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2 Systems and Control Laboratory, Institute for Computer Science and Control (SZTAKI), ELKH,

Kende utca 13-17, H-1111 Budapest, Hungary
3 Computational Optical Sensing and Processing Laboratory, Institute for Computer Science and Control

(SZTAKI), ELKH, Kende utca 13-17, H-1111 Budapest, Hungary
4 The Radio Frequency Testing Laboratory, Széchenyi István University, H-9026 Győr, Hungary
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Abstract: Forerunner UAV refers to an unmanned aerial vehicle equipped with a downward-looking
camera flying in front of the advancing emergency ground vehicles (EGV) to notify the driver about
the hidden dangers (e.g., other vehicles). A feasibility demonstration in an urban environment having
a multicopter as the forerunner UAV and two cars as the emergency and dangerous ground vehicles
was done in ZalaZONE Proving Ground, Hungary. After the description of system hardware and
software components, test scenarios, object detection and tracking, the main contribution of the paper
is the development and evaluation of encounter risk decision methods. First, the basic collision
risk evaluation applied in the demonstration is summarized, then the detailed development of an
improved method is presented. It starts with the comparison of different velocity and acceleration
estimation methods. Then, vehicle motion prediction is conducted, considering estimated data and
its uncertainty. The prediction time horizon is determined based on actual EGV speed and so braking
time. If the predicted trajectories intersect, then the EGV driver is notified about the danger. Some
special relations between EGV and the other vehicle are also handled. Tuning and comparison of basic
and improved methods is done based on real data from the demonstration. The improved method can
notify the driver longer, identify special relations between the vehicles and it is adaptive considering
actual EGV speed and EGV braking characteristics; therefore, it is selected for future application.

Keywords: forerunner UAV; aerial vision; ground vehicle tracking and positioning; detection of
dangerous encounters

1. Introduction

The forerunner UAV concept was introduced in [1,2], the former discussing the for-
mulation of the concept and the latter introducing the final concept of the demonstration
system. It refers to a camera-equipped UAV flying in front of and above emergency ground
vehicles (EGVs) to notify the driver about hidden threats covered by buildings, vegetation
or other vehicles. The project “Developing innovative automotive testing and analysis
competencies in the West Hungary region based on the infrastructure of the Zalaegerszeg
Automotive Test Track” GINOP-2.3.4-15-2020-00009 targets to make a feasibility study of
the overall forerunner UAV concept applying extensive simulation studies and a small-
scale feasibility demonstration on the Zalaegerszeg Automotive Test Track. The project
lasts from July 2020 to March 2023 and the real-life feasibility demonstration of the whole
system was presented in September 2022 [3]. The risk evaluation of ground vehicle collision
with the forerunner UAV is the main focus of this article, giving only an overview of the
whole system concept, object detection and tracking. The previous publications focused
mainly on the system concept [1,2], the simulation components of the forerunner UAV
software-in-the-loop (SIL) simulation [4] and the challenge of tracking the EGV flying in
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front of it on a pre-planned route which can suddenly change [5]. Here, the details of the
onboard system installed on the EGV and the additional onboard system of the selected
DJI M600 hexacopter test vehicle [6] are presented in Section 2 together with the details of
the applied test scenarios. Then the software structure consisting of control, camera and
detection modules is presented in Section 3. These are all new unpublished details of the
forerunner UAV test setup. The main challenge of the forerunner concept is the capability
to decide if an approaching ground vehicle endangers the own EGV by not stopping or by
stopping too late. As the forerunner UAV applies a stabilized downward-looking camera to
monitor the traffic situation first, the other vehicles should be detected in the camera image.
It is good to detect also the own EGV as will be discussed later, but it is not mandatory for
the proper functioning of the system.

Camera-based object detection using neural networks has been witnessing a revolu-
tionary change in the field of computer vision. Many detection algorithms emerged that
are now capable of both successfully localizing objects on an image and specifying the
category to which the object belongs; however, the inference time, or the speed at which
one input frame is processed, can be significant even on dedicated high-end hardware.
State-of-the-art object detection methods can be categorized into two main types: one-stage
and two-stage object detectors. In one-stage detectors, the localization and classification
are combined into one step to achieve higher performance at the cost of accuracy. In two-
stage object detectors, the approximate object regions are proposed using deep features
before these features are used for the classification as well as bounding box regression
for the object candidates. These methods achieve higher accuracy but are usually more
resource-intensive than one-stage detectors. As the object detection must run real-time
on the UAV, certain hardware limitations had to be considered, which narrowed down
our object detector choices to one-stage detectors. The most popular one-stage detectors
include Yolo, SSD [7] and RetinaNet [8]. Due to previous experiences with it, the final
choice went to the Yolo (You Only Look Once) object detector. At the time of writing, the
latest version was Yolov7 published in July 2022 [9], but due to better support and software
compatibility, the predecessor Yolov4 [10] and Yolov5 [11] versions were only considered,
of which Yolov5 proved to be slightly better both in detection accuracy and inference time.
The detected objects then need to be tracked for the estimation of their trajectories.

Online Multiple Object Tracking (MOT) is often solved by data association between
detections and tracks [12]. Data association can be seen as an optimization problem, where
each pairing has its own cost. The two main components of the cost function are the motion
model and the visual representation model of an object. Visual representation models
make the tracking robust [13,14]; however, usage of these representations requires more
computation. Each MOT solver needs to make a trade-off between speed and accuracy,
especially on an edge computer. Neural networks dominate the field of object detection,
and they are also capable of encoding visual representations during the detection step [15].
Simple online and real-time tracking SORT [16] is the baseline of MOT solvers with motion
model, where the Hungarian algorithm provides the optimal pairing. Motion models
are sensitive to camera movements, which are inevitable on a moving platform. One
possibility to reach better tracking performance beyond using visual representations is 3D-
reconstruction-based tracking, where the 3D object positions are estimated and tracked [17].
This approach can naturally handle occlusions and provide more robustness and scene
understanding during tracking; however, it requires calibrated camera and accurate camera
state estimation. MOT in this paper has some additional assumptions. The EGV sends its
GNSS position to the drone, which helps the tracking of the EGV if it is in the camera image,
and the GNSS altitude of the road is known. With these assumptions, the 3D trajectories of
the detected vehicles can be tracked by a SORT-based method.

The training of the object detection methods is summarized in Section 4 while the
details of object tracking are given in Section 5.

There is a broad set of literature about vehicle collision estimation considering dif-
ferent scenarios and approaches. Refs. [18–21] consider known position, velocity and
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even acceleration information while [22] considers images of a camera mounted on the
own vehicle and [23] considers a large database about the road network and accidents.
Ref. [23] applies machine learning methods to learn accident formation on the Montreal
road network and, based on that, predict future accidents or dangerous road sections.
Ref. [22] applies vehicle detection, lane detection and vehicle motion prediction mainly
focusing on lane changes of the other vehicle considering the images from the viewpoint of
the driver. Ref. [20] applies Long Short-Term Memory and Generative Adversarial Network
to learn and predict vehicle trajectories on a longer, 12 to 20 min horizon based on 8 min of
registered data.

Closest to our situation with known vehicle position are the works [18,19,21]. Ref. [18]
considers rear end collisions and intersection accidents predicting close vehicle trajectories
from position, velocity and acceleration data on a given time horizon. The prediction
time horizon is varied and simulation evaluation considers driver response time and the
time required to slow down the vehicle showing the cases when the driver notification
is successful or not. Ref. [19] deals with rear end collision prevention in adverse weather
conditions considering the effect of weather on driver reactions. It gives a good overview
about the collision prediction methods including time to closest point of approach, stopping
distance algorithm (SDA) and the machine-learning-based non parametric methods. In
the solution of this paper, braking and reaction times of the driver are considered such
as in [18]. Ref. [21] deals with deterministic prediction of vehicle trajectories based on
simple Newtonian dynamics and the handling of uncertainties transformed from vehicle
reference frame to North-East frame. A resulting normal distribution is applied to evaluate
probability of the predicted vehicle positions, considering also vehicle size. Lane geometry
is also applied to exclude positions outside the lanes. Finally, the method is verified in two
simulated scenarios.

Considering the literature, the development goals in the forerunner project were to
construct a parametric method for trajectory prediction and collision decision possibly
also including the position uncertainties. The inclusion of EGV stopping time makes
the trajectory prediction adaptive. Non-parametric methods are excluded because of the
usually higher computational needs of machine learning solutions. As the back-projection
of camera vehicle positions give North-East (NE) coordinates, the system dynamics are
considered in the North and East directions, thus avoiding complications caused by vehicle
to NE and backward coordinate frame transformations (see [21]). In case of accurate
estimation, the separate North and East accelerations should give the same results as vehicle
longitudinal and lateral acceleration transformed to NE frame with vehicle orientation.
Contrary to the literature sources, the verification of the methods is done with real test
data starting from the captured image sequence and finally arriving to the decision about
ground vehicle collision.

Newtonian dynamics-based parametric prediction methods require the estimation of
vehicle speed and acceleration from the camera-based position information. Vehicle speed
estimation based on fixed cameras is discussed in [24–27]; however, as the forerunner UAV
moves with the EGV, the camera is also moving, so UAV-based vehicle speed estimation
methods should be considered as presented in [28–32]. Refs. [28,30] apply ground control
point-based calibration of the scene, which is not feasible with the forerunner UAV as it
should operate without such constraints. Ref. [32] applies a special calibration procedure
from the literature, which again requires a predefined scene. Ref. [29] considers assumed
vehicle sizes to scale the picture; however, the large variety of vehicle sizes makes this
approach risky. Ref. [31] mentions the concept of fixed flight altitude and then applies
road lane information to improve accuracy. In the current work, known flying altitude and
flat plane assumptions are applied as mentioned before. These are all valid considering
the precision of relative barometric altitude measurement and the relief of ZalaZONE
Smart City, which is flat. Camera-based calculations lead to uncertain North-East position
information (see Section 5) of the vehicles, from which the velocity and acceleration can be
estimated with different methods [33–37]. Detailed evaluation of these literature sources is
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presented in Section 6. After velocity and acceleration estimation, the prediction of vehicle
trajectories is required and, based on the predictions, a decision about collision danger
should be made.

For the September 2022 demonstration, a very simple parametric method with a heuris-
tic decision logic considering the main characteristics of the encounters was developed due
to the time constraints. The detailed tuning of the basic method, the exploration of further
possibilities and proposal of a more complex method are the main topics of this article. In
Section 6, the basic method is presented first, then the development steps and results of the
more complex method are shown. Apart from decision about the collision, several special
scenarios can also be detected with the suggested method such as other vehicles behind, in
front of or moving in the same direction as the EGV. Section 7 presents the parameterized
form of the basic and improved decision methods for parameter tuning. Then, Section 8
presents the tuning results for the two methods while Section 9 compares them based on
real demonstration data. Finally, Section 10 concludes the paper.

2. System Hardware Structure and the Demonstration Scenarios

The entire Forerunner UAV concept relies on the cooperation of an aerial and a ground
vehicle (EGV). To make the UAV able to follow the EGV autonomously, a common commu-
nication link has to be established between the two vehicles. Among many alternatives,
5 GHz WiFi was chosen to be the platform of the communication. Both the EGV and the
drone had to be equipped with additional hardware packages. Our goal was to make
these hardware stacks as system-independent as possible. This was completely satisfied
regarding the ground unit, since it can be mounted on top of any commercial vehicle; no
additional components are required by the EGV to make the system work. Easy portability
was very useful when testing, since the system was mounted on numerous vehicles, includ-
ing an actual ambulance car (see Figure 1). On the other hand, the aerial hardware system
can only be used on DJI M600 hexacopters, since both the mechanical and software archi-
tectures rely on the specifications of the aforementioned drone. However, with minimal
design changes, it can be mounted onto other drones as well. Figures 1 and 2 show the DJI
M600 with the onboard system.

