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Abstract: In the present study, an integrated framework for automatic detection, segmentation, and
measurement of road surface cracks is proposed. First, road images are captured, and crack regions
are detected based on the fifth version of the You Only Look Once (YOLOv5) algorithm; then, a
modified Residual Unity Networking (Res-UNet) algorithm is proposed for accurate segmentation at
the pixel level within the crack regions; finally, a novel crack surface feature quantification algorithm
is developed to determine the pixels of crack in width and length, respectively. In addition, a road
crack dataset containing complex environmental noise is produced. Different shooting distances,
angles, and lighting conditions are considered. Validated through the same dataset and compared
with You Only Look at CoefficienTs ++ (YOLACT++) and DeepLabv3+, the proposed method shows
higher accuracy for crack segmentation under complex backgrounds. Specifically, the crack damage
detection based on the YOLOv5 method achieves a mean average precision of 91%; the modified
Res-UNet achieves 87% intersection over union (IoU) when segmenting crack pixels, 6.7% higher
than the original Res-UNet; and the developed crack surface feature algorithm has an accuracy of
95% in identifying the crack length and a root mean square error of 2.1 pixels in identifying the crack
width, with the accuracy being 3% higher in length measurement than that of the traditional method.

Keywords: road engineering; pavement; crack segmentation; deep learning; YOLOv5; feature quantification

1. Introduction

Structural damage to roads may induce serious traffic accidents and substantial eco-
nomic losses. In China in 2021, the number of traffic accidents was up to 273,098, and the
total direct property damage was CNY 145,036,000 [1]; in 2022, the Chinese transportation
department invested a total of CNY 1.29 trillion in road maintenance [2]. Therefore, it is
important to monitor the typical signs of road damage, i.e., surface cracks in pavements,
in a timely and accurate manner. Thus, it is necessary to detect and evaluate cracks in
time at the early stage of their appearance, which enables road structures to become more
durable and have a longer service life [3]. In the past decades, several contact sensor-based
approaches for road crack detection have been proposed in the field of structural health
monitoring [4,5]. However, the contact sensor-based detection techniques have some restric-
tions, such as low operational efficiency, unstable measurement accuracy, and vulnerability
to temperature and humidity variations [6,7]. Therefore, it is of great significance to develop
a new contact-free road crack detection and quantification method with better efficiency
and accuracy.

To break the restrictions of the contact sensor-based methods, some vision-based
damage detection methods have been developed in several studies [8–10]. A four-camera
vision system and a novel global calibration method were proposed by Chen et al. [11],
and the performance of the multi-vision system was improved by minimizing the global
calibration error. Benefiting from the vision-based techniques, structural defects such as
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spalling, cracks, and holes can be automatically detected from images. With the rapid
development of artificial intelligence, many deep learning algorithms based on deep convo-
lutional neural networks (CNNs) have been developed to explore the automatic detection
of road cracks and other various damage [12–14]. For instance, the faster region proposal
convolutional neural network (Faster R-CNN) was utilized by Hacıefendioğlu et al. [15] for
automatic crack identification. Moreover, a generative adversarial networks (GANs)-based
method and an improved VGG16-based algorithm were proposed by Que et al. [16] for
crack data augmentation and crack classification, respectively, which effectively solved the
training problem caused by insufficient datasets. With the You Only Look Once (YOLO)
algorithm, Du et al. [17] established a method for quickly identifying and classifying de-
fects in the road surface. It is worth noting that there are different versions of YOLO, and
YOLOv6 [18], YOLOv7 [19], and YOLOv8 [20] are currently updated. Considering the
stability and applicability of the algorithm, the most widely used YOLOv5 algorithm is
employed in the present study [21]. A common feature of these deep learning algorithms
is the use of bounding boxes. The bounding box, which is essentially a rectangle around
an object, specifies the object’s predicted location, category, and confidence. In addition
to using bounding boxes for localization, crack detection at the pixel level has also been
implemented in some deep learning algorithms [22–24]. For instance, Yong et al. [25]
constructed an end-to-end real-time network for crack segmentation at the pixel level. To
better extract crack features, an asymmetric convolution enhancement (ACE) module and
the residual expanded involution module (REI) were embedded. In the studies of Sun
et al. [26], Shen and Yu [27], and Ji et al. [28], DeepLabv3+ was employed to automatically
detect pixel-level cracks. Zhang et al. [29] suggested Res-UNet as a method for the auto-
matic detection of cracks at the pixel level. Zhu et al. [30] and Kang et al. [31] quantified
the detected cracks at the pixel level and extracted the crack skeleton with the distance
transform method (DTM). Tang et al. [32] proposed a new crack backbone refinement
algorithm, and the average simplification rate of the crack backbone and the average error
rate of direction determination were both improved. Due to the modification being based
on the rough skeleton obtained after performing the traditional thinning algorithm [33],
there is room for improvement in measurement efficiency. Recently, domain adaptation has
been widely used to generate large amounts of perfectly supervised labelled synthetic data
for hard-to-label tasks such as semantic segmentation [34,35]. Stan et al. [36] developed
an algorithm adapted to the training of semantic segmentation models, which showed
good generalization in the unlabeled target domain; Marsden et al. [37] proposed a simple
framework using lightweight style transformation that allows pre-trained source models to
effectively prevent forgetting when adapting to a sequence of unlabeled target domains.

