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Abstract: The spatial and temporal characteristics of land use carbon emissions are relevant to the
sustainable use of land resources. Although spatial and temporal studies have been conducted on
land use carbon emissions, the spatial correlation of land use carbon emissions at the city level still
requires further research. Here, we estimated the distribution of carbon emissions at the city level in
Shandong Peninsula urban agglomeration in spatial and temporal terms based on land use remote
sensing data and fossil energy consumption data during 2000–2019. The results showed that the land
use change in the 16 cities in the study area was the conversion of cropland to construction land.
Carbon emissions from land use had an upward trend for all 16 cities overall during the period of
2000–2019, but the incremental carbon emissions trended downward after 2010. Among them, Jinan
and Qingdao had higher carbon emissions than other cities. In addition, we also found that land
use carbon emissions at the city level were characterized by stochasticity, while per capita carbon
emissions displayed geospatial aggregation. Among them, Yantai displayed a spatial pattern of high–
high clustering of carbon emissions, while Jining presented a spatial pattern of low–low clustering
in terms of land-average carbon emissions and carbon emissions per capita during 2000–2019. The
results of the study are important for guiding the achievement of urban carbon emission reduction
and carbon neutrality targets at the city level.

Keywords: urbanization; carbon emission; Moran’s I index; city level; remote sensing

1. Introduction

Land use change caused by urbanization leads to rapidly increasing carbon emissions
with climate change, which has attracted widespread attention [1–3]. The process of
urbanization has increased in construction land area, which in turn causes changes in the
spatial and temporal characteristics of various land use types [4]. In addition, previous
studies have shown that cities account for approximately 70% of global carbon emissions
from energy consumption [5,6]. In addition, land use is the second largest source of global
carbon emissions after fossil energy [7]. Therefore, it is important to study the carbon
emissions from land use caused by urbanization.

At present, numerous studies have been carried out on carbon emissions caused
by urbanization from different perspectives [3,8]. For instance, some studies have been
conducted on the interrelationship between urbanization and carbon emissions [9,10].
In addition, the implications of urbanization on carbon emissions have been widely
studied [8,11]. Recently, many scholars have investigated the impact of urban expan-
sion on land surface temperature and carbon emissions [1,12]. Those above-mentioned
studies have enriched the research content and methods of urbanization on carbon emis-
sions. Current research on urbanization and carbon emissions is mainly at the global [10,11],
national [8,13], provincial [14,15], and basin scales [7,16]. However, there are regional dif-
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ferences in carbon emissions between cities [17]. Thus, there is a need to conduct land use
carbon emission studies at the city level.

Carbon emissions in different cities are mainly influenced by land type, as land use
carbon emissions are the second largest source of carbon emissions. Current research
on land use carbon emissions mainly focused on the carbon emissions of different land
use types [18], or even specific land use types [19]. Some scholars have also conducted
research on the impact of vegetation on soil carbon [20,21]. With the development of the
Google Earth Engine (GEE) cloud platform, it has been widely used in the land use change
analysis [22,23], including land use carbon emission studies [16,24,25]. However, carbon
emissions in different cities are influenced by population, GDP per capita, urbanization
rate, energy intensity and the share of secondary industries, in addition to land type. To
better characterize carbon emissions in different cities, it is necessary to carry out research
from the perspective of land-average carbon emissions and carbon emissions per capita at
the city level.

Previous studies have demonstrated that Asia, including eastern China, is expected to
bear the most of urban expansion in the world between 2015 and 2100 [26,27]. Shandong
Peninsula urban agglomeration, the only one of the seven major urban agglomerations
along the Yellow River in a mature stage, has an urbanization rate of 61.8% in 2020. More-
over, according to Carbon Emission Accounts and Datasets, the total carbon emissions of
Shandong Peninsula urban agglomeration are in the top five in China. Numerous studies
have focused on carbon emissions in Shandong province, including an analysis of the
spatial and temporal changes [16,28], peak projections [29,30], and emission reduction
recommendations [31,32]. These studies provided the basis for the study of Shandong
Peninsula urban agglomeration. However, there are significant differences in the conditions
of population, economic status, and natural resources within Shandong Peninsula urban
agglomeration [15]. As a typical region with high carbon emissions, it is important to con-
duct research on land use carbon emissions in Shandong Peninsula urban agglomeration at
the city level.