Figure 1. Forerunner demonstration setup with ambulance car (EGV), UAV and other vehicle.
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Figure 2. DJI M600 with the onboard unit installed.

2.1. EGV Onboard Unit

The onboard unit installed on the EGV consists of a high performance MikroTik
outdoor WiFi access point (WiFi AP), a custom designed RTK capable GNSS receiver (man-
ufactured in Institute for Computer Science and Control (SZTAKI)), a National Instruments
CAN-USB interface and a four cell LiPo battery to power them. A laptop is also necessary
for collecting and sending the measurement data coming from the GNSS sensor. The block
scheme and a photo of the actual hardware can be seen in Figures 3 and 4, respectively. The
hardware mounted on an ambulance car is shown in Figure 1.

Figure 3. Block scheme of the EGV onboard hardware.

The main task of the EGV onboard unit is to measure the position and velocity and
send it to the drone. The measurement is carried out by the GNSS system, which supports
RTK correction, and thus can provide centimeter precision position data. Besides position,
the receiver sends velocity and timestamp values which are utilized as well. The actual
hardware (hardware #2 in Figure 4) is designed by SZTAKI and was further developed
and tested within the scope of the Forerunner UAV project. As it can be seen in Figure 3,
the dataset is transmitted via CAN to a NI CAN-USB interface, which is connected to the
laptop which receives and packs the valuable information. This is then transmitted to the
drone’s onboard stack via the WiFi router. To ensure faster packet sending, the laptop is
connected to the router with an Ethernet cable. The gray area in Figure 3 incorporates the
devices present in Figure 4.
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Figure 4. Onboard hardware system of the EGV. 1: MikroTik router, 2: RTK GNSS electronics, 3: NI
CAN interface, 4: 4S LiPo battery, 5: GNSS receiver antenna, 6: USB connection to laptop.

2.2. Aerial Vehicle Onboard Unit

Compared to the ground unit, the aerial onboard system has a few more components,
as depicted in Figures 5 and 6. As visible in Figure 5, the whole system relies on the
DJI M600 platform because it provides power and data also to the payload. There are
several sensors applied, including the same RTK GNSS sensor featured in the ground
unit and a Basler industrial camera with an additional gimbal stabilizer. The core of the
drone’s onboard system is the Nvidia Jetson Xavier NX single-board computer which is
developed specifically for embedded applications focused on image processing. The Xavier
NX features a 6-core ARMv8 CPU, a 384-core Nvidia GPU and 16 GBs of memory. It is
connected to the DJI M600 via UART to receive measurement data from the drone’s onboard
sensors and to send control commands. Moreover, the Basler camera is connected to it via
Ethernet for image input. Orientation data is provided by the gimbal via UART to adjust
the images created by the camera. Similarly as in the ground system the onboard RTK
GNSS hardware provides accurate position data to the Xavier NX with a USB connection.
Apart from that, the GNSS provides a trigger signal to both Xavier NX and the Basler
camera. This signal causes the camera to take images and triggers communication between
two processes running on the Nvidia computer. To receive information about the EGV’s
location, the Xavier NX is connected to its WiFi AP. To provide more reliable network
connection, the WiFi antennas of the Nvidia computer were upgraded from the factory
ones, as shown in Figure 6.

As shown in Figure 5, there is a separate LiPo battery installed on the drone to power
the gimbal. There is one usable UART port on the Xavier NX which is utilized for the
connection with the M600, the other UART connection with the gimbal is implemented
with the help of a USB-UART converter. Moreover, the ethernet connection with the
camera is established with the built-in network socket on the Xavier NX. The trigger signal
depicted in Figure 5 is a wiring between one of the GNSS’s pulse generation pins to one
of the Nvidia computer’s GPIO pins. This is used to trigger communication between two
software running on the computer. This is going to be detailed in Section 3.
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Figure 5. Block scheme of the drone onboard hardware.

Figure 6. Onboard hardware system of the aerial vehicle. 1: RTK GNSS electronics, 2: Basler camera,
3: Gimbal, 4: WiFi antennas, 5: Nvidia Jetson Xavier NX, 6: 4S LiPo battery.

2.3. The Demonstration Scenarios

The feasibility demonstrations were planned and presented in the Smart City module
of ZalaZONE Proving Ground, Hungary [38]. Figure 7 shows the overall map of the
ZalaZONE Proving Ground, highlighting the part of the Smart City module applied for the
demonstrations and showing also an aerial photo of the intersection.

The intersection with the approaching vehicles is shown in Figure 8. The EGV always
comes from the STOP sign, but it has the right of way, assuming it applies its sirens. The
other vehicle comes from the right and three encounters are considered. First, it slows
down and stops in time. Second, it comes fast and stops at the last possible moment. Third,
it does not stop. As the walls cover the other vehicle from the EGV, the maneuvers were
coordinated through radio communication, and in the third case, the EGV driver knew that
he has to stop. The goal of these three scenarios is to test if the stopping attempt of the other
vehicle can be detected or only ′other vehicle present / not present′ decisions can be done.
Due to the dynamic limitations of DJI M600 (see [4]), the maximum speed of the maneuvers
was 20–25 km/h. Higher-speed maneuvers will be evaluated in the SIL simulation ([4]) of
the system. After the introduction of the hardware system and the demonstration scenarios,
the software system is summarized in the next section.
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Figure 7. Map of ZalaZONE Proving Ground with the Smart City module (source: https:
//avlzalazone.com/testing-and-track/, accessed on 2 March 2023).

Figure 8. An encounter scenario in ZalaZONE Smart City with EGV and other vehicle.

3. System Software Structure

Apart from the appropriate hardware system, a suitable software set had to be devel-
oped in order to test the Forerunner UAV concept. The majority of development took place
on the Xavier NX computer installed on the DJI M600, but there were also gimbal, RTK
GNSS and ground laptop software developments. An overview of the software architec-
ture and data flow can be seen in Figure 9. Highlighted in blue, there are three essential
processes running on the Xavier NX. The first one is the control software, the second one
is responsible for gathering camera images, multi-object tracking and decision (camera
software), and the third one handles object detection (detect software). Each of them is
detailed in the following subsections.

https://avlzalazone.com/testing-and-track/
https://avlzalazone.com/testing-and-track/
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Figure 9. Onboard software architecture and data flow of the aerial vehicle.

3.1. Control Software

Initial developments within the scope of the Forerunner UAV project were started
by establishing communication between the DJI A3 flight control system present on the
DJI M600 and the Xavier NX onboard computer. DJI’s M600 drone supports the Onboard
Software Development Kit (OSDK) [39] provided by the manufacturer, which makes it
possible for developers to interface with the drone via a UART channel. After a successful
connection, various flight data can be obtained, like position, orientation and velocity.
Moreover, reference commands can also be sent to the drone, which makes the developer
able to control the drone from an external hardware. For the input of the control algorithm
the Xavier NX receives position, velocity, acceleration and orientation (M600 Pose in
Figure 9) of the drone in every control cycle which runs at 50 Hz. The control command
consists of horizontal speed reference, altitude and yaw angle.

Another essential input for the control software is the data coming from the EGV.
As described in Section 2, these packets are sent via WiFi using UDP protocol by the
laptop of the ground unit. Each packet contains the EGV’s current high precision (RTK)
position, velocity and timestamp. Figure 9 also shows EGV waypoints (WP) sent by the
ground vehicle. They exist in the communication; however, the actual waypoint values
were predefined in the control software as the ZalaZONE Smart City test track route was
fixed in all tests. Still, the communication method supports a larger database of waypoints
present on the ground unit. Apart from the messages coming from the EGV, the control
software can read custom defined messages coming from the network. For example, there
is a message defined to trigger the start of autonomous control, or to turn the gimbal on
or off.

As shown in Figure 9, gimbal data is sent to the control software as well. Gimbal data
refers to the roll and pitch angle of the inertial measurement unit (IMU) attached to the
vertical camera on the gimbal. It is not utilized by the control software, only sent forward
to the camera software alongside with the data received from the M600 drone. On the
other hand, the connection with the gimbal can be used to tune the PID motor controllers.
This was carried out manually with a trial-and-error method. The system had instability
unless the camera was mounted on it, so tuning was successful only when the payload was
attached. The tuning had to be carried out only once, since the camera mounting was not
modified between experiments and the parameters of the gimbal proved to be stable (no
changes with temperature).

Another important part of the system is the trigger signal sent to Xavier NX and the
Basler camera. The signal generated by the RTK GNSS unit has nanosecond precision and
is used to trigger the camera to take pictures. Inside the control software running on Xavier
NX, this also triggers the communication between the camera and the control software.
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The messaging between the two is handled by UNIX domain sockets supported by the
Ubuntu operating system of the Xavier NX. Apart from the trigger signal, the RTK GNSS
provides high precision position of the DJI M600 to the control software. Therefore, it has
two options to rely on when taking the own position into account. A simple logic decides
whether the position information estimated by the A3 autopilot or provided by the custom
RTK GNSS unit has to be used. This logic considers the A3 autopilot’s estimate to be the
default, and if the RTK GNSS position is valid (close to the position estimated by A3), then
that is forwarded to the control algorithm.

3.2. Camera Software

Aerial onboard computing systems require the separation of crucial control processes
from mission payload computation. The A3 control unit of the DJI M600 platform provides
the basic control and safety; however, it is still beneficial to separate the high level control
from the image processing and the analysis of the traffic situations. High level control of
the UAV is based only on the state of the EGV beyond its own state, while the output of
the image processing and decision on traffic situation is an input for the human driver of
the EGV.

Camera software (Figure 9) consists of the image acquisition, communication between
the control and the object detection software components, and the tracking and analysis of
the trajectories corresponding to each ground vehicle nearby. The component also sends a
downsampled image processing result and the decision signal (possible danger) to the EGV
through WiFi. For the above tasks, the camera software requires the state of the UAV along
with the state of the EGV, the planned waypoints (intersections) and camera images with
the corresponding gimbal state. The onboard camera [40] is a calibrated downward-looking
2048 × 1536 RGB camera with optics covering a 82-degree horizontal field of view (FOV).
The relative altitude above the surface is known and the area is considered a horizontal
plane. These assumptions are true at the test site, and with elevation map information, the
calculations can be generalized by assuming a planar surface for each local region with
known normal vectors.

For each hardware trigger, the camera produces an image (@10 Hz), which is saved
as raw Bayer pattern to a binary file, and a downsampled version (1024 × 768) is passed
to the object detection neural network (NN) as a shared memory file. The higher original
resolution images can be used in later developments. The NN sends back the bounding
boxes of detections with the class labels. The detections are projected to the North-East-
Down (NED) coordinate system using the assumption of horizontal flat ground and known
ground relative altitude, and tracking is done in the NED coordinate space (see Section 5).
Risk evaluation is done for each track (see Section 6) and results are finally visualized
in a 640 × 480 image with back-projections of the object NED coordinates. The dan-
ger signal and the resulting image are communicated to the driver of the EGV (see the
Supplementary Videos).

3.3. Detect Software

The separation of the Yolov5s [41] object detection network from the image processing
component was important to have more flexibility in the selection of the object detection
method. This way, the complex inference engine is not compiled together with other parts
of the image processing, and can be replaced easier. Furthermore, the NN part can use its
python interface. Details about the selection and training of the object detection NN are
provided in the next section.

3.4. Speed of Onboard Operation

Proper timestamping of sensory data is a key development parameter; thus, fixed FPS
operation was considered with hardware trigger which was directly derived from the PPS
signal of the GPS. Ten FPS was selected, because the average complete cycle of operation
was 12 FPS with a minimum always above 10 FPS. One cycle of onboard operation consists
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of the image capture by the Basler camera driver and c++ API with SSD recording (in a
separate thread), the downsampling of image and shared memory transfer to the python
detection software, the inference of the object detection neural network, the transfer of
detection bounding boxes and classes, the multi-object tracking and finally the decision on
danger for each track. Beyond the detection and decision cycles, the control software also
utilizes onboard computational resources, but the bottleneck is the shared memory map to
the decision cycle.