However, there are several restrictions on these studies: (1) All of these studies detect
cracks under ideal backgrounds, such as surfaces made entirely of concrete or asphalt.
However, such backgrounds are not in line with the most common engineering practices,
because actual crack detection tasks are always conducted on more complex backgrounds
mixed with surrounding objects such as trees and vehicles [38]. Thus, it is challenging
to distinguish cracks from complex backgrounds. (2) Due to the lack of sensitivity to
image details, previous deep learning methods are prone to giving false positives for
crack-like objects and expanding the detection range of crack edges. (3) In addition, the
post-quantitative processing, such as DTM, following the detection of cracks remains
an obstacle for pixel segmentation, because it always exhibits local branching and end
discontinuities when applied to irregular cracks. The research question of this study is
how to accurately segment and quantify road cracks under complex backgrounds and,
furthermore, how to achieve more accurate crack shape extraction and more accurate
calculation of crack length and width under various common realistic interferences, such
as vehicles, plants, buildings, shadows, and dark light conditions.

In the present study, an integrated framework for road crack segmentation and surface
feature quantification under complex backgrounds is proposed. Compared with the current
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state-of-the-art research in the same field, the main contributions of the present study are
as follows:

• An integrated framework for road crack detection and quantification at the pixel level
is proposed. Compared with previous crack detection and segmentation algorithms,
the framework enables more accurate detection, segmentation, and quantification of
road cracks in complex backgrounds, where various common realistic interferences,
such as vehicles, plants, buildings, shadows, or dark light conditions, can be found;

• An attention gate module is embedded in the original Res-UNet to effectively im-
prove the accuracy of road crack segmentation. Compared with YOLACT++ and
DeepLabv3+ algorithms, the modified Res-UNet shows higher segmentation accuracy;

• A new surface feature quantification algorithm is developed to accurately detect
the length and width of segmented road cracks. Compared with the conventional
DTM method, the developed algorithm can effectively prevent problems such as local
branching and end discontinuity.

In summary, the purpose of the present study is to accurately detect cracks in roads
under more realistic conditions and to accurately quantify the detected cracks.

In the proposed framework, three separate computer vision algorithms are innova-
tively combined: (1) firstly, the real-time object detection algorithm YOLOv5 [39] is utilized
for object-level crack detection; (2) secondly, a modified Res-UNet is constructed by em-
bedding an attention gate module to more accurately segment the cracks at the pixel level;
(3) finally, a new surface feature quantification algorithm is developed to more accurately
calculate the length and width of segmental road cracks by removing local branching and
crack end loss. The proposed framework is compared with several existing methods to ver-
ify its accuracy. The comparison results show that the modified Res-UNet has higher crack
segmentation accuracy, and the developed crack quantification algorithm is more effective
than the conventional algorithm in preventing local branching and end discontinuities.

This study is organized as follows: Section 2 provides the proposed architecture;
Section 3 introduces the details of the implementation; experiment results and discussion
are presented in Section 4; concluding remarks are provided in Section 5.

2. Methodology

To detect, segment, and quantify road cracks from complex backgrounds, this study
proposes a fully automated architecture, which is shown in Figure 1. YOLOv5, as a
single-stage object detection algorithm, has the advantages of fast detection speed, easy
deployment, and good small target detection. It has been applied in many engineering
practices [40] and is very suitable for road detection tasks with tight time constraints
and high safety risks. Therefore, the YOLOv5-based approach [41] is first employed to
locate road crack areas with bounding boxes, as shown in Stage 1 of Figure 1. Then, the
area of the bounding box is extracted and sent into the modified Res-UNet algorithm in
Stage 2. For more accurate crack segmentation at the pixel level from the bounding boxes,
the original Res-UNet model is modified by embedding an attention gate and proposing
a new combined loss function in this study. Finally, in Stage 3, a novel surface feature
quantification algorithm is proposed to determine the length and width of the segmented
cracks. Note that all image binarization is carried out with Gaussian and Weiner filters
to reduce noise and uninteresting areas. The primary benefit of the proposed approach
over traditional methods is the significant improvement in accuracy and efficiency of road
crack segmentation in complex backgrounds. Meanwhile, a novel quantification algorithm
is developed to finely analyze the surface feature information with a focus on the crack
morphology. The details of each step of the proposed architecture are introduced in the
following subsections.
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Figure 1. Flowchart of the proposed architecture for detecting and quantifying road cracks.