Global spatial autocorrelation (Moran’s I index) is the most widely used method for
studying the spatial autocorrelation of regions [33,34]. Whether the data are spatially
correlated or heterogeneous, the Moran’s I index emphasizes measuring the spatial as-
sociations of study objects [34,35]. It was widely utilized in the analysis of urban traffic
conditions [36], the detection of pollution hotspots [37], and the monitoring of natural
disasters [35]. Recently, Moran’s I index has also been used to reveal the overall charac-
terization of carbon emissions spatial correlation [34]. Thus, we will employ the global
Moran’s I index to investigate the general characteristics of Shandong Peninsula urban
agglomeration. Moreover, local spatial autocorrelation (LISA) is widely used to investigate
the characteristics of localized spatial clustering [38,39]. In this study, we will use LISA to
identify the localized spatial characteristics of the spatial aggregation of land use carbon
emissions at the city level.

The specific objective of this study was to reveal the spatial correlations of land use
carbon emissions in Shandong Peninsula urban agglomeration at the city level. Spatial
and temporal land use change characteristics were calculated using ArcGIS based on the
land use data of 2000, 2010, and 2019. We further analyzed the carbon emissions from
different land use types using the overall carbon emissions, land-average carbon emissions,
and carbon emissions per capita at the city level. Finally, Moran’s I index and LISA were
applied to study the spatial aggregation distribution characteristics of land use carbon
emissions at the city level. The results of this study will contribute to the theoretical basis
for the sustainable use of land resources and the development of carbon reduction policies
at the city level.
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2. Materials and Methods
2.1. Study Area Description

Shandong Peninsula urban agglomeration (114◦47′~122◦42′E, 34◦22′~38◦24′N) is situ-
ated on the downstream of the Yellow River (Figure 1a). It is 437.28 km long from north
to south and 721.03 km wide from east to west. By the end of 2020, the total area was
1.57 × 105 km2. According to the 7th National Census, the population of the Shandong
Peninsula urban agglomeration in 2020 was 101.53 million, and the urbanization rate of
Shandong Peninsula urban agglomeration was 63.05%. By the end of 2019, the study
area had a GDP of CNY 7106.75 billion, ranking 3rd in China. The industrial structure of
the study area is dominated by secondary and tertiary industries, with the three major
industries accounting for 7.20%, 39.84%, and 52.96%, respectively. Based on the Shandong
Peninsula urban agglomeration Development Plan (2016–2030), Shandong Peninsula urban
agglomeration includes all the 16 cities in Shandong Province (Figure 1b). The main land
use types were cropland, woodland, grassland, wetland, water, construction land, and
unused land (Figure 1c). Among them, the study area consisted of 71.93% of cropland and
18.20% of construction land, respectively.
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Figure 1. Study area locations. (a) Location of the study area in China; (b) elevation of the study area;
(c) land use distribution map of the study area.

2.2. Data Sources and Preprocessing

The land use data were derived from the Global Land Cover Data Product Ser-
vice website of the National Center for Basic Geographic Information (DOI:10.11769)
(http://www.globallandcover.com/ accessed on 17 May 2022) at a spatial resolution of
30 m × 30 m. According to the situation of the study area combined with the Classification
of Land Use Status, we reclassified the land use types into cropland, woodland, grassland,
water, wetland, construction land, and unused land. Energy data and socioeconomic
data, including the urbanization rate and GDP, were mainly obtained from the China
Energy Statistical Yearbook (2001–2020) and the corresponding city statistical yearbooks.
Administrative area data were provided from the Resource and Environmental Science
and Data Center (https://www.resdc.cn/ accessed on 19 May 2022). The land use data
were reprojected into an Albers equal area conical projection that was based on the WGS-84
datum using ArcGIS 10.8 software. Then, pre-processed land use data were masked using
the administrative boundaries of Shandong Peninsula urban agglomeration to obtain the
land use data for the study.

http://www.globallandcover.com/
https://www.resdc.cn/
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2.3. Research Methodology
2.3.1. Carbon Emissions Calculation Method

Previous research has showed that carbon emissions derived from land use can be sep-
arated into two types: direct carbon emissions or indirect carbon emissions [25,40]. Direct
carbon emissions include carbon emissions produced by cropland, woodland, grassland,
wetland, and other non-construction land, while indirect carbon emissions are generated
by human activity on construction land.

