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Abstract: The leaf area index (LAI) is a vital parameter for quantifying the material and energy
exchange between terrestrial ecosystems and the atmosphere. The Global Ecosystem Dynamics
Investigation (GEDI), with its mission to produce a near-global map of forest structure, provides
a product of the effective leaf area index (referred to as GEDI LAIe). However, it is unclear about
the performance of GEDI LAIe across different temperate forest types and the degree of factors
influencing GEDI LAIe performance. This study assessed the accuracy of GEDI LAIe in temperate
forests and quantifies the effects of various factors, such as the difference of gap fraction (DGF)
between GEDI and discrete point cloud Lidar of the National Ecological Observatory Network
(NEON), sensor system parameters, and characteristics of the canopy, topography, and soil. The
reference data for the LAIe assessment were derived from the NEON discrete point cloud Lidar,
referred to as NEON Lidar LAIe, covering 12 forest types across 22 sites in the Continental United
States (the CONUS). Results showed that GEDI underestimated LAIe (Bias: −0.56 m2/m2), with
values of the mean absolute error (MAE), root mean square error (RMSE), percent bias (%Bias), and
percent RMSE (%RMSE) of 0.70 m2/m2, 0.89 m2/m2, −0.20, and 0.31, respectively. Among forest
types, the underestimation of GEDI LAIe in broadleaf forests and mixed forests was generally greater
than that in coniferous forests, which showed a moderate error (%RMSE: 0.33~0.52). Factor analysis
indicated that multiple factors explained 52% variance of the GEDI LAIe error, among which the
DGF contributed the most with a relative importance of 49.82%, followed by characteristics of canopy
and soil with a relative importance of 23.20% and 16.18%, respectively. The DGF was a key pivot for
GEDI LAIe error; that is, other factors indirectly influence the GEDI LAIe error by affecting the DGF
first. Our findings demonstrated that the GEDI LAIe product has good performance, and the factor
analysis is expected to shed some light on further improvements in GEDI LAIe estimation.

Keywords: GEDI LAIe; influence of factors; temperate forest; NEON Lidar

1. Introduction

Leaf area index (LAI) is defined as half of the total leaf area per unit of the ground
surface area [1]. Being a direct proxy of leaves, LAI plays an irreplaceable role in studies
of surface thermal radiation, nitrogen deposition, fire monitoring, wildlife protection, and
carbon sequestration in terrestrial ecosystems [2–5]. LAI can be precisely measured directly
from destructive sampling of vegetation or indirectly estimated from collected optical
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images, such as the Digital Hemispherical Photography (DHP) images, based on the Beer–
Lambert Law (Beer’s law) in quadrat sampling [6]. The LAI collected by the above two
field-measured approaches is usually used for validating LAI products [7–9]. However,
field surveys consume time, cost, and labor, which hinders their application over a large
area. In contrast, indirect methods based on remote sensing data are promising because
of the various available datasets for LAI measurement over local, regional, or even global
scales [10]. Active remote sensing, especially Lidar, is broadly recognized as an excellent
source for LAI measurement owing to its ability to measure leaf area density from the top
canopy to the forest floor directly [11,12]. Lidar is also more sensitive to LAI than passive
optical images which suffer from spectral saturation [11,12], e.g., Landsat LAI is saturated
when LAI is greater than 5 m2/m2 [12].

Spaceborne Lidar is an ideal source for LAI estimation over a large-scale area, due to
its ideal cost and acceptable acquisition frequency for sampling [13–15]. Currently, three
free open accessed spaceborne Lidar are available, including the first and second generation
of Ice, Cloud, and land Elevation Satellite (namely ICESat-1 and ICESat-2) and the global
ecosystem dynamics investigation (GEDI), in which the effectiveness using ICESat-1 and
ICESat-2 for LAI estimation has been demonstrated [14,16]. GEDI, as the second generation
full-waveform Lidar after ICESat-1, has several improvements [15], including: (1) a higher
sampling frequency with 4-day revisit; (2) a denser coverage (51.6◦S~51.6◦N), especially
for temperate and tropical areas with a footprint distance of 600 m across orbit and 60 m
along orbit; and (3) a smaller diameter of footprint (25 m), which can alleviate the influence
of topographic slope [17,18]. These improvements are expected to be a step forward for an
accurate estimation of LAI [19,20].

Tang et al. (2019) [21] used the Geometric Optical Radiative Transfer (GORT) [22] to
invert the gap fraction for producing a near-global effective leaf area index (LAIe) product
with GEDI, referred to as GEDI LAIe. At present, few researchers have assessed the accuracy
of the GEDI LAIe product [19,20]. For example, Dhargay et al. (2022) evaluated the accuracy
of GEDI LAIe over a temperate forest in south-eastern Australia taking Airborne Laser
Scanning (ALS) Lidar collected in 2016 as a reference [20]. Ilangakoon et al. (2021) used
ALS Lidar acquired in 2014 to assess the GEDI LAIe accuracy across savanna forests in a
semi-arid area [19]. However, limited forest types and outdated reference data used in these
previous researches might provide only limited insight into GEDI LAIe performance across
diverse forest types [19,20]. Since a comprehensive assessment of the GEDI performance
of LAIe estimation is a prerequisite for its appropriate application [23–26], it is urgent to
conduct an evaluation of GEDI LAIe over various geographic units and forest types.

To effectively interpret the performance of GEDI LAIe, it is necessary to employ reliable
and higher-resolution observations that cover various forest ecosystems. The datasets
of the National Ecological Observatory Network (NEON) can be regarded as an ideal
evaluation reference. NEON provides exciting nationwide, coordinated, multitemporal,
and high-quality LiDAR and field survey data collected at 81 sites across 21 eco-climate
domains spanning 30 years from the Airborne Observation Platform (AOP) and Terrestrial
Observation System (TOS) [27–29]. The advantages of wide distribution and consistency
of NEON’s AOP and TOS observations make their datasets valuable for the assessment
and cross-site comparison of satellite products. For example, Wang et al. (2021) [30] and
Liu et al. (2020) [31] evaluated GEDI products of canopy height and ground elevation
using NEON AOP datasets across the USA. Kang et al. (2021) validated the LAI product of
Landsat with NEON TOS DHP data [32].