2.1. YOLOv5 for Road Crack Detection

In the first stage of the proposed approach, YOLOv5 is utilized to detect road cracks in
images with complex and various backgrounds. Specifically, the road crack images are first
input to backbone to extract crack features; then, feature fusion is performed in neck using
Feature Pyramid Network (FPN) [42] and Pyramid Attention Network (PAN) [43]; finally,
the predicted values of class probability, item level, and bounding box location of road
cracks are output. The architecture of the YOLOv5 is demonstrated in Figure 2, including
three parts: backbone, neck, and prediction.
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As illustrated in Figure 2, the first part of the architecture is backbone, whose main
function is to extract features from the input image or video frames. Backbone consists
of three main modules, namely Focus, Convolution 3 (C3), and Spatial Pyramid Pooling
(SPP) [41]. The raw data are first divided by the Focus module into four parts, with each
part representing two downsamplings. A lossless binary downsampled feature map is then
generated by convolutionally merging these components along the channel dimension.
The C3 module consists of several structural modules referred to as bottleneck residuals.
Note that to transfer the residual features while keeping the output depth constant, two
convolution layers and an addition with the initial amount constitute the input to the
remaining structural module. Finally, the SPP performs maximized collaboration with four
core dimensions and combines the properties to obtain multi-scale feature information.

In order to fully extract the fusion features, the neck consisting of FPN and PAN
feature pyramid structures is introduced between the backbone and prediction layers. By
using an FPN architecture, robust semantic characteristics can be transmitted from the
highest to the lowest feature maps. This architecture ensures not only that the details of
small objects are correct, but also that large objects can be represented in an abstract way.
In addition, the PAN architecture relays accurate localization information across feature
maps with varying granularity. Through the integral operation of the FPN and PAN, the
neck achieves a satisfactory feature fusion capability.
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In the prediction, a vector containing the target object’s category probability, item
grade, and bounding box location is returned. There are four detection levels in the network,
each of which has a size-specific feature map for detecting targets of varying sizes. After
that, appropriate vectors are obtained from each detection layer, and finally the anticipated
bounding box and item categorization are generated and labelled.

2.2. Modified Res-UNet for Crack Region Segmentation

In the second stage, the crack pixels are segmented from the bounding box with Res-
UNet, which employs skip connections to transmit contextual and spatial data between
the encoder and decoder [29]. This connection helps to retrieve vital spatial data lost
during downsampling. However, considering the similarity between crack-like objects and
crack edges and their near background, passing all the information in the image through
the skip connections can result in poor crack segmentation, especially for some blurred
cracks. Therefore, the architecture of Res-UNet is modified in the present study, as shown
in Figure 3. Specifically, the network was improved in two main aspects: first, the extracted
crack detail features were enhanced by embedding an attention gate [44]; second, a new
combined loss function was proposed to improve the accuracy of segmentation. A detailed
description of these two improvements is described as follows.
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2.2.1. Attention Gate

The attention mechanism of image segmentation is derived from the way human visual
attention works, i.e., focusing on one region of an image and ignoring other regions [45]. In
this study, attention gates are embedded to update model parameters in spatial regions rel-
evant to crack segmentation, and its structure is shown in Figure 4. Two inputs are fed into
the attention gate, namely the tensor of feature pE from the low-level encoder component,
and the tensor of feature pD from the prior layer of the decoder component. Since pD comes
from a more fundamental layer of the network, it has less dimensionality and reflects the
features more accurately than pE. Therefore, before adding the two features element by
element, an upsampling operation on pD is required to ensure that the dimensions are
equivalent to l = Up (pD). Subsequently, to reduce the computational cost, the channels are
compressed by feeding data from multiple sources into a linear conversion layer utilizing a
channel-wise 1 × 1 × 1 convolutional layer, and then each piece is inserted individually.
Note that throughout the summation process, the weight of alignment is greater, and the
weight of misalignment is less. By using a Rectified Linear Unit (ReLU) activation function
and a convolution for the expected features, the channel specification can be reduced to
Fint. Afterwards, a sigmoid layer projects the attention coefficients (weights) onto the range
[0, 1], with larger coefficients indicating greater significance. Eventually, the attentional
parameter is multiplied by a factor with primary source p vector to scale it according to
significance. The entire attention-gating procedure is described as

p̂k = δT(ε1(WT
p pk

i + WT
l li + bl)) + bδ (1)
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λk
i = ε2( p̂k, li; Θatt) (2)

where ε1 and ε2 represent the ReLU and sigmoid activation functions, respectively. Θatt
represents the attention gate’s parameters, which include: linear transformations Wl ∈
RFl×Fint , Wp ∈ RFk×Fint , δ ∈ RFl×1, and corresponding bias terms bδ ∈ R, bl ∈ RFint .
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2.2.2. Combined Loss

The difference between network predictions and ground truth is usually described by
a loss function. In order to minimize the loss function, a stochastic gradient descent (SGD)
optimizer can be used to optimize the network weights. In addition, segmenting cracks
from the images is a binary classification problem. Therefore, in this study, the binary cross
entropy (BCE) loss function is employed:

BCE(h, v) = −∑
i

hi log vi (3)

where i represents the category, in this study, i ∈ {0, 1}; vi presents the prediction; and hi
represents the actual category assigned to each identified pixel. The cracks and backgrounds
are considered at the same level by BCE, which effectively solves the problem caused by
the different sizes of these two categories.