4. Training of Object Detection

For object detection, due to the hardware restrictions of the Nvidia Jetson Xavier NX
platform, the Python version of smallest Yolov5 neural network, Yolov5s, was chosen as
object detector. In [4], Yolov3s and Yolov4s neural networks were compared to each other.
The comparison showed Yolov3s to be slightly faster but less accurate than the Yolov4s
version. The Yolov5s network was trained later, achieved similar results compared to the
Yolov4s version (overall mAp@.5 of 0.878 compared to Yolov4s’s 0.876) but proved to be
faster with an average inference speed of 22 FPS (compared to Yolov4s’s 12 FPS). Thus,
finally, the Yolov5s was applied onboard the forerunner system.

Two separate neural networks were trained for the demonstration: one for testing
purposes trained with simulated data from the driving simulator CARLA [42], and one with
publicly available real-life birds eye view images of cars based on [43]. An average inference
speed of 22 FPS was achieved using these networks on the Nvidia Jetson NX platform.

The CARLA database consisted of 2000 images with their respective bounding-box
location (obtained from CARLA in the SIL simulation [4]). This network was trained for
3 classes—cars, bicycles and pedestrians—with a train/test split of 70/30 on 400 epochs
with a batch size of 16. Training results can be seen in Table 1. From the high Precision
value for all 3 classes, it can be seen that the network reliably classifies an object if it was
detected, but, based on the Recall values, has problems with finding small objects on the
images, especially pedestrians. Considering that pedestrians are only 1 or 2 pixels in size,
this was an acceptable result for the smallest Yolov5 network.

Table 1. Training results for Yolov5s neural network trained on the CARLA dataset.

Classes Precision Recall F1 mAP@.5 mAP.5:0.95

All 0.938 0.826 0.878 0.878 0.581
Cars 0.941 0.979 0.959 0.977 0.827

Bicycles 0.938 0.861 0.897 0.918 0.54
Pedestrians 0.934 0.637 0.757 0.739 0.377

The Yolo_RL real-life database was a combination of images from the PUCPR+ and
CARPK datasets [44], amounting to 3000 images with around 100,000 cars recorded from
different parking lots by drones at approximately 40 m height. Other datasets were consid-
ered as well, e.g., Vedai [45,46] and COWC [47,48] datasets, but these images either had
low resolution or were taken from much higher altitude (ZalaZONE flight altitude was
set to 40 m). The real-life Yolo_RL network was trained with 1 class only, cars, with the
same parameters as the CARLA network. Training results for this network can be seen in
Table 2. The high Precision and Recall values show that the network managed to learn the
significant features of the cars contained in the Yolo_RL database.

Table 2. Training results for the Yolo_RL network.

Classes Precision Recall F1 mAP@.5 mAP.5:0.95

Cars 0.941 0.94 0.94 0.95 0.775

Both trained networks showed good inference results in general, but after the first real-
life test, it was apparent that the Yolo_RL dataset had a few shortcomings. On one hand,
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the lighting conditions were too ideal in the dataset; it had vehicles either in full sunlight or
fully shaded and the network was struggling with situations when the vehicle was entering
or exiting a shaded area. The other significant issue was the lack of road markings, such as
STOP and priority indications where the network would either completely fail to detect the
vehicle or would detect one vehicle as multiple ones (see Figure 10).

To eliminate these issues, the dataset was expanded with 1200 extra images containing
such situations recorded with the DJI M600 on the ZalaZONE Smart City test track. The
images were then labeled with Roboflow’s [49] annotation tool and then Yolo’s transfer
learning function was used to fine tune the previous weights. With the fine tuning, these
outlying cases were eliminated. A comparison of the inferences on the Yolo_RL network
and the fine tuned network can be seen in Figure 10. After object detection, the next section
summarizes the object tracking solution.

Figure 10. Inference differences between Yolo_RL (left) and fine tuned (right) network. Note the
missed car at the STOP sign in the left part.

5. Object Tracking in the Demonstrations

The object tracking approach is a variant of the SORT [16] solver. In the case of online
fast object tracking from frame to frame with a reliable detector these solvers utilize that the
object positions are closer to a prediction from a linear motion model than the size of the
object, thus intersection-over-union (IOU) is an effective indicator for data association. The
reliability of these IOU-based metrics are improving with increased frames per second (FPS)
and proved to be effective in tracking cars in an intersection [50].

SORT consists of a linear velocity predictor which is filtered by a Kalman filter consid-
ering detection uncertainties. The problem of optimal pairing is solved by the Hungarian
algorithm based on the IOU cost of a pair. The main goal of tracking is to have an accurate
series of center points for the detected bounding boxes. Detection inaccuracies may come
from partial occlusions and small vibrations of the bounding boxes around the true value.
As we have birds-eye-view images from the downward-looking camera, the center point
of vehicles are stable without oriented bounding boxes. The UAV is a moving platform
and other objects are also moving; thus, we did prediction and IOU calculations in the
North-East-Down (NED) coordinate system (with fixed origin during the whole flight as
the covered Smart City area is small). The detections in the image have nonlinear behav-
ior, which can be eliminated by the transformation of detections to 3D (NED system) by
utilizing relatively accurate UAV and gimbal states.

5.1. Projection of Bounding Box Centers to North-East-Down Coordinates

As the altitude of the ground surface is known, the Down (D) coordinate is also known;
thus, we need to obtain North (N) and East (E) coordinates. First, undistortion is done on
the image coordinates imx and imy based on a radial distortion model, which is available
through camera calibration [51]. Let px and py be the coordinates of the principal point
and k2, k4 be the 2nd and 4th order distortion coefficients. The square of the normalized
distance from center (r2) is given in (1), where fx and fy are the focal lengths in pixel.
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r2 =

(
imx − px

fx

)2
+

(
imy − py

fy

)2

(1)

With r2, the undistortion fraction of the coordinates can be calculated as (2). The
undistorted pixel coordinates are (imx − px)/kd and (imy − py)/kd.

kd = 1 + k2r2 + k4r2
2 (2)

With the undistorted coordinates, let VC denote the normalized vector pointing towards
the undistorted pixel from pinhole origin. We need the coordinates of this vector in Earth
NED coordinate system VE. With the TGC camera to gimbal axis, swap matrix (4) and
TEG gimbal to Earth NED transformation matrices VE = TEGTGCVC. The Earth NED
coordinates of the UAV UE and relative position of the camera on the UAV are known; thus,
CE Earth coordinates of the camera are also known (see (6)). At this point, the intersection
of the line starting from CE with direction vector VE and the horizontal plane at down
position D can be determined as (3), giving the PE North-East-Down position of the object.

PE = CE + VE((−CE
z + D)/VE

z ) (3)

TGC of (4) is a necessary axis swap matrix when one changes from image xy and depth
z coordinates to the gimbal system.

TGC =

 0 −1 0
1 0 0
0 0 1

 (4)

TEG gimbal to Earth transformation can be formulated from gimbal pitch and roll
Euler angles (g_θ,g_φ) together with UAV yaw angle (ψ):

TEG =

 c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0

0 0 1

 ·
1 0 0

0 c(g_φ) s(g_φ)
0 −s(g_φ) c(g_φ)

 ·
 c(−g_θ) 0 s(−g_θ)

0 1 0
−s(−g_θ) 0 c(−g_θ)

 (5)

Let UE denote the NED coordinates of the UAV and rB the relative position of camera
to the center of the UAV (in body system). CE can be obtained considering TEB UAV Body
to Earth transformation from UAV Euler angles (yaw ψ, pitch θ, roll φ):

CE = UE +

1 0 0
0 c(φ) s(φ)
0 −s(φ) c(φ)

c(θ) 0 −s(θ)
0 1 0

s(θ) 0 c(θ)

 c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0

0 0 1


︸ ︷︷ ︸

TEB

rB (6)

5.2. EGV Tracking and Management of Other Tracks

EGV tracking can be done using the RTK GNSS data coming from it; however, the
EGV is in the image most of the time, and the RTK NED data can be projected back to
the image plane which indicates if a detection in the image is the EGV. Beyond the simple
pairing of EGV detection, it provides a system integrity check opportunity if the EGV is
present in the image. The only drawback is RTK state frequency (5 Hz), which can be
enhanced by a Kalman-filter-based sensor fusion on the ground navigation unit.

After the pairing of the EGV detection (if it exists), the rest of the detections are paired
to existing tracks with SORT, where a filter on maximum speed is applied. Unmatched
detections are considered as new tracks, and a track after 5 consecutive steps without a
match is dropped.
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The next section summarizes the risk evaluation methods starting with the basic one
applied in the fall 2022 demonstration [3] and then presenting the detailed development of
a more complex method.

6. Risk Evaluation in the Encounters

After detecting and tracking the vehicles (EGV and other) in the NED system, their
velocity and acceleration should be estimated to predict their future movement with
Newtonian dynamics similarly to [21] and decide about the collision risk. In the feasibility
demonstration in September 2022 [3], a simple prediction and decision method was applied
due to the lack of development time. However, all image sequences and DJI M600 onboard
and EGV log files are saved so offline processing and algorithm development is possible.
After summarizing the basic prediction and decision method in Section 6.1, detailed analysis
of the data and development of an improved prediction and decision method are presented
in Section 6.2.

6.1. Basic Decision in the Feasibility Demonstration (September 2022)

Due to the time constraint in preparation for the demonstration a very simple position
prediction and risk evaluation method was developed. The basis is a windowing technique
both for the back-projected North (N) and East (E) positions applying W = 6 window
size. First, the L1 norm of the position displacement in the window is calculated as
Dk = |Nk − Nk−W+1|+ |Ek − Ek−W+1|. If Dk < 1, the estimated velocities are zero and the

estimated positions are the means of the last three values N̂k =
∑k

j=k−2 Nj
3 , Êk =

∑k
j=k−2 Ej

3 . If
Dk ≥ 1, the estimated positions are the last measured ones and the velocities are estimated
by fitting a line to the points in the window and taking the slope as velocity (v̂N , v̂E).

Prediction of vehicle motion is done on a 1.5 s horizon having 20 equidistant points
with tp ∈ (0, 0.075...1.5] time values. In case Dk < 1, the predicted position is P̂kp = M̂k ∀p,
where M represents either N or E. In the other case, P̂kp = Mk + v̂Mtp. This is similar to the
stopping distance algorithm mentioned in [19] and the deterministic prediction in [21] but
without the consideration of acceleration.

Risk evaluation is done by calculating the distances of the predicted positions and com-
paring them to an adaptive threshold: THS = max(

[
DLIM DLIMVc f

]
),

DLIM = 4 m where Vc f = (|v̂N |+ |v̂E|)/kV , kV = 6 heuristically tuned and calculated
from the estimated vehicle velocities. This way larger THS is applied in case of larger
vehicle velocity. If the distance is below the threshold then there is a danger of collision
and the EGV driver should be notified.

The initial parameters (W = 6, max(tp) = 1.5 s, DLIM = 4 m, kV = 6) were tuned
by trial and error considering pre-collected real flight data from ZalaZONE SmartCity.
Detailed parameter tuning is presented in Section 8.