Theoretically, GEDI LAIe is influenced by factors [13,16,18] including GEDI sensor
parameters, characteristics of canopy and soil, and topographic slope [19,20,33–35]. For
example, the signal-to-noise ratio and the transmitted pulse energy are important param-
eters of the GEDI sensor [20,30] which directly impact GEDI waveform quality [15]. The
physical and chemical characteristics of the canopy and soil within a footprint affect the
shape and intensity of the GEDI waveform because a waveform intensity of specific height
is proportional to the intersecting surface, direction, and reflectance of objects at the corre-



Remote Sens. 2023, 15, 1535 3 of 20

sponding height [36,37]. Topographic slope not only directly increases the terrain but also
indirectly affects waveform intensity through a complicated interaction with other factors
such as canopy reflectance [30]. Additionally, the GEDI LAIe product was generated under
the hypothesis of a random spatial distribution of foliage which might obey the fact of
heterogeneous distribution of leaves. Thus, GEDI LAIe should be adjusted by dividing
the clumping index which represents the degree of non-random distribution against the
random distribution of leaves over space [2,8,38–41]. Previous studies have reported an
underestimation of true LAI (LAIt) without the adjustment for LAIe [39].

The objectives of this study are (1) evaluating the accuracy of GEDI LAIe across various
forest types and NEON sites and (2) quantifying the magnitude and direction of factors
affecting GEDI LAIe estimation. This study evaluated the accuracy of GEDI LAIe and
factors influencing GEDI LAIe performance by employing field-measured datasets from
the Fenghuang Mountains in China and the LAIe estimated from discrete point cloud Lidar
of NEON AOP, referred to as NEON Lidar LAIe, covering 12 forest types and spanning
various geographic area across the Continental United States (CONUS).

To the best of our knowledge, this is the first study to systematically assess the
performance of GEDI LAIe and quantify the importance and direct and indirect impact of
various factors spanning various geographic units, and abundant forest types in various
eco-climate regions. The accuracy assessment of GEDI LAIe among various geographic
sites and forest types can answer if the GEDI LAIe product meets a specific requirement of
ecological models, estimates of forest health and functioning, and biodiversity monitoring.
The findings of factors influencing the performance of GEDI LAIe are expected to provide
insight to enable proposal of better filters to screen footprint data for a better application,
improve inversion methods for LAI estimation, and modify sensor parameters for next-
generation spaceborne Lidar.

2. Materials and Methods
2.1. Study Areas

The CONUS (−124◦44′4.59′ ′~−66◦53′30.90′ ′W, 24◦32′33.17′ ′~49◦22′10.17′ ′N) and
Fenghuang Mountains in Xuzhou City, Jiangsu Province, China (117◦05′3.68′ ′–117◦10′24.13′ ′E,
34◦09′57.46′ ′–34◦13′38.76′ ′N) were selected as the study areas (Figure 1). The reference
datasets of NEON Lidar LAIe are environmentally distributed over the CONUS, which
spans 17 eco-climatic geographic units and contains rich forest types (coniferous, broadleaf,
mixed, etc.). Details of the NEON sites are shown in Supplementary Table S1. Forest types
can be found in [30].

The Fenghuang Mountains are in Xuzhou City, Jiangsu Province, China. The 22 plots
of field-measured LAIe in the Fenghuang Mountains belong to the temperate monsoon
climate, with an average annual temperature of 14.9◦, an average annual rainfall of
800~930 mm, and an altitude of less than 237 m. The tree species are mainly Platycladus
orientalis, with a small number of Firmiana platanifolia, Broussonetia papyrifera, Ligustrum
lucidum, Melia azedarach, Celtis bungeana, and Pistacia chinensis Bunge. The mean tree height
of the 22 footprints ranges from 3.9 to 9.8 m; the mean DBH is less than 10 cm; and the tree
density is greater than 900 trees/hm2.

2.2. Datasets and Preprocessing
2.2.1. GEDI Data

Since February 2019, NASA’s Distributed Archive of Land Surface Processes (LP
DAAC) has released GEDI L1B (geolocated waveform), GEDI L2A (product of canopy
height), GEDI L2B (product of foliage characteristics), and GEDI04_A and GEDI04_B
(biomass products) [15]. For evaluation of GEDI LAIe performance, the GEDI L1B and GEDI
L2B collected during 2019–2021 over the NEON sites across the CONUS were downloaded
from the LP DAAC. For comparison of LAIe between GEDI and field measurements in
Fenghuang Mountains, two available GEDI L2B orbits including GEDI02_B_2021105070412
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_O13253_03_T07142_02_003_01_V002 and GEDI02_B_2019159 105633_O02758_03_T01450
_02_003_01_V002 were also downloaded from LP DAAC.

Figure 1. The distribution of study areas (A) including 22 NEON sites across the CONUS (B) and
field-measured plots located in the Fenghuang Mountains in China (C). The red points in (A) were
NEON sites in the COUNS and location of the Fenghuang Mountains in China. The numbers in
(B) were identifications for the eco-climate region in the U.S.A. The red rectangle in (C) was the
boundary for the field survey around the Fenghuang Mountains, while the red points in (C) were
plot locations. The white number showed the field plot ID. The true color images were downloaded
from google maps.

To select high-quality GEDI L2B data for GEDI LAIe accuracy analysis, the l2a_quality_flag
and l2b_quality_flag equal to 1, degrade_flag equal to 0, landsat_water_persistence of
less than 10%, urban_proportion equal to 0, and leaf_off_flag equal to 0 were used to
selected good quality GEDI shots that were observations without orbit degradation, did
not cover permanent water and urban areas, and were collected in the vegetation growing
season [26,30,42]. To further remove outliers, GEDI shots with a difference of less than 50 m
between the GEDI ground elevation and the elevation of the TanDEM-X Digital Elevation
Model (DEM) were selected [30]. To select forested shots, the filters for landsat_treecover
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greater than 0, modis_treecover greater than 0, and vegetation height greater than 5 m
were used [43].