In this study, the image segmentation results can be evaluated by the Dice coefficient,
which can be described as:

D(h, v) =
2|H ∩V|
|H|+|V| =

2∑i vihi

∑i vi + ∑i hi
(4)

where H and V represent the actual and anticipated item volumes, respectively.
To resolve the imbalance between the crack zone and the background, the Dice loss

and BCE loss are merged as:

L(h, v) = (1− β)BCE(h, v) + βD(h, v)

= (1− β)(∑
i

hi log vi) + β(
2∑

i
vihi+ï

∑
i

vi+∑
i

hi+ï )
(5)

where ï is a negligible quantity, typically 1 × 10−10, which is primarily utilized to avoid
division by zero. β is set to 0.5 by experimental test.

2.3. Novel Algorithm for Crack Quantification

In this section, the segmented cracks are quantified at the pixel level with the proposed
algorithm. As a comparison, the traditional DTM procedure is first introduced, as shown
in Figure 5. Firstly, the binary image is converted into a binary matrix, i.e., with “1” or
“0” representing whether it is a crack pixel or not, respectively. Next, a labelling operator
examines all clusters of pixels with the same value (i.e., 1 or 0), starting from the top left
corner, and assigns a unique value to each cluster. In this way, all pixels are categorized
into different clusters and assigned with numbers (1–5), as the first operation is depicted in
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Figure 5. Apparently, some crack pixels are connected but have different cluster numbers.
Therefore, the same operator needs to be applied again to combine these pixels. After the
above steps, the final image matrix can be obtained. To calculate the length and width of a
crack, it is necessary to determine the center pixel of each cluster formed by the preceding
labelling operator with the parallel thinning algorithm. Details can be found in the work of
Lee et al. [46].
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Figure 5. Traditional DTM approach.

Through the calculation, it is found that when extracting the crack center pixel with
the traditional parallel thinning algorithm, there are issues of local branches and loss at the
crack ends, as illustrated in Figure 6a, which obviously leads to an inaccurate calculation
of the crack length. Therefore, the morphological features of cracks are fully considered,
and a new crack quantification algorithm is developed in this study, as shown in Figure 6b.
By extracting the coordinates of the crack edge and performing an average calculation,
the aforementioned limitations can be well-addressed, and the final result is depicted in
Figure 6c. The complete flowchart of the proposed surface feature quantification algorithm
is shown in Figure 7, and the specific implementation process is as follows:
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Figure 6. Schematic diagram of crack skeleton extraction: (a) traditional approach has local branches
and crack end loss in thinning; (b) schematic diagram of the proposed method; (c) thinning results of
the proposed method.

(1) Image preprocessing: The image matrix shown in Figure 5 based on the traditional
crack skeleton detection method is obtained, and the object contour set is found by applying
the “findContours” [47] function in OpenCV. The optimal contour, including the maximum
number of internal closed pixels, is determined for each region:

T = ∑
x=1

∑
y=1

Γ(x, y) (6)

where T represents the number of pixels in the target area; Γ (x, y) represents the grayscale
value of the target; “0” and “1” for the background and target, respectively. Based on the
extracted contour pixel coordinates (x, y), the crack contour point set Ð is generated. Note
that the top left corner of the image is chosen as the coordinate origin.
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(2) Positive contour: The pixels in Ð are sorted in counterclockwise to obtain the full
contour point set Ē. The first half of Ē is specified as the positive contour point set Ēpos, as
shown in Figure 8. For longitudinal cracks, the starting point is the upper left corner of the
contour, and for transverse cracks, its lower left corner is the starting point (transverse and
longitudinal cracks are distinguished based on the rotation angle R of the crack, R ≥ 45◦

for longitudinal and R < 45◦ for transverse).
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(3) Negative contour: Similar to the previous step, the pixels in Ð are sorted in
clockwise to obtain the full contour point set Ĝ. The first half of Ĝ is specified as the
positive contour point set Ĝneg.

(4) Center pixels. For each longitudinal crack contour, all points in positive contour
Ēpos and negative contour Ĝneg are traversed to find a pairs of points with equivalent
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y-values (x-values for transverse cracks), and the centroid coordinates of each pair of points
are determined as: {

Xc = xp +
|xn−xp|

2
Yc = yp ( i f yp = yn)

(7)

where Xc and Yc represent coordinates of the pixels in Ĉ; xp, yp and xn, yn are coordinates
of the pixels in Ēpos and Ĝneg, respectively.

(5) Post-processing: Due to the irregularity of the crack contour, multiple centroids
may be obtained at sharply varying edges, such as the 7th, 8th, and 9th edge points of the
positive contour in Figure 8. The point with the smallest average Euclidean distance from
its neighboring points is retained, while the rest are removed. In this way, the final set of
centroids λ is obtained.

Eventually, the crack length L can be obtained by calculating and accumulating the
distance between each pair of neighboring pixels in the center point set λ:

L = ∑
i=1

√
(Xc

i+1 − Xc
i )

2 + (Yc
i+1 −Yc

i+1)
2 (8)

where Xc
i+1, Yc

i+1 and Xc
i , Yc

i are coordinates of the pixels in the center point set λ. Moreover,
the crack width W can be determined as:

W = Min(τ)× 2 + 1 (9)

where τ represents the distance between the crack’s edge and the corresponding center pixel.