6.2. Improvements in the Decision Method

As described in Section 3 synchronized camera image, onboard DJI and EGV data are
continuously logged with 10 Hz frequency (giving also 10 FPS camera information). Thus,
besides the camera images, gimbal angles, drone position, velocity and orientation, the EGV
position and velocity are all available in a synchronized manner. For higher EGV speeds,
this limitation to 10 FPS can possibly degrade encounter risk evaluation performance but
this will be the topic of the planned detailed feasibility study. Unfortunately, during the
demonstration flights, the RTK GNSS system onboard the M600 had a connection problem
(caused by a loose connector), which is why only the normal GNSS-based data from the
DJI M600 A3 autopilot was available with lower (few meters) precision. It is the output of a
GNSS-IMU fusion algorithm. The NED position of the detected objects is calculated based
on this position information thus it is inaccurate compared to the RTK GNSS position of the
EGV. As both the EGV and other vehicle positions are back-projected to the NED system
(see Section 5), this causes a larger difference between logged RTK GNSS EGV track and
the back-projected one, as shown in Figures 11 and 12.
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There is not only a side error but also an error along the track between the RTK and
projected data (see Figure 12). This could be because of wrong synchronization, but analysis
of several tracks has shown that this error is caused by GNSS positioning uncertainty.
Considering this, it is better to process the back-projected EGV and other vehicle tracks
instead of processing the EGV RTK track and the back-projected other vehicle track. In
the former case, the two tracks have similar systematic errors which can increase decision
accuracy while losing the advantage of accurate logged EGV position and velocity data.
New experiments are planned in Spring 2023 with updated onboard RTK GNSS hardware
to have more accurate DJI M600 position. However, the current measured RTK GNSS EGV
position and velocity values provide a possibility to satisfactorily evaluate the precision of
the velocity and acceleration estimation methods based on the back-projected positions.
Hence, first, EGV velocity and acceleration estimation is developed in Sections 6.2.1–6.2.3,
evaluating accuracy based on the RTK GNSS position and velocity measurements. Then,
motion prediction and risk evaluation are discussed in Section 6.2.4 based on the selected
best velocity and acceleration estimation method.

Figure 11. Position difference between back-projected and RTK EGV North positions.

Figure 12. An encounter in the feasibility demonstration.
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Before starting to develop EGV velocity and acceleration estimation methods, the RTK
GNSS and back-projected EGV North-East positions are plotted in Figure 13 to be able to
compare them. The figure shows that while 10Hz sampled back-projected EGV positions
are continuously changing and uncertain, the RTK GNSS position is quantized due to its
only 5 Hz sampling. This can later be resolved by predicting positions from the RTK GNSS
velocity measurements between the samples. Looking for literature sources about the topic
of position measurement-based velocity and acceleration calculation mostly electric motor
related sources can be found considering encoder measurement of angular position and
estimation of rotational speed and acceleration [33–37]. As the mathematical principles are
the same, these methods can well be applied for the forerunner UAV.

Figure 13. Zoom of back-projected and RTK GNSS logged EGV positions.

Ref. [33] introduces the fixed time (encoder distance in a given time) and fixed position
(time to cover a given distance) methods considering first order difference, Taylor Series
Expansion, Backward Difference Expansion and Least Squares Fit calculations. The last
means fitting a smoothing polynomial to the measured position data and then the first
derivative gives the velocity while the second gives the acceleration.

Ref. [34] also applies polynomial fit on a moving window and gives a tuning method
for a required precision.

Ref. [35] introduces the so-called encoder event (EE) for quantized data, taking the
mean of measured values and time stamps when the measured signal changes. This is
illustrated in Figure 14 with PE1 = (P1 + P2)/2 and tE1 = (t2 + t3)/2. Then, it applies
polynomial fit to tEj − PEj pairs and interpolates the original ti time values.

Figure 14. Definition of Encoder Event (EE).

Ref. [36] introduces the Single-dimensional Kalman filter (SDKF) concept, applying a
one-dimensional KF (Kalman filter) to smooth the velocity considering an adaptive state
noise covariance gain. A phase-locked loop (PLL) is applied for acceleration estimation.
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Finally, Ref. [37] gives a good overview about the available methods listing finite
difference and low-pass filtering, EE with finite difference and skipping option (neglecting
some events to have a smoother curve), polynomial fitting, KF estimation including SDKF
and finally sliding mode differentiators for velocity estimation. For acceleration estimation
it considers EE with 2nd order finite difference and smoothing, position SDKF and 2nd
order finite difference, sliding mode differentiators and control loop-based estimation with
PD control or PLL. In the final comparison, Kalman filters with adaptive weights gave the
best solutions both for velocity and acceleration.

6.2.1. First Order Differentiation

Pursuing the simplest solution and for the basic analysis of data first, simple differ-
entiation of the measured North and East positions is done comparing the results to the
measured RTK GNSS velocities. Figure 15 shows that though the trend of the estimated
velocities is close to the RTK GNSS measured ones the result is too noisy even for vehicle
motion prediction. This means that methods with data smoothing property should be ap-
plied. Note that, from now on, all velocity and acceleration estimation results are presented
plotting the 80 to 110 s section of the first dataset to make comparison easier.

Figure 15. Velocity estimation with 1st order differentiation.

6.2.2. Filtering and Polynomial Fit

The next evaluated method was SDKF smoothing of position data (North and East)
then polynomial fitting to estimate the velocity. From the estimated velocity, acceleration
is estimated with a two-state (velocity and acceleration) adaptive measurement error
covariance Kalman filter. This was selected because estimated velocity smoothing with
SDKF and acceleration estimation based on polynomial fit gave unsatisfactory results.

As the RTK GNSS only gives position and velocity information, the acceleration should
be estimated to be able to compare it with the back-projected position-based estimates.
Because of the 5Hz sampling and high precision, the RTK GNSS velocity is quantized; hence,
first, EEs should be collected as shown in Figure 14. After collecting the EEs, a moving
window (tuned to have W = 4) technique is applied fitting lines to the EEs and having the
slope of the line as the acceleration value at all time instants tEj−3 ≤ ti ≤ tEj (overwriting
some of these values in the next step). Figure 16 shows that the estimated acceleration
is noise free and both the magnitude and the changes are in good agreement with the
changes in the velocity. Thus, this estimate is proper for the evaluation of back-projected
position-based estimates.

For SDKF smoothing, the covariance of the position measurement error is required
and it can be estimated considering the back-projected EGV positions when the EGV is
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steady. Before every flight there is a section of the mission when the M600 positions itself
above the EGV giving plenty of images with standing EGV (see Figure 1). Calculating the
back-projection of these positions and excluding the outliers more than 5 m away from
the mean the variance can be easily calculated after subtracting the mean position value.
Table 3 shows the North and East variance results from four flight missions. The uncertainty
of the values is high but taking the overall R = 0.45 average can be a good approach.

Figure 16. EGV RTK GNSS velocity and estimated acceleration.

Table 3. Position measurement error variances.

Direction Flight 1 Flight 2 Flight 3 Flight 4 Average

North 0.058 0.26 0.315 0.0662 0.1748
East 1.43 0.93 0.333 0.2 0.7233

The equations of SDKF (one dimensional KF) for position smoothing are presented
in (7). Here, x is the state, which is either North or East position, P is the estimation error
covariance matrix, Q is the state noise matrix (tuning parameter), K is the Kalman gain,
R = 0.45 is measurement noise covariance matrix and M is the measurement (again either
North or East position). · is a predicted while ·̂ is a corrected value. Note that here both P
and R are scalars, so the matrix inversion simplifies to division.

xk+1 = x̂k

Pk+1 = P̂k + Q

Kk+1 = Pk+1/
(

Pk+1 + R
)

x̂k+1 = xk+1 + Kk+1(Mk+1 − xk+1)

P̂k+1 = (I − Kk+1)Pk+1(I − Kk+1)
T + Kk+1RKT

k+1

(7)

After tuning, the North and East SDKF were run with parameters Q = 1 and P0 = 10.
Then, lines (first order polynomials) were fitted to the smoothed position data applying
a W = 5 size moving window to achieve further smoothing. The slope of the line is the
estimated velocity at the last point of the window. W = 5 was selected to have appropriate
smoothing and minimum delay in the velocity estimates. An example result is shown in
Figure 17.

The figure shows that the result is much more smoother than from simple numerical
differentiation (see Figure 15) but it has noise. The trend of velocity estimates is similar to
the RTK measurement with some larger differences at about 103 s in North and 92 s in East
component. The difference of the North component can be checked in Figure 11, which



Remote Sens. 2023, 15, 1512 19 of 45

shows that the back-projected North position is almost constant while the RTK position
has the same slope as before.

Figure 17. EGV velocity estimation with SDKF position smoothing and line fitting.

Because of the high noise in the estimated velocity, instead of SDKF smoothing and line
fit, a two state Kalman filter is implemented having the estimated velocity as measurement

and velocity and acceleration as states. Its equations are presented in (8). Here, x =

[
vM
aM

]
is

the North or East velocity and acceleration state, Ak =

[
1 Tk
0 1

]
is the state transition matrix

with Tk sampling time, V =

[
0
1

]
is the state noise matrix considering only acceleration state

noise with Q covariance, C =
[
1 0

]
is the state measurement matrix, R = scr · SM2

k+1/9
is the varying measurement error covariance matrix. Here, SMk+1 is the maximum velocity
error from which the error variance can be obtained, considering it as the 3σ bound
σ2 = SM2

k+1/9. scr is a scaling factor and, again, M is either North or East. SMk+1
is estimated as the absolute difference of velocity from first order differentiation and
velocity from SDKF smoothing and line fit. This way, the measurement error covariance
is adaptive. Tuning of the filter for minimum delay and maximum noise attenuation

in acceleration resulted in Q = 10−1, P0 =

[
10 0
0 10

]
and scr = 0.5 both for North and

East directions. Figure 18 shows the results compared to the RTK GNSS velocity-based
acceleration. Though the trend of the RTK values is followed, there are very high peaks
giving unrealistic accelerations. That is why some other estimation method should be
found if possible.

xk+1 = Ak x̂k

Pk+1 = Ak P̂k AT
k + VQVT

Kk+1 = Pk+1CT
(

CPk+1CT + R
)−1

x̂k+1 = xk+1 + Kk+1(Mk+1 − Cxk+1)

P̂k+1 = (I − Kk+1C)Pk+1(I − Kk+1C)T + Kk+1RKT
k+1

(8)
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Figure 18. EGV acceleration estimation with two state Kalman filter.

6.2.3. Kalman Filtering Only

Considering [37] after the combination of filtering and polynomial fit, it is worth
attempting the estimation of velocity and acceleration with one Kalman filter for each
direction. An extra advantage of Kalman filter estimation is to have estimates of position,
velocity and acceleration uncertainty from the estimation error covariances, as these are
required for predicted position uncertainty estimation according to [21]. The filter equations

are the same as (8) but now the state vector is x =

M
vM
aM

, so position, velocity and

acceleration (M is either N or E), Ak =

1 Tk T2
k /2

0 1 Tk
0 0 1

, V =

0
0
1

, C =
[
1 0 0

]
having

again only acceleration state noise.
The initialization of the filter is done from the first two position measurements having

x2 =

 M2
M2−M1

T1
0

. At the first measurement, the state is simply x1 =

M1
0
0

.