Notably, GEDI products have a geolocation error of 10.2 m (1σ) [44]. To narrow the
discrepancy between GEDI and NEON Lidar caused by this geolocation error, waveform
matching was used to identify the GEDI footprint geolocation that best matched the NEON
Lidar simulated waveform [45]. The NEON Lidar simulated waveforms were calculated
within a 10 × 10 m range of provided GEDI geolocation in 1 m steps. The method of
waveform simulation of NEON Lidar, as well as the parameter setup, is described in [45,46].

2.2.2. NEON Data

NEON simultaneously provides datasets collected from the Terrestrial Observation
System (TOS) and the Airborne Observation Platform (AOP) [27,28]. The TOS aims at
field monitoring of forest structures in plots, while the mission of AOP is to collect high-
resolution and accurate airborne remote sensing data. NEON Lidar is one of the AOP
products used for evaluating the performance of GEDI LAIe. To quantify the uncertainty of
NEON Lidar LAIe, DHP images collected from the NEON TOS plots were used to calculate
a field measure of LAIe. The NEON AOP’s DEM and NEON individual tree products
were used to extract the topographic slope and tree distribution characteristics within each
footprint.

NEON Lidar (accessed on 25 December 2022) [47], TOS DHP images (accessed on
31 January 2023) [48], and DEM (accessed on 25 December 2022) [49] were downloaded
from the NEON Scientific Data Center (https://data.neonscience.org/data-products/
explore), while the individual tree product [50–52] is available at https://zenodo.org/
record/3765872# YzZ YC9hByUk (accessed on 20 September 2022). Details of the NEON
Lidar, TOS field observations, and the individual tree product are as follows:

(1) NEON Lidar
The NEON Lidar was collected in the peak greenness of growing seasons from 2017 to

2019 (Supplementary Table S1), which is preprocessed with the step of denoise, point cloud
classification, and high normalization.

(2) NEON DHP images
NEON TOS provides the DHP images collected in the plot of the flux tower (20 × 20 m).

Each plot collects 12 DHP images with 4 m intervals from directions of east, west, south,
and north (Supplementary Figure S1). A 180-degree 16 mm Nikon full-frame fisheye lens
mounted on a full-frame Nikon DSLR camera was used for the DHP collection. Each
NEON site with upward DHP images greater than the number of 12 was used for DHP
LAIe estimation. The NEON DHP images, collected from July to September 2019 with an
image size of 7360 × 4912, were processed by the software CAN_EYE V6.495 developed
by the Emmah laboratory of the French agricultural research institute. The processes of
DHP images included optical center selection and projection, gamma correction, masking,
automated binary classification, and estimation of LAIe and LAIt [53]. The method of LAIe
estimation in the CAN_EYE V6.495 depends on a look-up table for zenithal variation of
theoretical gap fraction [54]. By segmenting each DHP into interest segments by angular
of zenith and azimuth, DHP LAIe can be estimated by minimizing a cost function of the
difference between measured and look-up-table gap fraction [55]. For stable estimation,
the Lang graphical method was employed in this study, in which the resolutions of both
zenith and azimuth for segmenting imagery were set to 5.0◦ [56].

(3) NEON individual tree products
NEON individual tree product provides the location, crown area, and height of each

tree. The first three terms are derived from NEON’s high-resolution RGB images using
the DeepForest method, while the tree height of each tree was extracted from NEON
CHM [50–52]. Based on this product, we calculated the tree density in each footprint
(i.e., the number of trees), the mean crown area of trees, the mean height of trees (tree
height), the standard deviation of the crown area, and the standard deviation of tree height
for the analysis of the effect factors.

https://data.neonscience.org/data-products/explore
https://data.neonscience.org/data-products/explore
https://zenodo.org/record/3765872
https://zenodo.org/record/3765872
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2.2.3. DHP Images Collected in Fenghuang Mountains

This study collected field-measured LAIe derived from DHP across the 22 plots in
the Fenghuang Mountains collected during 7–10 August 2022 (Supplementary Table S2).
The plots were designed with a size of 40 × 40 m corresponding to each GEDI footprint.
Notably, the second GEDI product has a 10.2 m geolocation uncertainty [44]. To alleviate
the influence of the geolocation uncertainty on the comparison of LAIe between GEDI and
field plots, the plots of neighboring buildings, roads, and escarpment were screened out.
Considering GEDI LAIe in Fenghuang Mountains was collected in early growing seasons
differing from the peak greenness of growing seasons for the field survey, plots covered
with deciduous forest were carefully filtered out. As a result, a total of 13 plots were
employed for validating the performance of GEDI LAIe. In each plot, a total of 24 DHP
images were collected with a 15 mm Nikon Fisheye Lens mounted on a full-frame Canon
Mark III camera in 4 perpendicular directions. To be consistent with the design of the
field survey for the DHP collection of NEON TOS, this paper selected the nearest 12 DHP
images from the plot center for DHP LAIe estimation. The same as the process of NEON
DHP, these collected DHP images were then used to calculate DHP LAIe and LAIt using
the software CAN_EYE V6.495 (see details in Section 2.2.2).

2.2.4. Forest Type Inventory

To explore the variation of GEDI LAIe accuracy across different forest types, we refer to
the 250 m resolution forest type inventory produced by the USDA Forest Service–Forest In-
ventory and Analysis (FIA) Program and Remote Sensing Applications Center (RSAC) [57],
downloaded from https://www.fs.usda.gov/research/inventory/FIA (accessed on
15 April 2020). A total of 12 forest types over the CONUS were selected, including seven
coniferous forests, one mixed forest, and four broadleaf forests. These forest types cover
82.5% of the forested areas of the CONUS, with different conditions of tree height, canopy
cover, vertical layer, and topography.

2.2.5. Soil Data

The organic matter content (SOC), soil nitrogen content (N), and soil pH from a depth
of 0–5 cm were extracted from the Soilgrids data (https://soilgrids.org/ (accessed on
10 November 2022)), which is a global 3D soil raster product with a spatial resolution of
250 m [58]. The above three soil attributes were used as factors influencing GEDI LAIe.

2.2.6. Vegetation Cover

For canopy clumping correction of GEDI LAIe, the vegetation cover was calculated
from the normalized difference vegetation index (NDVI) based on the principle of pixel
dichotomy model, in which the NDVI derived from the Level 1T (L1T) image of Land-
sat 8 OLI covering the Fenghuang Mountains collected on 5 June 2021 (image ID of
LC081210362021060502T1) was download from the USGS Earth Resources Observation
and Science (EROS) Center.