3. Implementation Details

In this section, the proposed method is compared with the state-of-the-art crack
identification, extraction, and quantification methods, respectively. It is worth noting that,
to increase the confidence of the evaluation, the PyTorch framework, which is consistent
with the original network [48], is used in this study, and both training and testing are based
on the widely used publicly available datasets.

3.1. Datasets

To obtain the stable weights, the YOLOv5 and modified Res-UNet models are required
to be pre-trained first, and the information of the dataset used for training is listed in Table 1.
Specifically, the training and validation images are from the Road Damage Detection (RDD)
dataset [49], while the test images are from Hunan University [50]. In this study, two types
of cracks are considered, namely transverse cracks and longitudinal cracks. It is worth
noting that the cracks used for training and validation in this study are mostly wide cracks.
This is due to the fact that the wide cracks (i.e., width > 2 mm) [31] are more harmful to
road structure and are more visible for collection. In preprocessing of training YOLOv5, the
resolution of all images is resized to 1280 × 1280 pixels. In the 120 images used for testing,
the wide (width > 2 mm), medium (1 mm < width < 2 mm), and thin (width < 1 mm) cracks
are 70%, 20%, and 10%, respectively.

The training images for the modified Res-UNet model are taken from the publicly
available road crack dataset [51–53], which was gathered under various illumination
circumstances (including shadow, occlusion, low contrast, and noise). In preprocessing,
the images used for both training and validation are resized to 448 × 448 pixels. Testing
images are those cropped by bounding boxes generated by YOLOv5. All images in the
dataset for training and validation are chosen at random, and part of the image samples
are shown in Figure 9.
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Table 1. Image dataset for crack detection and segmentation.

Training Validation Test

(a) YOLOv5
Number of images 2200 240 120
Resolution 1280 × 1280 1280 × 1280 1920 × 1080, 4032 × 3024
(b) Modified Res-UNet
Number of images 3800 360 120
Resolution 448 × 448 448 × 448 307 × 706, 908 × 129 et al.
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Figure 9. Results of identifying and segmenting cracks based on the publicly available dataset images:
(a) identifying cracks; and (b) segmenting cracks.

The images used to test the YOLOv5, modified Res-UNet, and the developed crack
quantification algorithm are collected with an iPhone 12 equipped with Feiyu Vimble 3
Handheld Gimbal [54], as shown in Figure 10a.
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Figure 10. Devices for image collection and network training: (a) Handheld Gimbal: Feiyu Vimble 3;
and (b) Deep learning server: Super Cloud R8428 G11.

3.2. Training Configuration

YOLOv5 and the modified Res-UNet are trained on a deep learning server (Super
Cloud R8428 G11) with six Nvidia GeForce RTX 3060 (12 GB of memory), as shown in
Figure 10b. The operating system is Ubuntu 20.04 with Pytorch 1.9.1, CUDA 11.0, and
CUDNN 8.04.

The hyperparameters for YOLOv5 are as follows: batch size (32), learning rate (0.001),
momentum (0.9), weight decay (0.0005), and training epoch (1000). The adaptive moment
estimation optimizer is employed in the training process. As for the modified Res-UNet,
the tuned hyperparameters are as follows: batch size (64), weight decay (0.0001), and the
stochastic gradient descent (SGD) optimizer.

3.3. Evaluation Metrics

To evaluate the experimental results of YOLOv5, the modified Res-UNet, and the
developed quantification algorithm, five performance metrics are considered: mean average
precision (mAP), mean intersection of the union (IoU), pixel accuracy (PA), Dice coefficient
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(DICE), and root mean square (RMS) error. In particular, the average precision (AP)
represents the area under the precision–recall curve (P-R curve), while mAP represents the
average value of different categories of AP:

mAP =
AP
N

=

N
∑
1

∫ 1
0 P(R)dR

N
(10)

where P is the proportion of all predicted positive samples that are correctly detected, and
R is the proportion of all actual positive samples that are successfully detected; N refers
to the number of crack categories, in this study mainly transverse cracks and longitudinal
cracks are considered, thus the value is taken as 2. IoU is the ratio between the intersection
and union of the candidate boxes generated and the original marked boxes, which can be
expressed as:

IoU =
area(Ta ∩ Tb)

area(Ta ∪ Tb)
(11)

where Ta represents the ground-truth crack pixels, and Tb denotes the predicted crack
pixels. PA is the number of correctly predicted pixels out of the total pixels, which can be
expressed as:

PA =

k
∑

i=0
pii

k
∑

i=0

k
∑

j=0
pij

(12)

Dice coefficient is adopted to evaluate the ensemble similarity, as shown below:

DICE =
2TP

FP + 2TP + FN
(13)

where TP represents the number of true pixels predicted as positive, FP is the number of
false pixels predicted as positive, and FN is the number of false pixels predicted as negative.
The value of Dice ranges from 0 to 1, with the number indicating better model performance.