1. Direct Carbon Emissions

The calculation of direct carbon emissions is specified as follows:

Et = ∑ γi × θi (1)

where i means the various types of land use, which has 6 land use types in our study,
namely, cropland, woodland, grassland, water, wetland, and unused land. Et denotes
LUCEs (kg); γi is the acreage of various land use patterns (km2); and θi indicates the carbon
emissions factor for various land types (Table 1).

Table 1. Direct carbon emissions for various land use types (kg·m−2·a−1) [16].

Land Type Factor of Carbon Emissions

Cropland 0.0422
Woodland −0.0644
Grassland −0.0021
Wetland −0.00006132

Water −0.0253
Unused land −0.0005

2. Indirect Carbon Emissions

Carbon emissions from construction land were gained by adding the product of each
energy consumption and the corresponding energy carbon emissions factor, which is
derived from the following method:

Ej = ∑ (Ei× di× ∂i) (2)

where Ej denotes carbon emissions from construction land, and (kg) shows the various
energy consumptions. Based on regional characteristics and data availability, we studied
the consumption of five major energy sources, including coal, coke, gasoline, kerosene, and
fuel oil. di denotes the standard coal conversion factor for the sources of various energies,
and ∂i indicates the carbon emissions factor for the sources of various energies. Table 2
shows the conversion factors and carbon emissions factors for each energy standard of coal.

Table 2. The conversion factors and carbon emissions factors.

Energy Type Standard Coal Conversion
Factors (kgce·kg−1)

Carbon Emissions Factors
(kg·kgce−1)

Coal 0.7143 0.7559
Coke 0.9714 0.855

Gasoline 1.4714 0.59
Kerosene 1.4714 0.57
Fuel oil 1.4286 0.62

Note: Carbon emissions factor was collected from IPCC 2006, and the standard coal conversion factor was
obtained from the China Energy Statistical Yearbook.
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2.3.2. Spatial Autocorrelation Models

The exploratory spatial data analysis (ESDA) method was used to explore the spatial
correlation characteristics of carbon emissions. Global spatial autocorrelation is taken to
identify the overall correlation of spatial correlation [39], and Moran’s I can be formulated as:

I =
1
S2 ∑n

j=1 (Xi − X)(Xj − X)/∑n
i=1 ∑n

j=1 Wij (3)

where n refers to the city number of Shandong Peninsula urban agglomeration; Xi denotes
the observed value of i for Shandong Peninsula urban agglomeration; X represents the
sample mean; and Wij denotes the spatial weight matrix; S2 = ∑n

i=1
(
Xi − X

)2/n. Moran’s
I takes the value in the interval [−1, 1]. Moreover, at the city level, LISA were also derived
to determine the local clustering of carbon emissions.

3. Results
3.1. Spatial and Temporal Characteristics of Land Use Change
3.1.1. Spatial and Temporal Characteristics of Land Use Change in the Urban Agglomeration

The transition between the different types of land use in Shandong Peninsula urban
agglomeration from 2000 to 2019 were illustrated in Figure 2. During 2000–2010, all land
use types were transferred, and the total transferred presented area was 1.47 × 104 km2,
accounting for 9.44% of the study area. The largest area transferred was cropland, which
was 8.32 × 103 km2, representing approximately 56.55% of the total area transferred. Of
this, 4.84 × 103 km2 was transformed into construction land, accounting for the largest
share of approximately 58.17%. The area of land transferred for construction land was
second to cropland during 2000–2010. A total of 2.20 × 103 km2 of construction land was
transferred, of which approximately 97.17% of the construction land area was transferred
to cropland. The area of cropland converted to construction land from 2010 to 2019 was
1.08 × 104 km2, representing approximately 55.94% of the total area of cropland converted.
The increased area of land for construction from 2010 to 2019 was mainly from cropland,
which is similar to the land transfer from 2000 to 2010. The cropland was mainly transferred
from construction land and water, with the area of 1.25 × 103 km2 and 1.45 × 103 km2,
respectively. In summary, the area of cropland in Shandong Peninsula urban agglomeration
decreased, while construction land increased during the study period.
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3.1.2. Spatial and Temporal Characteristics of Land Use Change at the City Level