2.3. Analysis Strategies
2.3.1. GEDI LAIe Estimation Method

GEDI LAIe is estimated from a gap fraction (P) based on Beer’s law formulated as a
logarithmic function form (1). The gap fraction regarded as the complement of the canopy
cover can be inverted by GORT using a ground-to-total energy ratio (2):

LAIe = − 1
G×Ω

× In(P) (1)

P = 1− 1

1 + Rg
Rv
× ρv

ρg

(2)

https://www.fs.usda.gov/research/inventory/FIA
https://soilgrids.org/


Remote Sens. 2023, 15, 1535 7 of 20

where G is the leaf projection distribution function with its default setting of 0.5 (spherical
distribution), Ω is the clumping index with a default setting of 1, Rg/Rv is the ground-to-
total energy ratio, and the ρv/ρg is the ratio of vegetation and soil reflectance.

2.3.2. NEON Lidar LAIe Estimation Method

Based on Beer’s Law, NEON Lidar LAIe can be estimated using (1). Differing from
the ground-to-total energy ratio of waveform Lidar, the Lidar Penetration Index (LPI) is
generally used as a proxy of the gap fraction estimation for LAIe estimation using discrete
point cloud Lidar. Methods for estimating LPI include intensity-based, count-based, and
voxel-based methods [59]. The intensity-based method is sensitive to the reflectance of
vegetation and land surface [11], while the voxel-based method is controversial because
of its unclear physical meaning [54,60]. The count-based method, which uses the ratio
of ground returns to all returns for LPI estimation (3) is the most mature and easiest to
interpret. Thus, the count-based method was used in this study to estimate the LPI:

LPI =
Ng

Nall
(3)

where Ng is the number of returns for ground, Nall is the number of all returns. To
alleviate the impact from the understory, LiDAR returns above 2 m were used for canopy
LPI estimation [61].

2.3.3. Accuracy Assessment Strategy

The field-measured LAIe collected in the Fenghuang Mountains and the NEON Lidar
LAIe were employed to verify the accuracy of GEDI LAIe, while the accuracy of NEON
Lidar LAIe was verified by filed LAIe derived from NEON TOS’s DHP images. The bias,
mean absolute error (MAE), root mean square error (RMSE), percent bias (%Bias), and
percent RMSE (%RMSE) were used as accuracy indicators. To analyze the GEDI LAIe
performance over different geographic units and forest types, accuracy comparisons of
GEDI LAIe were conducted over the 22 NEON sites and the 12 forest types across the
CONUS. The calculation of bias, MAE, RMSE, %Bias, and %RMSE can be found in [30].

2.3.4. Effects of Factor analysis Strategy

According to Beer’s law, the gap fraction is a key input for the LAIe estimation. Thus,
the error of gap fraction estimation can directly convert to LAIe [22]. Given that, the
difference of gap fraction between GEDI and NEON Lidar (DGF) can be an indicator to
explain the difference of LAIe between GEDI and NEON Lidar. Meanwhile, the GEDI LAIe
product uses the GORT for gap fraction estimation [21]. The performance of the GORT is
influenced by characteristics of canopy and soil, which are correlated to input parameters of
Rg/Rv and ρv/ρg in GORT [22]. In addition to factors, including DGF, and characteristics
of the canopy and soil, which are directly related to GEDI LAIe estimation based on GORT,
factors of sensor system parameters were selected to reflect the quality of GEDI observation
and the reliability of NEON Lidar being taken as the reference. The consideration of NEON
Lidar quality can help to explore the influence degree of the reference data quality on the
GEDI LAIe assessment. Meanwhile, the characteristics of the topographic slope were taken
into account for their effect on GEDI data quality. For example, a steep slope complicates
the GEDI waveform by mixing up the reflectance energy of the canopy and ground [17]. As
such, a total of 19 factors, categorized into DGF, characteristics of canopy and soil, sensor
system parameters, and characteristics of the topographic slope, were employed to explain
the error in GEDI LAIe estimation (Table 1).
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Table 1. Definition and data sources of factors potentially affecting the absolute deviation of GEDI
LAIe used in factor importance analysis.

Categories Factors Data Source Categories Factors Data Source

DGF DGF GEDI L2B and
NEON Lidar Topographic slope Slope (◦)

NEON DTM

Canopy

Forest types Forest type
inventory

Standard deviation
of slope

Canopy cover
Field of

landsat_treecover
in GEDI L2B

Sensor system
parameters

Sensitivity (0.9–1.0)

GEDI L2BMean height of
trees (m) NEON’s

individual tree
product

Observation time (day
and night)

Standard deviation
of tree height

Beam type (power beam
and coverage beam)

Number of trees Modes in waveform
(1–20)

Standard deviation
of crown area

Point density of NEON
Lidar (point/m2) NEON Lidar

Soil

Soil nitrogen
content (g/kg) Soilgrids data

Scan angle (◦)

Soil organic
content (kg/kg)

Difference of time
between GEDI and

NEON Lidar
(Day of year)

GEDI and NEON

Soil pH

To quantify the influence degree of each factor, we calculated the relative importance
of each effect factor to the absolute deviation of GEDI LAIe using the LMG function in
the “relaimpo” R package. LMG decomposes the variance of the dependent variable into
non-negative single-factor variance contributions without being affected by the covariance
among independent variables. The ratio of decomposed variance contribution to the
variance of the dependent variable represents the relative importance [62].

To analyze the diverse direct and indirect effects of factors on the absolute devia-
tion of GEDI LAIe, a structural equation model was built using IBM® SPSS® Amos. The
structural equation model formulates a series of path relationships between indepen-
dent variables (i.e., the nine factors) and dependent variables (i.e., absolute deviation of
GEDI04_A), namely the indirect effect of “independent variable–independent variable–,
. . . , –dependent variable” and the direct effect of “independent variable–dependent vari-
able” [63,64]. The path relationship was quantified using linear regression models. The
χ2, χ2/df, Goodness-of-Fit Index (GFI), Adjusted Goodness-of-Fit Index (AGFI), and Root
Mean Square Error of Approximation (RMSEA) were used to determine the validity of the
formulated structural equation model.