R = 0.45 was preserved from the SDKF and after tuning Q = 0.5 and P0 =

1 0 0
0 2 0
0 0 7


resulted both for North and East directions. Tuning targets were minimum delay and maxi-
mum noise attenuation in velocity and acceleration. Results are shown in Figures 19–21.
Figure 19 shows the smoothing effect of the KF. Figure 20, compared to Figure 17, shows
that the estimated velocity is smoother but has some larger differences from the RTK GNSS
velocity. This is caused by some larger differences between the measured and estimated
positions, as shown in Figure 19. Figure 21 shows that the acceleration is much smoother
than in Figure 18 and its absolute maximum values are much smaller, being closer to the
RTK GNSS-based accelerations. Finally, for the back-projected EGV North-East position
data, the Kalman-filter-based estimation solution is the best as for the electric motor encoder
measurements in [37].
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An advantage of the three state KF is having an estimate of the variance of position,
velocity and acceleration which can be utilized in the motion prediction as in [21]. While in
the reference there is no given method for the estimation of these covariances, here they nat-
urally result from the KF. Estimated σ standard deviations (STDs) are calculated by taking
the diagonal of the estimation error covariance matrix P (considering only the variances)
and then taking the square roots of the values. STDs are shown in Figure 22. The figure
shows that the STD of position estimate is about 0.4 m, that of velocity is about 1.2 m/s
while that of acceleration is about 2.2 m/s2. The position is realistic; the velocity is a bit high
giving a 3σ bound about 4 m/s, which is in the magnitude of the estimated velocities, and
the acceleration uncertainty is very high compared to the maximum 4–4.5 m/s2 acceleration
values (see Figure 21). This should be considered in the prediction and decision algorithm.

Figure 19. EGV estimated and measured position.

Figure 20. EGV estimated and RTK GNSS measured velocity.
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Figure 21. EGV estimated and RTK GNSS estimated acceleration.

While the developments were done on the EGV trajectories, the tuned method will be
applied on all detected vehicle trajectories assuming similar noise characteristics which
should be true as the same M600 navigation data and camera parameters are applied for all
objects. The next part discusses the motion prediction of the objects and the decision about
the risk of collision.

Figure 22. Standard deviations of state estimates.

6.2.4. Motion Prediction and Risk Evaluation

After estimating the position, velocity and acceleration of the vehicles, their future
relative position and the risk of any collision should be determined. Note that while
the tuning of the estimator was done on the whole trajectory of the EGV as it is always
in camera FOV, for the risk evaluation the time synchronized EGV and other vehicle
trajectories should be considered having short sections of trajectories when both vehicles
are in camera FOV.

As the EGV driver can only react to dangers being in front of it or coming from the
sides, objects behind the EGV should be filtered out as it is the responsibility of the driver
approaching from behind to avoid collision. Thus, a half plane can be filtered out in every
case considering PEGV EGV position and its VEGV direction of motion as shown in Figure 23.
Defining vP =

−−−−→
POPEGV as the unit vector pointing from object to EGV position the condition

is vP ·VEGV > 0 where · defines the scalar product and VEGV is a unit vector. This is SC1
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special case. In case vP ·VEGV ≤ 0 and thus the object is ahead of the EGV, there are two
more special cases:

1. SC2: Object is in front of EGV, comes toward it (head on collision possibility) and so
the driver should see it. vP · VEGV < −0.87 ∧ VO · VEGV < −0.87 meaning that the
object and its moving direction is in ±30◦ range relative to EGV moving direction and
the object comes towards the EGV.

2. SC3: Object is in front of EGV, goes into the same direction and so the driver should
see it. vP ·VEGV < −0.87∧VO ·VEGV > 0.87 meaning that the object and its moving
direction is in ±30◦ range relative to EGV moving direction and the object goes into
the same direction.

These tests are only executed if the EGV absolute velocity is above 1 m/s. Considering
that the building walls or other objects can narrow the driver’s field of view, the ±30◦

assumption should be refined later, but this is not the topic of this article. As the results
show that no danger decision is masked because of this assumption, it is thus appropriate
in the demonstration scenarios. Due to the estimation uncertainties, these special cases are
declared only if the conditions are valid in 5 subsequent time steps (meaning about 0.5 s
with 10 FPS). If they are declared, then no prediction of trajectories and decision about the
risk should be executed.

Figure 23. Special relations of EGV and the other object.

The prediction of EGV and other vehicle trajectory can be done based on the estimated po-
sition (M̂k), velocity (v̂M(k)), acceleration (âM(k)) and their STD values (σM(k), σvM (k), σaM (k)).
However, at the first two steps when the KF is initialized, only the measured positions and
the estimated measurement uncertainty can be considered. Hence, the predicted position is
P̂k = M̂k with an uncertainty radius Uk = 3

√
R = 2 m. In the NE plane, the predicted NE

positions (for EGV and other vehicle) give two points and the uncertainties can be considered
as circles around these points. That is why Uk is called the uncertainty radius. Finally, the
intersection of the resulting two circles is tested. If they intersect, then there is a danger of
collision.

The transient of the STDs after KF initialization is smooth (see Figure 24), so the future
positions of EGV and other vehicle can be predicted without waiting for KF convergence.
The prediction is done propagating velocity and acceleration into the North and East
directions, considering also position and velocity uncertainty. Acceleration STD is too
high to be considered if one wants to avoid overly conservative results. The equation
for the predicted position including uncertainties thus results as (similarly to [21] having
deterministic prediction with stochastic uncertainty):

P̂kp = M̂k ±Uk + (v̂M(k)±Uvk)tp + âM(k)
t2

p

2
(9)
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Figure 24. STD transients.

This is similar to the stopping distance algorithm mentioned in [19] now considering
also the accelerations and the same as the deterministic prediction in [21]. In the equation
Uk = 2 max

([
σN(k) σE(k)

])
, Uvk = 2 max

([
σvN (k) σvE(k)

])
and tp is the prediction

time horizon. Contrary to the previous steps, now the uncertainties are considered as
the 2σ bounds instead of the 3σ ones again to prevent overly conservative results. In the
previous steps, the 3σ bounds are reasonable because of the lack of detailed uncertainty
information. Tuning of the sigma bounds will be presented in Section 8. (9) can be separated
into deterministic prediction and uncertainty parts:

P̂kp = M̂k + v̂M(k)tp + âM(k)
t2

p

2
±Uk ±Uvktp︸ ︷︷ ︸

±Ukp

(10)

The equation shows that the uncertainty increases with the prediction horizon, which
is a valid result according to [21] where the change with time is mentioned but no exact
relation is provided. In case of different velocity and acceleration signs it is assumed that
the vehicle decelerates only until stop and so the prediction time is limited to tp ≤ abs(v̂M(k))

abs(âM(k))
in each direction.

The maximum prediction horizon should be determined considering the EGV braking
characteristics as the driver should be warned in time (similar to [18,19]). Firm and
emergency braking times of a car were collected in real experiments starting from different
velocities. The maximum results are summarized in Table 4.

Table 4. Maximum braking times of a car [s].

Braking Type 20 km/h 30 km/h 40 km/h 50 km/h

Firm 1.64 1.88 2.6 2.8
Emergency 0.98 1.28 1.58 1.8

Simple line fits can well cover the results so the braking time calculation formulas
from the vehicle velocity are:

Tf irm = 0.76 + 0.1512 ·VEGV [m/s]

Temergency = 0.444 + 0.1 ·VEGV [m/s]
(11)

Figure 25 shows the measured data and the line fits. Though, theoretically, the braking
time from 0 m/s is zero, the lines were fit with nonzero initial values to better cover the
data and have some safety tolerance.
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Figure 25. Car braking times from different velocities.

Besides the braking times, the braking distances were also registered in the experiment
having the possibility to fit second order polynomials (going through (0,0)) and obtain a
braking distance D model:

D f irm = 0.0569(VEGV[m/s])2 + 0.8102VEGV [m/s]

Demergency = 0.0198(VEGV[m/s])2 + 0.6591VEGV [m/s]
(12)

The maximum EGV braking time is determined from its actual RTK GNSS measured
velocity with (11) and it is divided into 5 equal sections to evaluate the risk of collision in
five subsequent predicted positions. If the uncertainty circles intersect each other, then a
collision warning is activated. Any small intersection is considered dangerous as only 2σ
bounds are considered in the uncertainties and the acceleration uncertainty is neglected.
A measure of circle overlapping, tuning of its threshold and tuning of the sigma bounds
will be presented in Section 8. Another important fact is that the predicted trajectories
only cover the motion of vehicle center points so vehicle sizes should also be considered
(see [18] for the precise definition of collision considering vehicle size and the consideration
of vehicle size in the occupancy grid in [21]). Vehicle sizes are not explicitly handled here
as this requires also vehicle size estimation from the bounding boxes. Instead, even tangent
uncertainty circles are considered as collision (other cases are detailed in the tuning of the
algorithm see Section 8). In case of unsatisfactory results, detailed consideration of vehicle
sizes should be implemented. As there can be outliers, notification of the driver is only
done after two consecutive warnings and the notification is stopped after ten consecutive
safe evaluations. If any special case is decided, no risk evaluation is done until the special
case is valid. The next section presents the parameterized basic and improved decision
methods for parameter tuning.

7. Parameterized Basic and Improved Decision Methods for Tuning

For the detailed tuning of the methods, the parameters affecting the outcome of the
decision should be selected and their realistic ranges determined.

7.1. Parameterized Basic Decision Method

The first variable parameter is the calculation window size W. As line fitting is done
(requiring at least two points) its minimum value should be 3 to smooth the data. The
maximum value was selected to be 9 having ±3 difference from the originally applied
W = 6 value. Accordingly Dk = |Nk − Nk−W+1|+ |Ek − Ek−W+1|. If Dk < 1 the estimated
velocities are zero and the estimated positions are the means of the last three values
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N̂k =
∑k

j=k−2 Nj
3 , Êk =

∑k
j=k−2 Ej

3 . If Dk ≥ 1 the estimated positions are the last measured ones
and the velocities are estimated by fitting a line to the points.

The prediction time is the next value affecting the decision. Its range was selected
between 1 s to 2.5 s with 0.5 s steps. As the reaction time of the driver can be considered as
0.6–0.7 s, 1 s prediction is the minimum to notify the driver. The 2.5 s value was selected
considering the fact that the object is maximum 3.5–4 s long in camera FOV (this was
evaluated separately and is not in the scope of this work) and 2.5 s is the time of firm
braking from 30–40 km/h (see Figure 25) well above the maximum 1.8–2 s braking time
from the 20–25 km/h speed of the experiments. This means that 2.5 s maximum prediction
time should be enough in this velocity range.

Risk evaluation is done by calculating the distances of the predicted positions and
evaluating them against an adaptive threshold. The parameters of threshold calculation are
the further tuning parameters: THS = max

([
DLIM

DLIM
kV

Vc f

])
where Vc f = |v̂N |+ |v̂E|.

The DLIM distance was considered in the range 2–6 m with steps 2 m (±2 m from the
original value) and the velocity scale kV was considered in the range 2–8 again with steps 2
(original was 6). Table 5 summarizes the parameter notations and ranges.

Table 5. Tuning parameters for basic decision method.

Parameter MIN Step MAX

W [-] 3 1 9
max(tp) [s] 1 0.5 2.5
DLIM [m] 2 2 6

kV [-] 2 2 8

7.2. Parameterized Improved Decision Method

In this method, the main tuning parameters are prediction time and multipliers of
position and velocity uncertainty in the uncertainty radius. The latter can be modeled as:
Ukp = Uk +Uvktp where Uk = Pσ max

([
σN(k) σE(k)

])
, Uvk = Vσ max

([
σvN (k) σvE(k)

])
and tp is the prediction time horizon. The σ multipliers (Pσ, Vσ) are considered to be 1, 2, 3
as this covers 68.27%, 95.45%, 99.73% of the possible estimated parameter range (assuming
Gaussian distribution).

The prediction time horizon is determined by the braking time of the EGV from the
actual speed as shown in Figure 25. This can be varied by shifting it forward or backward in
time. The modified braking time equations result as: T′f irm = 0.76 + 0.1512 ·VEGV[m/s] +
tshi f t T′emergency = 0.444 + 0.1 ·VEGV[m/s] + tshi f t. tshi f t is considered in the range ±0.2 s
with 0.1 s steps.