Figure 3 showed the land use area changes and area variation rates for 16 cities in
Shandong Peninsula urban agglomeration. Cropland experienced a decreasing tendency in
all 16 cities from 2000 to 2019. Linyi had the largest reduction in cropland with a decrease
of 1946 km2. By contrast, construction land was increased for all the 16 cities. Among
them, Linyi had the largest increase in construction land with an increase of 1813 km2.
During 2000–2019, Yantai had the largest decrease in woodland and the largest increase in
grassland, with areas of 741 km2 and 531 km2, respectively. The largest increase in wetland
and water area was in Dongying, with an increase of 525 km2 and 882 km2, respectively. In
general, there was a spatial variability at the city level in land use change.
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There was spatial variability in the transfer of various land use types in Shandong
Peninsula urban agglomeration during 2000–2019 (Figure 4). From 2000 to 2010, both crop-
land and grassland were mainly increased in Yantai and Weihai (Figure 4(aA)), while the
increased area of woodland was mainly concentrated in Zibo and Weifang (Figure 4(aD,bD)).
From 2010 to 2019, the increased cropland area was primarily in Jining and Zaozhuang (Fig-
ure 4(bE)), and the increased grassland area was mainly in Zibo and Jinan (Figure 4(bD)).
The expansion of wetlands and watersheds was mainly in Binzhou, Dongying, and Weifang
during the study period (Figure 4(aB,aC,bB,bC)). In general, the increase in construction
land occurred the most among all the land types in Shandong Peninsula urban agglomera-
tion during the study period.

3.2. Spatial and Temporal Characteristics of Carbon Emissions at the City Level
3.2.1. Characteristics of Carbon Emissions from Different Land Use Types

The carbon emissions from various types of land use in 16 cities in Shandong urban
agglomeration were generally in accordance with the area change in different land use
types (Figure 5). The carbon emissions of the 16 cities increased by 179.65% from 2000 to
2010, while they increased by only 13.78% from 2010 to 2019. Therefore, the total carbon
emissions of each city showed an increasing trend during 2000–2019, but the increment
decreased after 2010 (Figure 5a–c). The overall carbon emissions of 16 cities increased from
1.05× 1011 kg in 2000 to 3.32× 1011 kg in 2019, an increase of approximately 1.14 × 1010 kg
per year. The largest increases in carbon emissions were seen in Qingdao and Jinan, with
increase rates of 382.25% and 337.05%, respectively. The carbon emissions of all 16 cities
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increased between 2000 and 2019. Dongying, Liaocheng, Tai’an, Zaozhuang, and Zibo
showed a declining trend during 2000–2019, while the other cities showed an increase
in their total carbon emissions. During the study period, Qingdao had the largest total
carbon emissions, with 1.08 × 1010 kg in 2000, 3.80 × 1010 kg in 2010, and 5.22 × 1010 kg
in 2019. Rizhao’s total carbon emissions were in the bottom 2, at 3.15 × 109 kg in 2000,
8.07 × 109 kg in 2010, and 9.48 × 109 kg in 2019 (Figure 5d). The carbon emission distribu-
tion within the urban agglomeration was in spatial disparity.
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increase in land use types, namely Yantai, Dongying, Weifang, Zibo and Zaozhuang, respectively.
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3.2.2. Characteristics of Land-Average Carbon Emissions and Carbon Emissions per Capita
at the City Level