2.3.5. Leaves Clumping Analysis Strategy

GEDI LAIe was estimated based on the GORT. The GORT assumes that leaves are
randomly distributed within the GEDI footprint (i.e., Beer–Lambert law), which disregards
the fact that leaves clump at different scales including footprint, crown, branch, and
cluster [65]. As a result, a difference occurs between GEDI LAIe and LAIt. The difference
between GEDI LAIe and LAIt can be corrected by using the clumping index (Ω), namely,
the ratio of LAIe to LAIt [6,33,66,67]. Commonly, the clumping index ranges from 0 to 1,
with smaller values representing a higher level of clumping [33]. To quantify the impact
of clumping, this study used (4) to express the relative errors of GEDI LAIe based on the
clumping index.

e = Ω− 1 (4)
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The vegetation clumping within the footprint (Ωfootprint) consists of the between-crown
clumping (Ωcover) and within-crown clumping (Ωcrown) [33]. The between-crown clumping
shows the aggregation degree of crowns, which represents the laser that directly reaches
the ground without interaction with any crown [66,67]. The within-crown clumping refers
to a degree of the non-uniform length of laser transmission crowns against the uniform
length assumed by the Beer–Lambert law [66]. We defined Ωfootprint, Ωcover, and Ωcrown
using (5)–(7) to quantify the relative errors caused by the clumping effect of footprint,
between-crown clumping, and within-crown clumping, respectively.

Ωfootprint= LAIe/LAIt (5)

Ωcover= LAIe/LAIcover (6)

Ωcrown= LAIcover/LAIt (7)

where LAIe is GEDI LAIe, LAIt is derived from DHP images collected in the Fenghuang
Mountains, and the LAIcover is the corrected result of between-crown clumping [59], calcu-
lated by:

LAIcover = −
1
G
× cover× In

(
P− 1 + cover

cover

)
(8)

where G is set as 0.5 assuming that G obeys spherical distribution, and the cover is the
vegetation cover calculated from the Landsat image.

3. Results
3.1. Accuracy of NEON Lidar LAIe

The accuracy of NEON Lidar LAIe was evaluated using the NEON DHP LAIe
(Figure 2). Results show that the NEON Lidar LAIe and NEON DHP LAIe were signifi-
cantly correlated, with an r value of 0.88 (p < 0.05). The bias value of−0.47 m2/m2 indicates
that NEON Lidar overestimated LAIe with the MAE and RMSE values of 0.65 m2/m2

and 0.75 m2/m2, respectively. The %Bias and %RMSE, with values of −0.24 and 0.39,
respectively, indicate a moderate error of NEON Lidar LAIe compared to NEON DHP
LAIe. The scatters were distributed along the 1:1 line, which demonstrates the consistency
of LAIe between NEON Lidar and NEON DHP images. Given the high correlation and
reasonable error of NEON Lidar LAIe, it is suitable and reliable to use NEON Lidar LAIe
as a reference for evaluating GEDI LAIe.

Figure 2. Comparison of NEON Lidar LAIe and NEON DHP LAIe. The bias greater than 0 indicates
that NEON Lidar overestimated LAIe compared to DHP LAIe, and vice versa. The black and red
solid lines are the 1:1 line and regression line, respectively.
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3.2. Comparison of LAIe between GEDI and Field Measurements

A total of 13 high-quality plots with field-measured DHP LAIe in the Fenghuang
Mountains were used to estimate the accuracy of GEDI LAIe (Figure 3). Results show
a high correlation between GEDI LAIe and DHP LAIe (r value of 0.71). The bias value
of −0.21 m2/m2 shows that GEDI underestimated LAIe with MAE and RMSE values of
0.32 m2/m2 and 0.38 m2/m2. The %Bias and %RMSE values of−0.21 and 0.37, respectively,
indicate a medium error of GEDI LAIe compared to field measurements. The scatter plot
shows that the underestimation is more serious for GEDI observations with LAIe less than
1 m2/m2.

Figure 3. Comparison of LAIe between GEDI and DHP images. The black and red solid lines are the
1:1 line and regression line, respectively.

3.3. Accuracy of GEDI LAIe at Different NEON Sites

The accuracy of GEDI LAIe across the 22 sites taking NEON Lidar LAIe as reference
datasets was estimated (Figure 4). The values of bias, MAE, RMSE, %Bias, and %RMSE
(1σ) were −0.56 m2/m2, 0.70 m2/m2, 0.89 m2/m2, −0.20, and 0.31, respectively. The
negative bias indicates the underestimation of GEDI LAIe compared to NEON Lidar LAIe.
Meanwhile, the values of %Bias and %RMSE show a moderate error in GEDI LAIe.

The accuracy of GEDI LAIe among different sites showed a significant correlation
between GEDI LAIe and NEON Lidar LAIe (r > 0.5, p < 0.05). Among the 22 NEON sites,
the values of bias, MAE, and RMSE ranged from −1.91 to −0.02 m2/m2, from 0.26 m2/m2

to 1.92 m2/m2, and from 0.34 m2/m2 to 2.23 m2/m2. The accuracy variation of GEDI LAIe
over the CONUS showed that the sites with the higher error were mostly distributed in the
eastern (such as BART, HARV, BLAN, SERC, and MLBS) and western (e.g., ABBY) forests
compared to the sites located in central regions of the CONUS.

Comparison of %RMSE values among NEON sites showed that it was a challenge for
GEDI to precisely estimate LAIe, especially in dense and heterogeneous forests. Specifically,
3 out of 22 sites had a low relative error (%RMSE less than 0.3), 12 out of 22 sites had a
moderate relative error (%RMSE greater than 0.3 but less than 0.5), and 7 out of 22 sites
had a high relative error (%RMSE greater than 0.5). Among these sites with a high relative
error, the sites of ABBY, TEAK, and SERC are covered with dense forests in the western
and eastern CONUS [57], and the sites of JERC, NIWO, RMNP, and YELL are covered with
sparse forests in a high-heterogeneity landscape in the central CONUS [57].
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Figure 4. Comparison of LAIe between GEDI and NEON Lidar among the 22 NEON sites. The
top map shows the spatial distribution of accuracy metrics among the NEON sites. The black and
red solid lines in scatter plot are the 1:1 line and regression line, respectively. The scatter plots and
histogram show the LAIe difference between GEDI and NEON Lidar, respectively. Each scatter plot
represented a NEON site with its name marked in the gray rectangle.