Another variable parameter is the overlap between the circles. At first, tangent circles
were considered to give danger of collision but this condition can be relaxed considering
circle overlap. The best solution would be a measure proportional to the overlapped area
but its calculation is complicated so a simplified measure can be derived from the ratio
of circle center distance and the sum of radii as Figure 26 and (13) show. Here, DC is
circle center distance and RO and REGV are object and EGV predicted position uncertainty
radii, respectively. The resulting measure is 0 for tangent circles and 1 if the circle centers
coincide. Starting from the tangent circles, the threshold (THS) for circle overlap decision
is considered between 0 and 0.5 with 0.1 steps. More than 50% overlap is possibly too large
for proper decisions and this will be verified by the test results later (see Table 10). If MC is
above the THS than a danger of collision is considered.

MC = 1− DC
RO + REGV

(13)
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Figure 26. Data for circle overlap measure calculation.

As both the decisions and the evaluation of the decisions (see the next subsection)
apply the firm and emergency braking distances, their combination can also be a tuning
parameter. Table 6 shows the considered combinations and their notations. When deciding
based on firm braking time, firm or emergency braking of the driver can be considered in
the evaluation leading to FF and FE combinations. When deciding based on emergency
braking time, there is no point in considering firm braking of the driver as it will surely
lead to collision, so only EE combination should be considered.

Finally, the tuning parameters for the improved decision and their ranges are shown
in Table 7.

Table 6. Combination of braking styles in decision and evaluation.

Notation Decision Braking Style Evaluation Braking Style

FF Firm Firm
EE Emergency Emergency
FE Firm Emergency

Table 7. Tuning parameters for improved decision method.

Parameter MIN Step MAX

Pσ [-] 1 1 3
Vσ [-] 1 1 3

tshi f t [s] −0.2 0.1 0.2
THS [-] 0 0.1 0.5

FF - - -
EE - - -
FE - - -

7.3. Evaluation of the Situation After Decision

Both the basic and the improved decisions were evaluated considering the time when
the driver is first notified about the danger. From this time, the reaction time of the driver is
considered to be tr = 0.7 s and the braking distance of the EGV (from the current velocity
VEGV in (12)) should be considered. Considering also the current position Pk =

[
Nk Ek

]T

and the estimated motion direction eM =
[
dN dE

]T , ‖eM‖ = 1 (from estimated velocity)
of the EGV, the predicted stopped position can be calculated as:

SN = Nk + dN(VEGV tr + Dbrake)

SE = Ek + dE(VEGV tr + Dbrake)
(14)

where Dbrake is either D f irm or Demergency depending on the case. This way the distance of
the EGV’s stopped position from the track of the other vehicle should be evaluated to find
the minimum. However, first, the relation of the EGV’s stopped position to the track of the
other vehicle should be evaluated as shown in Figure 27.
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Figure 27. Relation of EGV stopped position and other vehicle trajectory.

The figure shows that the EGV can either stop before (S1) or after (S2) the track of the
other vehicle, the latter case having the danger of collision. Therefore, before calculating
the minimum distance, safe or dangerous stop position should be decided. In the safe case
(S1), the DPS1 distance is smaller than any Di distances between the current EGV position
and the points of the object track. In this case, the calculated minimum distance (between
S1 and the other vehicle track) obtains a positive sign, while in the dangerous case (S2 with
DPS2 larger than Di at least for a few i) it obtains a negative one.

Another evaluation criteria is the longest time until the system shows danger to
the driver after a first decision maxT, hereafter referred to as danger notification time
(DNT). This is an important parameter as too short notification of the driver has the risk of
disappearing signal before the driver observes it and reacts accordingly. However, a danger
notification cannot be held for a long time as, on a longer time horizon, new encounters
and therefore new dangers can appear.

8. Parameter Tuning of the Methods

Flight data from four demonstration flights at ZalaZONE Proving Ground was col-
lected considering three encounters per flight as described in Section 2.3:

1. 1st encounter: The other vehicle comes slowly from the right and stops well in time.
This should be classified safe by the system.

2. 2nd encounter: The other vehicle comes faster from the right and stops with emergency
braking. This should be classified safe.

3. 3rd encounter: The other vehicle comes fast from the right and does not stop; the EGV
should stop. This should be classified dangerous.

Here, Matlab calculation results are presented based on the recorded data but off-
line processing of recorded data with running the flight codes on the same Xavier NX
hardware is also possible with DJI M600 standing on the ground. The Supplementary
Videos are generated this way. Tuning of both methods was done considering all parameter
combinations for all flights and encounters. The detailed parameter tuning results are
included in the Supplementary Files Parameter tuning basic method.xlsx and Parameter tuning
improved method.xlsx; for details, see the description in the Supplementary Materials.

8.1. Tuning Results For The Basic Decision Method

Encounter evaluation was run for all parameter combinations from Table 5 and all
flights. In the evaluation of the results, only the first two flights were considered as the
trajectories of the other vehicle are too short in flights 3 and 4, missing the time slot when
the other vehicle crosses the moving direction of the EGV (unfortunately, there is a gap in
other vehicle tracking). This is shown in Figures 28 and 29.
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The evaluation for flights 1 and 2 was done considering the important decision re-
quirements listed below:

• Decide safe situation for 1st encounter.
• Decide dangerous situation for 3rd encounter.
• Give a safe stopping distance at least with emergency braking for the 3rd encounter.

Coloring rules for the supplementary table Parameter tuning basic method.xlsx were
generated according to this (see the Supplementary Materials).

For flight 1 the parameter sets satisfying the above rules were as shown in Table 8.
Comparing this parameter set with the valid flight 2 parameter sets gave only one valid

parameter combination making the selection very simple. The selected parameters are:

W = 4, max(tp) = 2 s, DLIM = 2 m, kV = 8

The detailed evaluation of all flights for this parameter set is presented in the
next section.

Figure 28. Short vehicle trajectories in flight 3 encounter 3 (magenta and red colors show the sections
with valid danger notification).

Figure 29. Short vehicle trajectories in flight 4 encounter 3 (magenta and red colors show the sections
with valid danger notification).
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Table 8. Resulting valid basic method parameters from flight 1

W [-] max(tp) [s] DLIM [m] kV [-]

4 1.5 6 8
4 2 2 6
4 2 2 8

8.2. Tuning Results for the Improved Decision Method

In this case again the results for flights 1 and 2 were analyzed considering the FE
combination as the most realistic candidate method. This means decision about the danger
based on the firm braking characteristics but evaluation assuming emergency braking
of the driver possibly giving the largest minimum distance between the vehicles. The
tuning results in Parameter tuning improved method.xlsx show that the largest minimum
distances result for THS = 0, which is not surprising as danger detection will be the earliest
considering even the tangent circles overlapping. As the resulting minimum distances are
not too large, THS = 0 is fixed in the future evaluation. tshi f t = 0 is also fixed to consider
exactly the given braking characteristics. Later, presenting Tables 10 and 11 all related
effects will be analyzed in detail. The main rules from the previous part were preserved,
so first, the 3rd and 1st encounters are evaluated collecting the parameters valid for both
of them. Table 9 first lists the valid sets in the 3rd encounter of flight 2 as this is the most
critical giving the least valid combinations (see the Parameter tuning improved method.xlsx
Supplementary Table). The later encounters and flights are compared to these sets. The
table shows that all selected six parameter combinations give satisfactory results for the 3rd
encounters but in the 1st encounter of flight 1 only S1 and S3 are good. In the 1st encounter
of flight 2, the vehicles are too close to each other, so none of the combinations give valid
results and danger is decided with all of the parameter combinations (see Tables 13 and
15 for the detailed evaluation). Considering the maxT DNT, finally the S3 combination is
selected with THS = 0, Pσ = 2, Vσ = 2.

Table 9. Resulting valid improved method parameters from flights 1 and 2 with firm decision and
emergency evaluation

Valid Combination S1 S2 S3 S4 S5 S6

Flight 2/3rd Enc.

Pσ 1 1 2 2 3 3
Vσ 2 3 2 3 2 3
Dmin [m] 4.83 5.45 4.83 5.68 5.28 5.92
DNT (maxT) [s] 2.3 3.5 2.3 3.7 2.7 3.8

Flight 1/3rd Enc.

Case S1 S2 S3 S4 S5 S6
Dmin [m] 1.46 1.46 1.46 1.46 1.46 1.46
DNT (maxT) [s] 2.2 2.6 2.4 2.6 2.4 2.7

Flight 1/1st Enc.

Case S1 – S3 – – –

Flight 2/1st Enc.

Case – – – – – –

After selecting the best parameter set, its evaluation against other parameters and
cases should be done. Table 10 shows the effects of threshold change when tshi f t = 0. The
table shows that, contrary to the overall observation in this case, there is no significant
effect having the same minimum distances and DNTs in three cases. Further increasing the
threshold causes a decrease in both distance and time as expected as higher overlap of the
uncertainty circles will only appear in a closer position of the vehicles. The 0/0 distance
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and time values in the last two cases show that there is no overlap above the measure 0.4
during the encounter (there is no danger notification). This verifies the selection of 0.5 as
the maximum measure.

Table 10. THS effect on the performance of the selected parameter combination S3 with tshi f t = 0 on
3rd encounter in flight 2.

THS 0 0.1 0.2 0.3 0.4 0.5

Dmin [m] 4.83 4.83 4.83 3.64 0 0
DNT (maxT) [s] 2.3 2.3 2.3 1.5 0 0

Table 11 shows the effect of time shift of the braking time with fixed THS = 0 value
on the same parameter set. The table shows that the selected parameter combination has
some ’robustness’, giving acceptable minimum distance even with 0.2 s less braking time.
This time means shorter prediction horizon and so the danger decision is done later. This is
shown by the decreasing DNTs (maxT) and the usually decreasing minimum distances by
decreasing the time shift value. This analysis shows that this parameter set can also be valid
for other vehicles with shorter or longer firm braking times and so prediction horizons.

Table 11. Braking time shift effect on the performance of the selected parameter combination S3 with
THS = 0 on 3rd encounter in flight 2.

tshi f t [s] −0.2 −0.1 0 0.1 0.2

Dmin [m] 3.64 4.83 4.83 5.28 5.18
DNT (maxT) [s] 1.5 2.3 2.3 2.7 2.9

9. Detailed Evaluation with the Selected Parameters

After tuning the methods, a detailed comparison of their performance should be done.
The selected parameters of the basic method are:

W = 4, max(tp) = 2 s, DLIM = 2 m, kV = 8

while for the improved method the selected parameters are (with firm-braking-based
decision and emergency-braking-based evaluation):

THS = 0, Pσ = 2, Vσ = 2, tshi f t = 0 s

This section will first evaluate the results through tabular data with the selected
parameter sets for basic and improved decision. The tables show the most important
properties of the algorithms such as the expected and obtained decision (safe (S) or danger
(D)), the minimum distance between predicted stopped EGV position and the other vehicle
and the driver notification time (DNT). Another useful parameter is the measured minimum
distance between the trajectories. Then the second part of the section will give deeper
insight plotting relevant encounters and explaining them.