Land-average carbon emissions were calculated from the total carbon emissions in
every city and corresponding land area, and there were large differences among the cities
(Figure 6a). From 2000 to 2010, all 16 cities showed an upward trend of land-average carbon
emissions. Qingdao increased from 9.83 × 105 kg/km2 in 2000 to 34.46 × 105 kg/km2 in
2010, with an increase of 24.63× 105 kg/km2. Heze experienced the least amount of growth,
with only 5.01 × 105 kg/km2 (Figure 6b). From 2010 to 2019, the land-average carbon
emissions of Liaocheng, Tai’an, Zibo, Zaozhuang, and Dongying decreased, with a decrease
of 8.53%, 12.91%, 17.27%, 18.22%, and 18.41%, respectively. The other 11 cities in the urban
agglomeration increased in terms of their land-average carbon emissions. Qingdao had the
largest increase in land-average carbon emissions, which was 12.94 × 105 kg/km2, while
Linyi output the least amount of land-average carbon emissions from 2000 to 2019.
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From 2000 to 2010, all cities in the urban agglomeration showed an increasing trend in
carbon emissions per capita (Figure 6c). Among them, Dongying had the largest increase
in carbon emissions per capita, from 3.18 × 103 kg in 2000 to 8.68 × 103 kg in 2010, with
an increase of 172.86%. The smallest increase was in Heze with only 558 kg. Liaocheng,
Dongying, Binzhou, Tai’an, Zaozhuang, Zibo, and Weihai showed an increased tendency
of carbon emissions per capita from 2010 to 2019. The largest reduction in carbon emissions
per capita occurred in Dongying by 22.62%, while the largest increase was in Qingdao,
where the carbon emissions per capita increased by 1.32 kg. Among the 16 cities, Dongying
consistently ranked 1st in carbon emissions per capita, while Heze ranked last (Figure 6d).

3.2.3. Characteristics of Land-Average Carbon Emissions and Carbon Emissions per Capita
of Major Carbon Sources

We measured the land-average carbon emissions for cropland and construction land
for all 16 cities (Figure 7). All 16 cities showed a decreasing trend in land-average carbon
emissions for cropland from 2000 to 2019. Among them, Dongying reduced the largest, with
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0.1 kg of carbon emissions per 1 km2 of land (Figure 7a). The land-average carbon emissions
of construction land in all 16 cities showed an increasing trend (Figure 7b). Qingdao had
the highest land-average carbon emissions of construction land from 2000 to 2019, with
an increase of 0.377 kg/km2. The land-average carbon emissions of construction land
increased by 0.323 kg/km2. The trend of land-average carbon emissions from construction
land corresponded with the change in the construction land area in every city.
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3.3. Spatial Characteristics of Carbon Emissions in the Urban Agglomeration
3.3.1. Global Spatial Autocorrelation Characteristics at the City Level

To evaluate the overall characteristics in spatial terms of carbon emissions, we cal-
culated the global Moran’s I values of carbon emissions in Shandong Peninsula urban
agglomeration. A positive global Moran’s I value means that the characteristics in spatial
terms of their total trend in carbon emissions tend to be clustering. A negative global
Moran’s I value demonstrates that the characteristics in spatial terms of the total of carbon
emissions tend to be dispersed. As showed in Table 3, it can be observed that the Moran’s
I value of total carbon emissions was negative, suggesting that there is a tendency of
total carbon emissions towards dispersion in Shandong Peninsula urban agglomeration.
Likewise, the global Moran’s I value was negative in terms of land-average carbon emis-
sions, showing that land-average carbon emissions also have a dispersion tendency. In
contrast, the Moran’s I value for carbon emissions per capita was greater than zero, which
indicates that carbon emissions per capita has a geographical agglomeration. In summary,
during 2000–2019, there was a spatial correlation of carbon emissions among neighboring
cities. The total characteristics in spatial terms of carbon emissions were random at the
city level, but carbon emissions per capita were spatially autocorrelated with geographic
agglomerations during 2000–2019.

Table 3. Global Moran’s I index of carbon emissions of Shandong Peninsula urban agglomeration.

Moran’s I Index

Carbon Emissions Land-Average Carbon Emissions Carbon Emissions per Capita

2000 −0.164 −0.052 0.269
2010 −0.037 −0.018 0.290
2019 −0.066 −0.049 0.289
2000 −0.164 −0.052 0.269
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3.3.2. Local Spatial Autocorrelation Characteristics at the City Level

We conducted the average of the local indicators of LISA in Shandong Peninsula
urban agglomeration, which further demonstrated the local spatial correlation of overall
carbon emissions at the city level. The results of the calculation were classified into four
different spatial patterns, which are high–high cluster, high–low outlier, low–high outlier,
and low–low cluster. The total carbon emissions showed a spatial difference from 2000 to
2019 (Figure 8).
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There was only a high–low outlier spatial pattern of the total carbon emissions for
2000 in Linyi. It showed that Linyi had high total carbon emissions, which did not lead to
an increase in the surrounding areas (Figure 8a). In 2010 and 2019, only a high–high cluster
spatial pattern of overall carbon emissions occurred in Yantai (Figure 8b,c), suggesting that
Yantai had higher overall carbon emissions, which led to an increase in the surrounding
areas. As showed in Figure 8d, there was a low–low cluster spatial pattern of land-average
carbon emissions only in Jining in 2000, suggesting that Jining has low land-average carbon
emissions, which led to a decrease in the surrounding areas.