3.4. Accuracy GEDI LAIe among Forest Types

The performance of GEDI LAIe estimation was analyzed among the 12 temperate
forest types across the CONUS, including seven types of coniferous forest, one type of mixed
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forest, and four types of broadleaf forest (Figures 5 and 6). Results showed a significant
correlation between GEDI LAIe and NEON Lidar LAIe (r > 0.6, p < 0.05) with a great
variation in accuracy metrics among forest types. The ranges of bias, MAE, RMSE, %Bias,
and %RMSE were −1.7~−0.07 m2/m2, 0.36~1.71 m2/m2, 0.45~1.98 m2/m2, −0.33~−0.05,
and 0.33~0.52, respectively.

Figure 5. Comparison of LAIe between GEDI and NEON Lidar among forest types. Each scatter plot
indicated a forest type with its name marked by a gray rectangle. The black and red solid lines are
the 1:1 line and regression line, respectively.

Figure 6. Values of GEDI LAIe among forest types. The values from 1 to 12 on the X-axis represented
forest types of Longleaf/Slash Pine, Loblolly/Shortleaf Pine, Ponderosa Pine, Lodgepole Pine,
Douglas-fir, Fir/Spruce/Mountain Hemlock, California Mixed Conifer, Oak/Pine, Aspen/Birch,
Oak/Hickory, Oak/Gum/Cypress, and Maple/Beech/Birch, respectively.

A comparison of bias values among forest types shows that GEDI underestimated
LAIe for all 12 forest types, while the underestimation was generally greater in broadleaf
and mixed forests than in coniferous forests. For example, broadleaf forests and mixed
forests such as Oak/Hickory, Oak/Gum/Cypress, Maple/Beech/Birch, and Oak/Pine had
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bias values of −0.77, −0.53, −1.7, and −0.49 m2/m2, respectively. Coniferous forests such
as Longleaf/Slash Pine, Ponderosa Pine, Lodgepole Pine, Fir/Spruce/Mountain Hemlock,
and California Mixed Conifer, respectively had Bias values of −0.25, −0.31, −0.18, −0.3,
and −0.07 m2/m2, respectively.

Comparison of %RMSE values among forest types showed higher %RMSE values in
coniferous and mixed forest types than broadleaf forests. For example, values of %RMSE
were higher for Ponderosa Pine (0.48), Lodgepole Pine (0.50), Fir/Spruce/Mountain Hem-
lock (0.43), California Mixed Conifer (0.52), and Oak/Pine (0.43) than for Oak/Hickory
(0.34), Oak/Gum/Cypress (0.34), and Maple/Beech/Birch (0.38). Given that broadleaf
forests possessed higher LAIe than forest coniferous and mixed forests (Figure 6), a small
deviation may impact greatly the value of %RMSE in coniferous and mixed forests.

3.5. Effects of Factor Analysis for GEDI LAIe Estimation

The LMG was used to quantify the effect degree of each factor on the absolute deviation
of GEDI LAIe (Figure 7, Supplementary Table S3). Results showed that the 19 factors
moderately explained the absolute deviation of GEDI LAIe (R2: 0.52). Among factors,
the DGF was the most important factor for the absolute deviation of GEDI LAIe, with its
relative importance of 49%, followed by characteristics of canopy and soil with their relative
importance of 23% and 16%, respectively. Consistent with the results of univariate analysis
(see details in Supplementary file), characteristics of slope and sensor system parameters
were relatively unimportant, with their relative importance near 10%.

Figure 7. Structural equation model for explaining the direct and indirect effect of factors on the
absolute deviation of GEDI LAIe. Different colored boxes represented categories of factors (see
Table 1). Light blue and brown arrows show a significant negative and positive correlation between
factors, respectively. The R2 and relative importance were calculated by IMG. Other factors included
the characteristics of topographic slope and sensor system parameters.

The structural equation model was employed to clarify the direct and indirect effects
of factors on the absolute deviation of GEDI LAIe (Figure 7, Supplementary Table S4). The
parameters of the structural equation model were estimated using the maximum likelihood
method. The χ2, χ2/df, GFI, AGFI, and RMSEA values were 7.11, 1.78, 0.98, 0.94, and 0.07,
respectively. These accuracy metrics suggest that the formulated structural equation in this
study met the model accuracy requirements. The SEM showed that only 4 out of 19 factors,
including DGF, canopy cover, standard deviation of tree height, and soil organic content,
had a significant and direct correlation with the absolute deviation of GEDI LAIe (p < 0.05).

The DGF acted as a pivot for the indirect impacts of canopy cover, standard deviation
of tree height, and soil organic content on the absolute deviation of GEDI LAIe. That is,
these factors indirectly affected the absolute deviation of GEDI LAIe by first affecting the
DGF. All factors explained a total of 27% of the variation in DGF, among which canopy
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characteristics (relative importance of 82.70%) were the most important for DGF followed
by soil characteristics. Specifically, the DGF decreased with the increase in canopy cover
and soil organic content but increased with the increase in standard deviation of tree height.

3.6. Analysis of Effects of Clumping on Leaf Area Index of GEDI

The effectiveness of using the clumping indices of Ωfootprint, Ωcover, and Ωcrown for
clumping correction in Fenghuang Mountains was analyzed in this study (Figure 8).
Figure 8 shows different improvements when using different clumping indices. Specifically,
without correction of clumping (when comparing GEDI LAIe to DHP LAIt), the values
of bias, MAE, RMSE, %Bias, and %RMSE were −1.05 m2/m2, 1.05 m2/m2, 1.12 m2/m2,
−0.56, and 0.6, respectively. After correcting the clumping between crowns using Ωcover,
the values of absolute bias, MAE, and RMSE decreased by 0.05, 0.05, and 0.05 m2/m2,
respectively. This fair improvement illustrates that within-crown clumping was dominant
compared to between-crown clumping, in which the relative error of 93% was explained by
within-crown clumping (Figure 8B). The above results illustrated that clumping correction
was critical for GEDI LAI estimation, especially correction of within-crown clumping in
temperate coniferous forests.