The decision results of the different encounters with the selected parameter set of the
basic method are presented in Table 12. The table shows that with the selected parameter
set the 1st encounter is always decided to be safe as expected. However, the 2nd encounter
is always decided to be dangerous while the 3rd encounter is once falsely identified to
be safe. Note that this encounter (flight 4/3rd) was not included in the selection of the
parameters considering only flights 1 and 2. Three distance measures are presented in the
table, the first (Real MIN. distance) being the minimum distance between EGV and other
vehicle trajectories, the second (Firm MIN. distance) being the minimum distance between
the stopped EGV (with firm braking) and the other vehicle, and the third (Emergency MIN.
distance) being the same but with emergency braking. The smallest real minimum distance
for the 1st encounters (all decided to be safe) is 11.17 m so the 12 m for the 3rd encounter
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in flight 4 is reasonable to be decided as safe. As this flight case has a truncated track (see
Figure 29) this can cause the larger distance and missed detection but this is a serious flaw of
this selected parameter set. The safe or dangerous decision ’threshold’ (not a real threshold
as the decision is based on other parameters) should be between 11.17 m and 11 m as the
latter is decided to be dangerous for the 3rd encounter of flight 3. For the 2nd encounters,
the real minimum distances are between 6.45 m and 10.1 m, all being below 11 m, so it
is again reasonable to decide them as dangerous situations. Considering the minimum
distances between the stopped EGV and other the vehicle with firm braking they can be
negative showing that the EGV passed the trajectory of the other vehicle. This happens
only once for the 3rd encounter of flight 1 and is shown in Figure 38. The figure shows that,
with firm braking, the EGV passes the trajectory, while, with emergency braking, it does
not. This is underlined by the tabular data as emergency braking gives a positive minimum
distance. Emergency braking usually gives larger distances as expected except for the 2nd
encounter in flight 2. Figure 30 shows this encounter. The emergency and firm braking
stopped positions are close to each other so the difference in the distances is not significant.

Table 12. Decisions about the encounters with the basic method both with firm and emergency
braking evaluation (S = safe, D = danger).

Flight/Encounter Expected Decision Real MIN.
Distance [m]

Firm MIN.
Distance [m]

Emergency
MIN.

Distance [m]

DNT (maxT)
[s]

Flight 1/1st enc. S S 13.3 - - -

Flight 1/2nd enc. S D 6.45 2.47 3.5 0.4

Flight 1/3rd enc. D D 6.93 −1.15 1.67 0

Flight 2/1st enc. S S 11.17 - - -

Flight 2/2nd enc. S D 10.1 8.6 8 0.2

Flight 2 / 3rd enc. D D 9.15 8.24 8.81 0.2

Flight 3/1st enc. S S 21.38 - - -

Flight 3/2nd enc. S D 8.94 5.48 5.82 0.2

Flight 3/3rd enc. D D 11 6 7 0.2

Flight 4/1st enc. S S 16.3 - - -

Flight 4/2nd enc. S D 7.9 5.6 6.65 0.4

Flight 4/3rd enc. D S 12 - - -

The table also shows that the DNT values are small, ranging from 0 s to 0.4 s. This is
underlined by the colored danger notification sections of Figure 30.

The decision results of the different encounters with the selected parameter set of the
improved method are presented in Table 13 considering firm braking both in the decision
and evaluation. The table shows that with the selected parameter set the 1st encounter
is once falsely identified to be dangerous while all 2nd and 3rd encounters are decided
to be dangerous. Compared to the basic method this shows that here the real minimum
distance ’threshold’ value (not a real threshold as the decision is based on other parameters)
is shifted deciding danger even for 12 m distance. This corrects the false decision of the
basic method for the 3rd encounter in flight 4. Here, the minimum distance limit for danger
or safe decision is somewhere between 12 m and 13.3 m, the latter is decided to be safe in
the 1st encounter of flight 1. Regarding the minimum distances between EGV stopped with
firm braking and the other vehicle (Evaluation MIN. distance), negative values result in
three cases (twice for 2nd and once for 3rd encounter) showing stop after crossing the other
vehicle’s trajectory. From these three cases, the 3rd encounter can cause problems as it is
a collision situation. In the other cases, positive distances above 3 m are satisfactory. The
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DNT values are at least 1 s but they are above 1.8 s in most of the cases being larger than
the DNTs with the basic method.

Figure 30. Decision with the basic method for the 2nd encounter of flight 2. Red and magenta colors
show the sections of danger notification, while the red circle with cross is the emergency and the blue
circle with cross is the firm braking stopped position of the EGV, respectively.

Table 13. Decisions about the encounters with improved method considering firm braking prediction
and firm braking evaluation (FF case, S = safe, D = danger).

Flight/Encounter Expected Decision Real MIN.
Distance [m]

Evaluation MIN.
Distance [m] DNT (maxT) [s]

Flight 1/1st enc. S S 13.3 - -

Flight 1/2nd enc. S D 6.45 6.77 3.9

Flight 1/3rd enc. D D 6.93 −1.08 2.4

Flight 2/1st enc. S D 11.17 3.9 1.0

Flight 2/2nd enc. S D 10.1 -3.2 3

Flight 2/3rd enc. D D 9.15 3 2.3

Flight 3/1st enc. S S 21.38 - -

Flight 3/2nd enc. S D 8.94 −2.7 2.8

Flight 3/3rd enc. D D 11 8 1.8

Flight 4/1st enc. S S 16.3 - -

Flight 4/2nd enc. S D 7.9 6.42 3

Flight 4/3rd enc. D D 12 6 1.0

The decision results of the different encounters with the selected parameter set of
the improved method are presented in Table 14 considering emergency braking both in
the decision and evaluation. The table shows that with the selected parameter set the 1st
encounter is always decided to be safe while the 2nd and 3rd encounters produce uncertain
results decided to be safe twice and dangerous also twice. This is too much uncertainty in
the decisions so the emergency braking time criteria is not proper for decision. There is no
point in evaluating the minimum distances and danger notification times this case.

The decision results of the different encounters with the selected parameter set of the
improved method are presented in Table 15 considering firm braking for the decision and
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emergency braking for the evaluation. This is the test scenario applied for the selection of
the parameters. The table shows that, with the selected parameter set, the 1st encounter is
once falsely identified to be dangerous while the 2nd and 3rd encounters are always decided
to be dangerous. Considering the real minimum distances again, if the 12 m distance for
the 3rd encounter in flight 4 is considered to be dangerous (as expected), it is not surprising
that the 1st encounter in flight 2 with 11.17 m distance is classified to be dangerous. This
is similar to the firm decision/firm evaluation (FF) case presented in Table 13. In this
case, negative minimum distances between stopped EGV and other vehicle trajectory only
appear twice for 2nd encounters, which is an improvement relative to the FF case where
also a 3rd encounter produced negative distance. Considering the fact that the other vehicle
stops before the intersection in the 2nd encounter, this can be considered a safe situation.
Figure 31 shows that the predicted stopped positions appear with assumed forward moving
direction of the EGV while its real motion is turning to the left. Considering the dense
position sets of the other vehicle (showing its stopped position), the assumed moving
direction of the EGV is surely far from it for flight 2. In case of flight 3, the assumed EGV
track and stopped other vehicle position are close, possibly causing a dangerous situation
if the EGV goes forward. Performance of the developed algorithm in such situations will
be carefully examined in the future simulation test campaign considering much more
situations than the 4× 3 encounters in the demonstrations. It is also worth noting that
these demonstrations were somehow unrealistic because at least one of the vehicles had
to stop in order to prevent accidents. In the simulation campaign, no such limitation will
appear. In the 3rd encounters, the minimum distance is 1.46 m but the other values are well
above 4 m, giving a safe distance for the avoidance of any collision. The DNT values are
1 s and above, showing much larger values than with the basic method. They are exactly
the same as in the FF case, which is not surprising as the DNT depends on the time of the
decision which should be the same in the two cases.

Table 14. Decisions about the encounters with improved method considering emergency braking
prediction and emergency braking evaluation (EE case, S = safe, D = danger).

Flight/Encounter Expected Decision Real MIN.
Distance [m]

Evaluation MIN.
Distance [m] DNT (maxT) [s]

Flight 1/1st enc. S S 13.3 - -

Flight 1/2nd enc. S D 6.45 1.88 2.3

Flight 1/3rd enc. D D 6.93 1.46 2.4

Flight 2/1st enc. S S 11.17 - -

Flight 2/2nd enc. S S 10.1 - -

Flight 2/3rd enc. D S 9.15 - -

Flight 3/1st enc. S S 21.38 - -

Flight 3/2nd enc. S S 8.94 - -

Flight 3/3rd enc. D D 11 7 0.9

Flight 4/1st enc. S S 16.3 - -

Flight 4/2nd enc. S D 7.9 5.62 1.8

Flight 4/3rd enc. D S 12 - -
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Table 15. Decisions about the encounters with improved method considering firm braking prediction
and emergency braking evaluation (FE case, S = safe, D = danger) representing the tuning case.

Flight/Encounter Expected Decision Real MIN.
Distance [m]

Evaluation MIN.
Distance [m] DNT (maxT) [s]

Flight 1/1st enc. S S 13.3 - -

Flight 1/2nd enc. S D 6.45 8.81 3.9

Flight 1/3rd enc. D D 6.93 1.46 2.4

Flight 2/1st enc. S D 11.17 6.49 1.0

Flight 2/2nd enc. S D 10.1 −1.11 3.0

Flight 2/3rd enc. D D 9.15 4.83 2.3

Flight 3/1st enc. S S 21.38 - -

Flight 3/2nd enc. S D 8.94 −1 2.8

Flight 3/3rd enc. D D 11 8.28 1.8

Flight 4/1st enc. S S 16.3 - -

Flight 4/2nd enc. S D 7.9 7.55 3.0

Flight 4/3rd enc. D D 12 7.37 1.0

Figure 31. Second encounters of flight 2 (left) and 3 (right) with improved decision. Red and magenta
colors show the sections of danger notification, while the red circle with cross is the emergency and
the blue circle with cross is the firm braking predicted stopped position of the EGV, respectively.

As the best parameter set of the basic method selected based on flight 1 and 2 causes
a missed detection of danger for the 3rd encounter in flight 4 and the improved method
always gives a false danger decision for the 1st encounter in flight 2, a review of parameter
selection for the basic method was done. Parameter sets resulting in good decisions for the
3rd encounters of flight 1 and 2 were first selected. The candidates were narrowed down by
also considering good decision for the 1st encounter in flight 1. The remaining candidates
are the same as in Table 8 so it should be checked if they give proper decision in the 3rd
encounters of flight 3 and 4. Only one set satisfies this criterion, giving the final tuned
parameters of the basic method to be:

W = 4, max(tp) = 1.5 s, DLIM = 6 m, kV = 8

The decision results of the different encounters with the selected new parameter set of
the basic method are presented in Table 16, considering both firm and emergency braking
in the evaluation. The table shows that the 1st encounter is once falsely detected to be
dangerous but otherwise all 2nd and 3rd encounters are considered to be dangerous. The
minimum distances after stopped EGV are either larger or smaller than with the previously
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selected parameter set (see Table 12) but they are acceptable, giving positive distances at
least with emergency braking. The DNT values are much larger than with the previous set.
Thus, re-tuning of the basic method resulted in much better results and so this parameter
set is applied in the detailed evaluation in the next part.

Table 16. Decisions about the encounters with the basic method considering the revised parameters
both with firm and emergency braking evaluation (S = safe, D = danger).

Flight/Encounter Expected Decision Real MIN.
Distance [m]

Firm MIN.
Distance [m]

Emergency
MIN. Distance

[m]

DNT (maxT)
[s]

Flight 1/1st enc. S S 13.3 - - -

Flight 1/2nd enc. S D 6.45 6.63 7.66 1.9

Flight 1/3rd enc. D D 6.93 −1.15 1.67 2.1

Flight 2/1st enc. S D 11.17 8.43 8.82 0.2

Flight 2/2nd enc. S D 10.1 1.04 1.63 0.3

Flight 2/3rd enc. D D 9.15 11.75 11.81 1.3

Flight 3/1st enc. S S 21.38 - - -

Flight 3/2nd enc. S D 8.94 5.43 5.76 1

Flight 3/3rd enc. D D 11 1.75 3.29 1

Flight 4/1st enc. S S 16.3 - - -

Flight 4/2nd enc. S D 7.9 8.65 9.26 1.6

Flight 4/3rd enc. D D 12 6.07 7.2 0.3

The next part of this section gives details of the improved method’s trajectory predic-
tion and then comparison of improved (with firm braking model for the decision) and basic
method decisions plotting the three encounters of flight 1 and additional relevant scenarios.
Besides the decision about the encounters, the detection of the possible special modes with
the improved method is also analyzed.