RMS error can be determined as:

RMS error =

√
∑k

i=1 (P− T)2

k
(14)

where k is the total number of test images (120 in this study), P represents the quantification
result, and T represents the ground truth.

4. Experiment Results and Discussion

To validate the performance of the proposed approach, real road cracks with various
backgrounds are collected and tested in this section. Furthermore, the results are compared
with two state-of-the-art deep learning algorithms, YOLACT++ [55] and DeepLabv3+ [56].

4.1. Road Crack Detection

The test images are collected in different real scenes with clear backgrounds, shadows,
dark light, and lane lines, respectively. The results of the crack detection using the YOLOv5
model are shown in Figure 11, which shows that all transverse cracks (labelled as “CrackT”)
and longitudinal cracks (labelled as “CrackL”) are all accurately detected with an mAP
of 91%.
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Figure 11. Outcomes of YOLOv5-based road crack detection: (a) Road crack I; (b) Road crack II:
shadow; (c) Road crack III: dark light; and (d) Road crack IV: lane line.

4.2. Region Crack Segmentation

To segment and evaluate cracks from images, image boxes containing cracks detected
by YOLOv5 are fed into modified Res-UNet. For the purpose of illustrating the efficiency of
the modified Res-UNet, seven different UNet-based models for segmenting cracks, namely
U-Net [57], Res-UNet [29], CrackUNet15 [58], CrackUNet19 [58], UNet-VGG19 [59], UNet-
InceptionResNetv2 [59], and UNet-EfficientNetb3 [59], are selected for comparison based
on the testing datasets. The comparison results are listed in Table 2, and the outcomes of the
original Res-UNet and the modified Res-UNet are provided in Figure 12. It can be seen from
Table 2 that the modified Res-UNet achieves the highest IoU, PA, and DICE. Specifically,
the values of average IoU obtained by UNet, Res-UNet, CrackUNet15, CrackUNet19, UNet-
VGG19, UNet-InceptionResNetv2, and UNet-EfficientNetb3 are 78.63%, 80.30%, 83.89%,
84.78%, 84.53%, 83.98%, 84.36%, and 87.00%, respectively; and the DICE obtained by the
modified Res-UNet was improved by 7.86%, 6.06%, 3.93%, 2.65%, 2.88%, 3.60%, and 3.13%,
respectively. It can be seen from Figure 12 that the random interference noise is effectively
reduced by the embedded attention gates, and there is a significant improvement in the
crack-like feature detection using the different weight distribution methods. Specifically, the
IoU of the cracks segmented by the Res-UNet with embedded attention gates is improved
by 6.7% compared with the original model.

Table 2. The results of different UNet-base models on the test dataset.

Model Threshold IoU (%) PA (%) DICE (%)

UNet

0.5

78.63 90.41 85.28
Res-UNet 80.30 92.06 87.08
CrackUNet15 83.89 94.63 89.21
CrackUNet19 84.78 95.86 90.49
UNet-VGG19 84.53 95.41 90.26
UNet-InceptionResNetv2 83.98 94.72 89.54
UNet-EfficientNetb3 84.36 95.16 90.01
Modified Res-UNet 87.00 98.47 93.14

In addition, the proposed approach is compared with two existing crack segmenta-
tion neural networks (YOLACT++ and DeepLabv3+). The YOLACT++ and DeepLabv3+
networks are trained with publicly available crack segmentation datasets [51–53], which
contain noise such as moss on crack, title lines, etc. These two networks were tested with
the same 120 images as the proposed method, and several typical examples are shown
in Figure 13. These images are taken from different environments with a variety of back-
grounds, including lawns, vehicles, buildings, and at night. As can be seen in the last
column of Figure 13, the cracks can be accurately detected and segmented even under weak
illumination conditions. Meanwhile, the details of the three methods are listed in Table 3.
As shown in the table, the proposed approach achieved an average IoU of 87.00%, while
YOLACT++ and DeepLabv3+ achieved an average IoU of only 48.02% and 57.14%, respec-
tively. This indicates that the proposed method significantly outperforms DeepLabv3+ and
YOLACT++ networks for crack identification and segmentation in complex environments.
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Table 3. The information of the three methods and the comparison of the evaluation metrics.

YOLACT++ DeepLabv3+ Proposed Approach

Training data Public Public Public
Label type Pixel mask Pixel mask Bounding box + Pixel mask
Testing data self-collected self-collected self-collected
Test data 120 120 120
PA (%) 63.24 72.32 98.47
DICE (%) 57.21 64.49 93.14
Average IoU (%) 48.02 57.14 87.00
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4.3. Quantification of Crack Surface Feature