Figure 8. The influence (A) and relative errors (B) of the clumping effect. The black and red solid
lines in (A) are the 1:1 line and regression line, respectively. The relative error is caused by clumping
in different scales, such as footprint (overall), between crowns (between), and within crowns (within).

4. Discussion
4.1. Accuracy Analysis of GEDI LAIe Estimates

Reference data that are positionally accurate, spatially definite, and time-consistent
over a large scale is the most challenging for the verification of GEDI LAIe [20,40]. The
accuracy of the field-measured LAIe is high, but its high cost and intensive labor hinder
its application over large areas [8,59]. Taking optical-based LAI products as a reference
can cover a large area, but the assessment result suffered from uncertainties from the
registration error, the large discrepancy of spatial scale, and errors of reference data [12].
Thus, using the field-measured LAIe or optical-based LAI products across a large area for
assessing GEDI LAIe may be impractical [40,41].

Apart from 13 plots of field-measured LAIe derived from DHP images, NEON Lidar
LAIe is regarded as the reference for evaluating GEDI LAIe [40,41] because (1) NEON Lidar
LAIe is highly consistent with field-measured LAIe (Figure 2); (2) NEON Lidar covers
various geographic units, with 47 typical terrestrial ecosystems across 20 climate zones in
the United States; and (3) NEON Lidar has an accurate position which allows geolocation
correction for GEDI waveforms by matching a GEDI waveform to a simulated waveform
derived from NEON Lidar. Thus, using NEON Lidar LAIe as a reference to assess GEDI
LAIe is technically persuasive and representative.

The high correlations of GEDI LAIe with NEON Lidar LAIe (r > 0.5, p < 0.05)
(Figures 3–6) and DHP LAIe collected in Fenghuang Mountains (0.71, Figure 3) were
highly consistent with the widely recognized conclusion that large waveforms can measure
LAIe effectively [7,11,68–70]. GEDI LAIe performance displayed a large discrepancy among
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different NEON sites (Figure 4) and forest types (Figure 5). The high values of RMSE in
the eastern and western coastal NEON sites and broadleaf forests indicated that GEDI
still faces challenges in dense forests with high LAI [23,69]. The moderate relative error of
GEDI LAIe compared to NEON Lidar LAIe and DHP LAIe (%RMSE < 0.5) was in line with
or even more appropriate for representing GEDI LAIe performance compared to the root
mean squared percentage error of 3.83 reported in [19].

4.2. Analysis of Factors Affecting GEDI LAIe Estimation

This study clarified the mechanism and effect degree of factors on the error of GEDI
LAIe based on a structural equation model and LMG (Figure 7). To the best of our knowl-
edge, this paper is the first study to analyze the impact of multiple factors and their
interactions on real GEDI LAIe estimation rather than pre-launched simulation analysis
based on radiation transfer models and post-launched univariate analysis [19,20,33]. The
analysis of factors affecting GEDI LAIe illustrated that the DGF is the dominant factor
influencing GEDI LAIe estimation with a relative importance of nearly 50%, followed by
canopy characteristics with a relative importance of 23%, and soil characteristics with a
relative importance of 16%. In addition to a direct impact, canopy characteristics and soil
characteristics have indirect influences on the absolute deviation of GEDI LAIe via DGF.
Given that the ratio of vegetation and soil reflectance (ρv/ρg) is an essential term in gap
fraction estimation using GORT [22], the canopy and soil characteristics indirectly impact
GEDI LAIe through a direct effect on the gap fraction. The above results may shed a light
on GEDI LAIe improvements by reducing DGF and uncertainty from the term of ρv/ρg.
For example, Ni-Meister et al. (2010) proposed a method for the calculation of ρv/ρg using
two adjacent footprints [71], which can be a potential solution for ρv/ρg estimation instead
of a usage value of 1.5 in current GEDI LAIe product.

As the most important factor influencing GEDI LAIe estimation, about 27% of DGF
variance can be explained by factors of sensor system parameters and characteristics of the
canopy, soil, and topographic slope (Figure 7). The great unexplained DGF variance (73%)
is probably initiated by systematic or stochastic uncertainties that are not a concern in this
study [72]. It is an inherent bias in gap fraction estimation using different Lidar systems
which use different concepts of ground returns [41]. NEON Lidar uses the ratio of returns
from below 2 m to total returns for gap fraction estimation, which differs from the form of
the ground-to-total energy ratio in GORT. Lacking knowledge of true ground returns for
both NEON Lidar and GEDI is a potential risk for gap fraction estimation [41]. Luo et al.
(2013) demonstrated that taking ground elevation as a threshold to separate ground energy
from canopy energy can be site-suitable and lead to better LAI estimation [68]. With a large
footprint being commensurate with canopy size, the full waveform can record more details
of canopy elements than discrete point cloud Lidar, whose ability for LAIe estimation
depends on point density [73]. Having the ability to detect small gaps, full waveform Lidar
has more power penetration than discrete cloud point Lidar [72]. These above-mentioned
uncertainties reasonably explained the DGF between GEDI and NEON Lidar that was
unexplained by factors employed in this study.

Canopy characteristics, especially canopy cover and standard deviation of tree height,
are important for both GEDI LAIe estimation and the DGF, with a relative importance
of 23% and 82% (Figure 7), respectively. For the impact mechanism of canopy cover, the
increase in canopy cover leads to a homogeneous forest resulting in a decrease in the
DGF which narrows the absolute deviation of GEDI LAIe. The impact mechanism of the
standard deviation of tree height on the DGF and GEDI LAIe estimation can owe to the
vertical heterogeneity of the canopy. The increase in vertical heterogeneity of the canopy
within the footprint increases the risk of under-sampling the canopy by discrete cloud Lidar
compared to GEDI, which increases the DGF [70,73]. Moreover, the increasing vertical
heterogeneity complicates the reflectance of the canopy, which can cause non-negligible
multiple scattering in full-waveform Lidar [36,37]. The effect of multiple scattering for the
DGF includes two scenarios. Firstly, multiple scattering forms pseudo-ground waveform



Remote Sens. 2023, 15, 1535 16 of 20

peaks under the ground in large-footprint waveforms [7]. Using the pseudo-ground
waveform energy instead of true ground waveform energy will result in an underestimation
of the gap fraction [11,12]. Secondly, the energy of multiple scattering is not enough to
form a pseudo-ground waveform peak but can exaggerate ground waveform energy. In
this case, using the expanded ground waveform energy will cause the overestimation of
the gap fraction in large footprint waveforms. Given that GEDI LAIe has a systematic
underestimation in this study, it is reasonable to assume that the influence of multiple
scattering on GEDI LAIe estimation follows the second scenario in most temperate forests.