Figure 32 shows the motion prediction with the improved method at a given time
instant for steady vehicles. It can be seen that the uncertainty radius increases due to
velocity estimation uncertainty and the circles are almost concentric. There is no chance of
intersection. On the contrary, Figure 33 shows motion prediction for moving vehicles. The
motion of the predicted positions and the increase in the uncertainty circles can well be
seen. This screenshot is from the decision for the 1st encounter in flight 1, so there should
not be intersection between the circles.

The following figures show relevant decision cases from flight 1. In all of them
(Figures 34–38), the North-East tracks of EGV and the other vehicle are shown colored and
marked according to the actual decisions. Rules for the basic decision (right side of the
figure) are:

1. No decision: blue and cyan x.
2. Danger of collision: red and magenta x.

Rules for the improved decision (left side of the figure) are:

1. No decision: blue and cyan star.
2. Danger of collision: red and magenta x.
3. SC1 special mode, object behind EGV: blue and cyan circle.
4. SC2 special mode, object in front of EGV moving towards it: blue and cyan plus.
5. SC3 special mode, object in front of EGV moving away from it: blue and cyan x.
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Figure 32. Motion prediction for steady vehicles (blue EGV, red other vehicle).

Figure 33. Motion prediction for moving vehicles (blue EGV, red other vehicle).

Note that the blue and red colors are for the other vehicle while cyan and magenta are
for the EGV. The represented decision rules are also listed below the figures to improve
article readability. First, two tracks are shown in Figure 34 which do not belong to any
of the three encounters. With the basic method there is no danger, with the improved
method there is also no danger but special modes are detected as SC1 (other vehicle behind
EGV) and SC3 (other vehicle in front of EGV and going away) at several times. These
are from position uncertainty induced motion but have no adverse effect on the decision
about danger.
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Figure 34. Decisions for steady objects (left: the improved method, ∗means no decision, circle means
object behind EGV, ×means object in front of EGV; right: the basic method).

Figure 35 shows the decisions for standing EGV and standing then moving other
vehicle. The basic method shows no danger, while the improved method again detects
special modes SC1 (other vehicle behind EGV) and SC3 (other vehicle in front of EGV and
going away). SC1 (circles) is from uncertainty induced motion but SC3 (crosses) is a correct
detection of other vehicle moving away from the EGV. Again, special modes do not mask
any decision about the danger (safe situation without collision is decided).

Figure 35. Decisions for steady then moving objects (left: the improved method, ∗means no decision,
circle means object behind EGV, ×means object in front of EGV; right: the basic method).

The decisions of the 1st encounter are shown in Figure 36. There is no danger with
both basic and improved methods as expected. The improved method shows well the
point from which the other vehicle is behind the EGV during the turn and after it (SC1 with
circles in the tracks). The minimum distance between the vehicles is 13.3 m so the decisions
are correct.

The decisions of the 2nd encounter are shown in Figure 37. Both methods show
danger, the improved method earlier and for a longer time. This results in DNTs 3.9 s
for improved and 1.9 s for basic method, respectively, with 6.77 m vs. 6.63 m minimum
distances for firm and 8.81 m vs. 7.66 m for emergency braking. This shows that the
improved method gives more notification time but only slightly larger safety tolerance.
Other vehicle behind the EGV (SC1) special case is well detected with the improved method
after leaving the intersection.

The decisions of the 3rd encounter are shown in Figure 38. The basic method gives a
danger warning at the same time as the improved method (DNT 2.4 s) but for a shorter
time (DNT 2.1 s). As the initial notification is at the same time the firm and emergency
stopped positions are about the same giving −1.08 m vs. −1.15 m distances for the firm
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and 1.46 m vs. 1.67 m distances for the emergency braking. In the latter case the result with
the improved method is slightly smaller but this is an insignificant difference.

Figure 36. Decisions for 1st encounter (left: the improved method, ∗ means no decision, circle means
object behind EGV; right: the basic method).

Figure 37. Decisions for 2nd encounter (left: the improved method, ∗ means no decision, circle
means object behind EGV, red and magenta ×means danger of collision; right: the basic method, red
and magenta means danger of collision while the red circle with cross is the emergency and the blue
circle with cross is the firm braking predicted stopped position of the EGV, respectively).

Figure 38. Decisions for 3rd encounter (left: the improved method, ∗means no decision, circle means
object behind EGV, red and magenta ×means danger of collision; right: the basic method, red and
magenta means danger of collision while the red circle with cross is the emergency and the blue circle
with cross is the firm braking predicted stopped position of the EGV, respectively).
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Finally, a special case is shown in Figure 39 where the EGV follows the other vehicle
after the 3rd encounter. Neither of the methods gives a danger warning, which is correct as
the vehicles are far (the minimum distance is 21.15 m). SC2 (other vehicle in front of EGV
moving away) is detected a few times by the improved method, which is a correct decision.

Figure 39. Decisions for EGV following the other vehicle (left: the improved method, × means
special case having other vehicle in front of EGV moving away; right: the basic method).

Finally, the basic method was tuned and re-tuned to achieve safe and acceptable results
and similar or better results are achieved with the improved method. Another conclusion
is to apply firm braking model in the decision of the improved method but command the
driver to apply emergency braking. However, it is important to note that the recorded
situations are not completely realistic as either the other vehicle or the EGV stopped in
time to avoid collision. In a real dangerous situation, none of the vehicles slow down.
Such situations will be generated in SIL simulation (see [4]) and so fine tuning and realistic
evaluation of the improved method will be done there.

As a final comparison, the basic and improved methods give the same decisions for the
encounters, so this can not be a selection criteria. As Figure 37 shows, the improved method
can decide earlier and notify the driver longer. For further comparison the histograms of
DNT values (4 values/method/plot) and the minimum distances after EGV stops with
emergency braking are plotted in Figures 40 and 41, respectively. Figure 40 shows that the
improved method usually gives larger DNT values meaning that it notifies the driver longer
which can be crucial considering the driver reaction time. Less-than-a-second notifications
can disappear from the system before the driver even notices them. However, Figure 41
shows that the minimum distances are in the same range with both methods especially in
the critical 3rd encounters. Thus, considering the resulting distances (which are related to
the time of first notification), both methods perform well. However, considering the driver
notification times the improved method outperforms the basic one. Other advantages of
the improved method are that it is based on realistic prediction of the vehicle positions also
considering estimation uncertainty, it is adaptive considering actual EGV speed and EGV
vehicle braking characteristics instead of a fixed prediction time and it can handle special
situations such as other vehicle behind the EGV or head on scenarios when the EGV driver
should observe the other vehicle. So the improved method is selected for future application
and improvement. The conclusion of the whole work is drawn in the next section.
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Figure 40. Histogram of DNT values for 2nd (left) and 3rd (right) encounters with basic and improved
methods).

Figure 41. Histogram of minimum distances for 2nd (left) and 3rd (right) encounters with basic and
improved methods).

10. Conclusions

This paper deals with encounter risk evaluation applying a forerunner UAV. Encounter
means an approaching vehicle possibly endangering the emergency ground vehicle (EGV)
accompanied by the forerunner UAV. First, the required hardware components on the EGV
and the drone and the demonstration scenarios on ZalaZONE Proving Ground are intro-
duced. Then the main functionalities of the onboard software components are summarized.
After presenting the improvements in object detection, the applied tracking method is
discussed resulting in North-East coordinates of the tracked objects. Then two risk eval-
uation methods are presented to decide about possible collision between EGV and other
vehicles. The first is a basic method applied in September 2022. The second (the improved
method) is a new development and the main contribution of this paper. After evaluating
different North-East position measurement-based velocity and acceleration estimation
methods for the vehicles and selecting the best one, parametric vehicle motion prediction
and risk evaluation are considered in detail. The best estimator was a three state Kalman
filter propagating also the estimation error covariance matrices. Motion prediction is done
based on estimated position, velocity and acceleration applying Newtonian dynamics. The
uncertainty of prediction is increasing with time and is determined based on the estimation
errors. This leads to position prediction consisting of deterministic and stochastic parts.
Contrary to the literature an exact relation for the time dependence of the stochastic part is
presented. The time horizon of the prediction is determined based on actual EGV velocity
and the related braking time to stop the vehicle. Firm and emergency braking scenarios
were considered leading to different results. The horizon is divided into five steps and the
intersection of the EGV and other vehicle predicted position uncertainty circles in any time



Remote Sens. 2023, 15, 1512 42 of 45

step results in a warning. To filter for outliers, the driver is notified only after two warning
signals and the danger mode is canceled after ten non-intersecting predicted trajectories
(covering 1 s). Besides risk evaluation, a method for the detection of special modes is
also developed, checking if the other vehicle is behind the EGV (responsibility with other
vehicle driver) or it is in front of it coming towards or going away from the EGV in the
field of view of the driver. In these special cases, no risk evaluation is required. After the
introduction and development, both the basic and improved methods are tuned based on
collected real test data considering a large set of tuning parameters. As statistical processing
of multi-dimensional parameter sets can be very complicated, engineering considerations
were applied to select the best parameter sets. Finally, the tuned basic and improved meth-
ods are compared based on the same real flight collected demonstration data as applied
for tuning. The demonstration was done in two narrow streets on a test track where the
buildings cover the vehicles from each other so real dangerous situations can appear. The
other vehicle comes from the right side of the EGV and the EGV has the right of way. Three
encounters are tested with the other vehicle stopping in time, stopping in the last moment
and not stopping. The first two should be classified safe while the third is dangerous.
Due to the 10 FPS camera data and to uncertainties in position back-projection, the second
encounter is always classified as dangerous and, in one case, the first encounter is as well.
In that first encounter, the cars were closer than in the other cases. From the EGV braking
models, finally the firm braking was applied for trajectory prediction as it predicts longer
trajectories while the evaluation of decision was done considering driver reaction time and
emergency braking predicting the stopped position of the vehicle after the notification of
the driver. The basic and improved methods gave similar remaining distances after the
EGV stopped but the improved gave longer driver notification times which is important
to raise the driver’s attention. Switching off the notification too early can lead to missed
observation by the driver and, hence, to dangerous situations. However, as new situations
appear, the notification cannot be held for a long time. The final conclusion is that the
forerunner UAV system at this stage of development can only decide about the other vehicle
if it is far or close. In case of a close vehicle, there is no possibility to predict if it stops
or not and the EGV driver should be notified. However, in case the other vehicles slow
down in time, this fact can also be detected. So finally, not only ’other vehicle present or not
present’ decisions can be done. From the basic and improved decision methods, the latter
should be applied and further developed as it gives longer notifications to the driver and
acceptable safety distances, can handle special cases and has an adaptive property relating
the decision to EGV actual speed and braking distance.

Future work should include improvement in position back-projection to avoid latent
motion of the other vehicle. Possibly the application of smoothed RTK GNSS data instead
of DJI M600 onboard data in object position back-projection can solve this problem. Cal-
ibration of the gimbal Euler angle measurement system can also improve the results (in
this work the factory calibration was assumed to be accurate enough based on the precise
orientation hold of the gimbal). Detailed evaluation of the special cases when the other
vehicle is in the field of view of the EGV driver is also required considering building wall
or other object occlusions narrowing driver field of view. Filtering of predicted vehicle
positions considering road layout can also be a great improvement. Finally, more detailed
evaluation of the improved method based on software-in-the-loop simulated traffic data in
multiple intersections is needed including situations where more than one nearby vehicle
is present.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15061512/s1. The supplementary contains two supplementary
tables about the tuning calculations and two videos, as well as an explanation of each of them.

https://www.mdpi.com/article/10.3390/rs15061512/s1
https://www.mdpi.com/article/10.3390/rs15061512/s1
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