCFBAE-NetTransformerSST-Net Groundtruth

Figure 30. Qualitative results on the boat sequence in universality experiments.

Ours DeepHKCFBAE-NetTransformerSST-Net Groundtruth

Figure 31. Qualitative results on the camera sequence in universality experiments.

Ours DeepHKCFBAE-NetTransformerSST-Net Groundtruth

Figure 32. Qualitative results on the doublecar sequence in universality experiments.
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Ours DeepHKCFBAE-NetTransformerSST-Net Groundtruth

Figure 33. Qualitative results on the girl sequence in universality experiments.

Figure 30 shows the results on the boat sequence, the main challenge in this sequence
is BC. There is heavy sea clutter on the sea, which has a great influence on target tracking.
At frame 76, the transformer loses the target and re-detects the target at frame 231 due to
the reason that the target reappears in the search region. Moreover, DeepHKCF loses the
target from frame 155, this is because the background clutter is so strong that this tracking
algorithm loses the target.

Figure 31 presents the results of the camera sequence, the main challenge in this
sequence is OCC. Since the target occlusion is not serious at first, all tracking algorithms
can track the target. However, at frame 145, both OCC and out-of-view (OV) occur si-
multaneously, and the transformer and DeepHKCF lose the target. Moreover, BAE-Net
and SST-Net also have a biased estimation of the target. Only the proposed algorithm can
accurately track the target.

Figure 32 shows the results of the doublecar sequence, the main challenge in this
sequence is SV. Moreover, there is another car following the target car. At frame 85,
DeepHKCF loses the target due to the influence of the interferent. Moreover, at frame 191,
BAE-Net loses the target, this is because the position of the target in the field of vision has
changed due to the lens movement. Additionally, other tracking algorithms can track the
target well.

Figure 33 shows the results of the girl sequence; the main challenge of this sequence is
RO. The girl keeps rotating herself in the field of vision during the sequence. At frame 38,
all tracking algorithms have errors in target estimation. Then, at frame 77, DeepHKCF loses
the target due to its unstable features. With the continuous rotation of the girl, SST-Net
finally loses the target at frame 198.

The quantitative analyses are conducted on the whole dataset and the partial datasets
with certain challenges. The quantitative results are presented in Figures 34–39, and the
scores are summarized in Tables 5 and 6.
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Figure 34. Quantitative results for all sequences in universality experiments.
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Figure 35. Quantitative results for sequences with challenge BC in universality experiments.

As shown in Figures 34–39 and Tables 5 and 6, the proposed algorithm achieves a
good performance on the IMEC25 dataset. Different from the IMEC16 dataset, the images
in the IMEC25 dataset are all in the near-infrared band. As a result, compared with the
tracking algorithms trained with the IMEC25 dataset, BAE-Net, and SST-Net, the proposed
algorithm has poor performance. However, compared with the other two algorithms not
trained with the IMEC25 dataset, the performance of the proposed algorithm is much
higher. Especially, when facing the challenge OCC, the proposed algorithm achieves a 0.627
success rate and 0.958 precision, which are the highest among all algorithms. However,
when facing the challenge of RO, the proposed algorithm yields a 0.033 lower success rate
and 0.014 lower precision than the transformer. This result means the transformer structure
has more advantages than the convolution neural network structure.
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Figure 36. Quantitative results for sequences with challenge LR in universality experiments.
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Figure 37. Quantitative results for sequences with challenge OCC in universality experiments.
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Figure 38. Quantitative results for sequences with challenge RO in universality experiments.
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Figure 39. Quantitative results for sequences with challenge SV in universality experiments.

Table 5. The details of success rate results in universality experiments. The suffixes mean that the
measurements are only counted in the sequences with the corresponding challenges. The best and
the second-best results are marked in red and blue, respectively.

Methods Suc Suc_BC Suc_LR Suc_OCC Suc_RO Suc_SV

Ours 0.612 0.636 0.593 0.627 0.621 0.607
BAE-Net 0.636 0.654 0.601 0.599 0.663 0.639
SST-Net 0.639 0.66 0.577 0.611 0.66 0.637

Transformer 0.559 0.601 0.469 0.403 0.654 0.575
DeepHKCF 0.44 0.48 0.418 0.495 0.414 0.376

Table 6. The details of precision results in universality experiments. The suffixes mean that the
measurements are only counted in the sequences with the corresponding challenges. The best and
the second-best results are marked in red and blue, respectively.

Methods Pre Pre_BC Pre_LR Pre_OCC Pre_RO Pre_SV

Ours 0.893 0.917 0.912 0.958 0.897 0.855
BAE-Net 0.911 0.927 0.907 0.916 0.924 0.894
SST-Net 0.907 0.932 0.871 0.918 0.924 0.876

Transformer 0.841 0.872 0.804 0.755 0.911 0.846
DeepHKCF 0.763 0.788 0.812 0.836 0.705 0.675

4.5. Computational Time Comparisons

A comparison of the computational time comparisons is considered in this section.
The comparative results are shown in Tables 7 and 8.
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Table 7. The computational speed of the algorithms using the IMEC16 dataset.

Methods Ours MHT MFI-HVT DeepHKCF HOMG CNHT

FPS 1.8 1.2 (CPU) 0.85 1.7 1.4 (CPU) 1 (CPU)

Table 8. The computational speed of the algorithms using the IMEC25 dataset.

Methods Ours BAE-Net SST-Net Transformer DeepHKCF

FPS 0.86 0.48 0.4 0.8 0.94

As shown in Tables 7 and 8, the proposed algorithm achieves 1.8 fps using the IMEC16
dataset and 0.86 fps using the IMEC25 dataset. Due to the increase in the hyperspectral
image size, the computational time is nearly doubled. Moreover, among algorithms using
the IMEC16 dataset, MHT, HOMG, and CNHT are carried out on the CPU. Therefore, these
three algorithms can achieve higher computational speed when accelerated by GPU. As
for the algorithms using the IMEC25 dataset, their computational speeds are all lower
than 1 fps due to the huge amount of data. Compared with other algorithms based on
deep learning, the proposed algorithm effectively reduces the computational time while
maintaining high tracking performance.

5. Conclusions

This research proposes a novel hyperspectral video tracker based on the DRSD and
D-Siam framework. The proposed dimensionality reduction method, based on spectral
deviation, not only reduces the data redundancy and the computational complexity but
also improves the separability between the target and the background. An adaptive weight
estimation strategy is adopted to fuse the response maps from the D-Siam network. This
study also proposes a model update strategy based on threshold judgment. The proposed
judgment module effectively determines the updating of the adjacent frames based on the
confidence of the fused response map. The experimental results illustrate that the proposed
tracking algorithm yields good performance on different public hyperspectral datasets.
Significantly, the proposed approach achieves a success rate of 0.615 and a precision score
of 0.859 in IMEC16. Moreover, it achieves a success rate of 0.612 and a precision score
of 0.893 in IMEC25. These two results indicate that the proposed algorithm is generaliz-
able on different hyperspectral videos. However, the proposed algorithm also has some
shortcomings. There is a need for an appropriate scale estimation module. Additionally,
the proposed algorithm employs a convolution neural network as the backbone network,
while the transformer model seems to be an optimal choice. Hence, in the future, we will
explore the formulation of an accurate scale estimation module. Moreover, the use of
the transformer model will be experimented with as a backbone network instead of the
convolutional network.
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