In this section, the segmented cracks are analyzed by the proposed quantification
algorithm to determine their width and length in terms of pixels. To evaluate the effec-
tiveness of the proposed algorithm in crack quantification, a self-made dataset containing
the ground truth is constructed. This dataset contains 100 binary images, each of which
has 130 × 130 pixels. In order to better fit the actual scene, different distances and angles
between the camera head and the objects are also considered. The results of the proposed
algorithm are demonstrated as binary graphs in Figure 14, where the black pixels rep-
resent the extracted crack edges, the green pixels represent the results of the thinning
algorithm [46], and the orange pixels represent the results of this study. In addition, all
the identification results of the proposed algorithm are compared with the ground truth,
as shown in Table 4. The values in the table represent the minimum crack width, the
maximum crack width, and the crack length. It is shown in Table 4 that the proposed
algorithm has a very low error in terms of both width and length identification. Compared
with the ground truth, the overall accuracy and total RMS error of the developed algorithm
are 95% and 2.1 pixels for length and width, respectively, while the conventional thinning
algorithm is only 92% accurate. This is due to the large error in the calculation of crack
length by the conventional thinning method, as shown in Figure 15. It can be seen from
Figure 15 that the method proposed in this study effectively avoids local branching and
end loss when extracting the crack skeleton.
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Table 4. Comparison of ground truth and the results of the proposed algorithm.

Instance Ground Truth Predicted Result Error

Crack-1 (3, 7, 152) * (2, 7, 150) (1, 0, 2)
Crack-2 (4, 11, 224) (4, 11, 223) (0, 0, 1)
Crack-3 (3, 17, 267) (2, 18, 264) (1, 1, 3)
Crack-4 (4, 26, 110) (4, 24, 105) (0, 2, 5)
Crack-5 (2, 20, 145) (2, 19, 143) (0, 1, 2)
Crack-6 (2, 11, 201) (2, 10, 197) (0, 1, 4)
Crack-7 (3, 134) (3, 131) (0, 3)
Crack-8 (8, 17, 297) (7, 19, 296) (1, 2, 1)
Crack-9 (14, 21, 129) (16, 19, 126) (2, 2, 3)
Crack-10 (9, 33, 276) (9, 31, 274) (0, 2, 2)
Crack-11 (7, 8, 277) (5, 8, 275) (2, 0, 2)
Crack-12 (4, 13, 56) (3, 12, 57) (1, 1, 1)
Crack-13 (3, 9, 298) (3, 8, 297) (0, 1, 1)
Crack-14 (9, 17, 335) (7, 15, 332) (2, 2, 3)
Crack-15 (4, 7, 227) (4, 8, 223) (0, 1, 4)
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Table 4. Cont.

Instance Ground Truth Predicted Result Error

Crack-16 (8, 3, 124) (8, 3, 122) (0, 0, 2)
Crack-17 (4, 7, 378) (4, 8, 374) (0, 1, 4)
Crack-18 (12, 9, 194) (13, 9, 195) (1, 0, 1)
Crack-19 (5, 6, 325) (5, 7, 321) (0, 1, 4)
Crack-20 (3, 4, 102) (3, 5, 100) (0, 1, 2)

* The values in the table represent the minimum crack width, the maximum crack width, and the crack length.
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4.4. Limitations and Future Discussion

The proposed framework performs well in the identification, segmentation. and
measurement of road cracks in complex environments. Depending on various requirements
in practice, the proposed method can either perform the crack detection task alone, or
directly detect cracks and segment them. It takes about 42 ms per 640 × 640 sized image
for YOLOv5, while it takes only 0.64 s per 100 × 100 sized bounding box for the modified
Res-UNet. However, the proposed framework indeed has some limitations as follows:
(1) Although the cropped images provided by YOLOv5 have 91% accuracy, the remaining
9% may produce poor results in the modified Res-UNet; therefore, hyperparameter tuning
of the network is required. (2) In terms of accuracy, a minimum width of cracks in the
images should be guaranteed to be greater than two pixels when using the proposed
framework; therefore pre-processing of the collected images is required. (3) Our current
research is at the pixel level, and the distance mapping relationship between the real world
and digital images is our next research focus.

5. Conclusions

To achieve an accurate assessment of road cracks under complex backgrounds, an
integrated framework that combines crack detection, segmentation and quantification is
proposed in the present study. Crack regions were first detected with YOLOv5, then fed
into the modified Res-UNet model for crack segmentation, and finally the width and length
of the cracks were extracted based on the proposed crack quantification algorithm. Based
on the identification results, the following conclusions are obtained:
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The proposed method can accurately detect cracks at pixel level and shows good
robustness under the interference of darkness, shadows, and various noises;

The accuracy of Res-UNet for segmenting cracks is effectively improved by embed-
ding an attention gate and proposing a new combined loss function, and the IoU of the
segmented cracks is improved by 6.7%;

Compared with YOLACT++ and DeepLabv3+, the proposed method shows higher
accuracy for crack segmentation under complex backgrounds with an mAP of 91% and an
average IoU of 87%;

The developed crack quantification algorithm can effectively reduce local branching
and crack end loss, and improve the accuracy of measuring the length of cracks by 3%
compared with the traditional method.

In summary, the proposed integrated method makes contributions by boosting the
efficiency of segmentation and quantification of road cracks when the background is full
of other objects (e.g., vehicles, buildings, and plants). Compared with the cost of an
inspection vehicle [60], the cost of the proposed method is much lower, about 4% of that
of an inspection vehicle. However, there are some limitations to this study. First, there
is a lot of room for accuracy improvement to achieve reliable crack inspection in real
applications. Second, the tests were mainly conducted with cracks that were obvious and
large-scale. In addition to complex backgrounds, future studies can explore cracks with
more complex features.