Soil characteristics were regarded as a function of ground reflectance that directly
affected gap fraction estimation using GORT. The relative importance of soil characteristics
to GEDI LAIe estimation and the DGF is 16% and 7%, respectively. These results are
comparable with previous studies [7,11,12,19] which reported an influence of 10~25% from
the uncertainty of the ratio of ground and canopy reflectance (ρv/ρg) on LAIe estimation.
The low relative importance value suggestes a limited influence of soil reflectance on
estimates of gap fraction and LAIe using GEDI waveform in temperate forest areas [22].

Although the effect of topographic slope characteristics and sensor system parameters
on the absolute deviation of GEDI LAIe and DGF was not significant in this study, the
effect of these factors should not be ignored. For example, in a steep area, there is a risk
of mixed energy of canopy and ground and a potential risk of interaction among factors,
resulting in a reduction in accuracy of gap fraction estimation [19,30]. Additionally, this
study found that the GEDI power beam outperformed the GEDI coverage beam, suggesting
the potential for using sensor system parameters as a filter for an improvement of GEDI
LAIe estimation.

Note that we analyzed the impact factors mainly based on NEON Lidar LAIe instead
of field-measured datasets due to their limited number. Factors affecting the comparison of
LAIe between GEDI and field plots should still be stressed. Specifically, the discrepancy
caused by the mismatching of space and time directly undermined the assessment of
GEDI LAIe (Supplementary Table S5). For example, without removing the outliers of field
plots, the r, bias, MAE, RMSE, and %RMSE increased by 0.49, 0.04 m2/m2, 0.47 m2/m2,
0.47 m2/m2, and 0.32. Wang et al. (2022) [30] and Roy et al. (2021) [74] described how the in-
fluence of geolocation uncertainty of GEDI might be exaggerated by the high heterogeneity
of the forest and topography. The high heterogeneity of forests caused by roads and build-
ings surrounding the 40 × 40 m plot (plot ID of 8, and 17–18 in Supplementary Figure S3)
explained the LAIe difference between GEDI and field plots in the Fenghuang Mountains
well. A steep slope (outside the 40 × 40 m plot) caused a change in the geometric re-
lationship between vegetation and ground resulting in abnormal waveform peaks [40].
As a result, the GEDI LAIe substantially differed from field-measured LAIe (plot ID of
6 in Supplementary Table S5 and Figure S3). Thus, geolocation correction or selecting high-
quality observations according to various factors such as slope are recommended for the
better application of the GEDI LAIe product [30]. Although factor analysis based on NEON
Lidar LAIe suggested that the influence of the difference in time between GEDI and NEON
Lidar was insignificant (Figure 7, Supplementary Figure S2), a different phenomenon was
found in Fenghuang Mountains. Specifically, a greater than 1 m2/m2 difference of LAIe
between GEDI and field plots was found in deciduous forests, where GEDI and field plot
data were collected in mid-April 2021 and early September 2022, respectively. Selecting
a small-time interval between GEDI and its reference for accuracy assessment should
be emphasized. Using a time-consistent NEON Lidar, the accuracy assessment result of
GEDI LAIe in this study is more reliable than previous studies using relatively outdated
reference data [19,20].

4.3. Limitations and Prospects

This study focused on the accuracy assessment of GEDI LAIe in mid-latitude temperate
forests. Thus, our results cannot directly provide evidence for the performance of GEDI
LAIe in tropical forests and boreal forests. Analysis of other factors related to LAI estimation
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should be conducted in future work. For example, the impact of the leaf inclination
distribution function (G), which is a critical factor in Beer’s law, is not analyzed in this
study due to the lack of an available proxy to characterize it. According to Jiang et al.,
setting the G function to 0.5 (i.e., spherical distribution) can cause a 53% error in GEDI
LAIe estimation [35]. It is worth noting that GEDI LAIe is not the true leaf area within a
footprint due to the clumping effect [6,33,66,67]. Taking field-measured LAIt as a reference,
this study demonstrated a 0.81 relative error of GEDI LAIt estimation if the clumping effect
is not corrected (Figure 8). This relative error is consistent with the 0.30~0.93 relative error
reported in the previous study [8,33]. Moreover, our results showed that within-canopy
clumping (relative errors of 0.79) is the dominant form of canopy clumping in coniferous
forests, which is in line with [6,33,66]. Thus, future work is encouraged to correct the
clumping effect for GEDI LAIt estimation.

5. Conclusions

GEDI has provided a near-global LAIe product that has the potential to revolutionize
the limitations of optical-based LAIe estimation. A comprehensive accuracy assessment of
GEDI LAIe products is a prerequisite for its appropriate application. This study makes a
direct and indirect assessment of GEDI LAIe based on field survey datasets in Fenghuang
Mountains and NEON Lidar LAIe over 22 NEON sites covering 12 forest types across the
CONUS. Results showed a systematical underestimation of GEDI LAIe in temperate forests
with a moderate error (%RMSE: 0.33~0.52). The performance of GEDI LAIe varied between
forest types, with higher error in dense broadleaf forest compared to sparse coniferous
forest. Analysis of the influence of factors revealed that the absolute deviation of GEDI
LAIe was mostly impacted by the accuracy of the gap fraction (relative importance of 49%),
followed by characteristics of canopy and soil with a relative importance of 23% and 16%,
respectively. The vertical heterogeneity proxied by the standard deviation of the tree height
and canopy cover is a non-negligible factor for estimates of GEDI LAIe and gap fraction.
Findings in this study provide insight into the accuracy of GEDI LAIe for various forest
types and geographic units and clarify the mechanism of multiple factors to GEDI LAIe,
which are valuable for the application and improvement of GEDI LAIe.
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deviation) and the difference between gap fraction derived from GEDI and NEON Lidar (referred
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