Author Contributions: Conceptualization, L.D. and Y.L.; methodology, L.D. and Y.L.; validation,
L.D. and A.Z.; formal analysis, L.D. and J.G.; investigation, Y.L. and A.Z.; writing—original draft
preparation, A.Z. and J.G.; writing—review and editing, L.D. and Y.L.; visualization, A.Z.; supervision,
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No.52278177)
and the Science and Technology Innovation Leader Project of Hunan Province, China (No. 2021RC4025).

Data Availability Statement: The data presented in this study are available from the corresponding author.

Acknowledgments: We would like to express our gratitude to the editor and reviewers for their
valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. National Bureau of Statistics. National Data. Available online: https://data.stats.gov.cn/ (accessed on 1 January 2022).
2. The State Council. Policy Analyzing. Available online: http://www.gov.cn/zhengce/2022-05/11/content_5689580.htm (accessed

on 11 May 2022).
3. Ministry of Transport and Logistic Services. Road Maintenance. Available online: https://mot.gov.sa/en/Roads/Pages/

RoadsMaintenance.aspx (accessed on 15 September 2022).
4. Kee, S.-H.; Zhu, J. Using Piezoelectric Sensors for Ultrasonic Pulse Velocity Measurements in Concrete. Smart Mater. Struct. 2013,

22, 115016. [CrossRef]
5. Zoidis, N.; Tatsis, E.; Vlachopoulos, C.; Gotzamanis, A.; Clausen, J.S.; Aggelis, D.G.; Matikas, T.E. Inspection, Evaluation and

Repair Monitoring of Cracked Concrete Floor Using NDT Methods. Constr. Build. Mater. 2013, 48, 1302–1308. [CrossRef]
6. Li, J.; Deng, J.; Xie, W. Damage Detection with Streamlined Structural Health Monitoring Data. Sensors 2015, 15, 8832–8851.

[CrossRef] [PubMed]
7. Dery, L.; Jelnov, A. Privacy–Accuracy Consideration in Devices that Collect Sensor-Based Information. Sensors 2021, 21, 4684.

[CrossRef] [PubMed]
8. Jiang, S.; Zhang, J.; Wang, W.; Wang, Y. Automatic Inspection of Bridge Bolts Using Unmanned Aerial Vision and Adaptive Scale

Unification-Based Deep Learning. Remote Sens. 2023, 15, 328. [CrossRef]
9. Fiorentini, N.; Maboudi, M.; Leandri, P.; Losa, M.; Gerke, M. Surface Motion Prediction and Mapping for Road Infrastructures

Management by PS-Insar Measurements and Machine Learning Algorithms. Remote Sens. 2020, 12, 3976. [CrossRef]
10. Zhu, Y.; Tang, H. Automatic Damage Detection and Diagnosis for Hydraulic Structures Using Drones and Artificial Intelligence

Techniques. Remote Sens. 2023, 15, 615. [CrossRef]
11. Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Li, L.; He, Y. High-Accuracy Multi-Camera Reconstruction Enhanced by Adaptive Point

Cloud Correction Algorithm. Opt. Lasers Eng. 2019, 122, 170–183. [CrossRef]

https://data.stats.gov.cn/
http://www.gov.cn/zhengce/2022-05/11/content_5689580.htm
https://mot.gov.sa/en/Roads/Pages/RoadsMaintenance.aspx
https://mot.gov.sa/en/Roads/Pages/RoadsMaintenance.aspx
http://doi.org/10.1088/0964-1726/22/11/115016
http://doi.org/10.1016/j.conbuildmat.2013.06.082
http://doi.org/10.3390/s150408832
http://www.ncbi.nlm.nih.gov/pubmed/25884788
http://doi.org/10.3390/s21144684
http://www.ncbi.nlm.nih.gov/pubmed/34300430
http://doi.org/10.3390/rs15020328
http://doi.org/10.3390/rs12233976
http://doi.org/10.3390/rs15030615
http://doi.org/10.1016/j.optlaseng.2019.06.011


Remote Sens. 2023, 15, 1530 17 of 18

12. Al Duhayyim, M.; Malibari, A.A.; Alharbi, A.; Afef, K.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Mohsen, H. Road Damage Detection
Using the Hunger Games Search with Elman Neural Network on High-Resolution Remote Sensing Images. Remote Sens. 2022, 14,
6222. [CrossRef]

13. Lee, T.; Yoon, Y.; Chun, C.; Ryu, S. CNN-Based Road-Surface Crack Detection Model that Responds to Brightness Changes.
Electronics 2021, 10, 1402. [CrossRef]

14. Zhong, J.; Zhu, J.; Huyan, J.; Ma, T.; Zhang, W. Multi-Scale Feature Fusion Network for Pixel-Level Pavement Distress Detection.
Autom. Constr. 2022, 141, 104436. [CrossRef]
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