There was a low–high outlier spatial pattern of the land-average carbon emissions
located in Binzhou and Yantai in 2000, demonstrating that the land-average carbon emis-
sions were low in Binzhou and Yantai, but their surrounding areas had higher land-average
carbon emissions (Figure 8d). In 2010 and 2019, a high–high cluster spatial pattern of
land-average carbon emissions only occurred in Weifang, suggesting that Weifang had
higher land-average carbon emissions, which led to an increase in the surrounding areas
(Figure 8e,f).

There were three spatial patterns of carbon emissions per capita in 2000, including a
high–high cluster, low–high outlier, and low–low cluster (Figure 8g). Of these, the high–
high cluster mainly occurred in Dongying and Weifang. This demonstrated that the carbon
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emissions per capita in Dongying and Weifang were high, which led to an increase in
their surrounding areas. The low–high outlier spatial pattern of the carbon emissions
per capita located in Binzhou showed that the carbon emissions per capita were low in
Binzhou, but its surrounding areas had higher carbon emissions per capita. In 2000, the
low–low cluster spatial pattern for carbon emissions per capita only occurred in Jining,
suggesting that Jining had low carbon emissions per capita, which led to a decrease in the
surrounding areas. In 2010, the low–low cluster spatial pattern of carbon emissions per
capita only occurred in Jining, while the high–high cluster of carbon emissions per capita
majorly occurred in Dongying and Weifang, which is similar to that in 2000 (Figure 8h).
The low–low cluster spatial pattern of carbon emissions per capita only occurred in Jining
in 2019, suggesting that Jining had low carbon emissions per capita, which led to a decrease
in the surrounding areas. The high–high cluster of carbon emissions per capita primarily
occurred in Weifang, indicating that the region had high carbon emissions per capita, which
led to an increase in its surrounding areas (Figure 8i).

4. Discussion
4.1. Analysis of Land Use Change

The transfer between different land use types in Shandong Peninsula urban agglom-
eration between 2000 and 2019 was studied. We found that the cropland area decreased
while the construction land area increased in Shandong Peninsula urban agglomeration
from 2000 to 2019. A possible explanation is the accelerated urbanization and industrializa-
tion of Shandong Peninsula urban agglomeration. According to the Shandong Province
Urbanization Development Outline (2012–2020), the government supported the expansion
of the city scale in the province, which resulted in an increase in construction land. The
urbanization rate in the study region increased from 26.84% to 49.94% from 2000 to 2019,
with an urban population increase of 110.38%. Another possible explanation for this was
the rapid population growth in the urban agglomeration. Based on the Shandong Provin-
cial Statistical Yearbook, the population of the urban agglomeration has increased from
89.75 million in 2000 to 101.48 million in 2019, with an increase of 11.73 million.

Moreover, we found that the increase in construction land mainly occurred from
the cropland (Figure 2). This result may be explained by the fact that the expansion of
construction land is a common problem of the urbanization development in China [41].
Previous studies have demonstrated that the three main causes of urban expansion and
shrinking cropland are urbanization, economic development (mainly industrialization),
and population growth [42]. This finding accords with our earlier observations, which
demonstrated an increase in construction land in Shandong Peninsula urban agglomeration.
In accordance with the present results, previous studies have demonstrated that the land
transformation in Shandong from 2000 to 2020 was mainly the conversion of cropland to
construction land [28].

4.2. Analysis of Carbon Emissions at the City Level

The overall carbon emissions showed an upward trend during 2000–2019, but the
upward trend slowed down after 2010 in Shandong Peninsula urban agglomeration. These
results are likely to be related to the policy of energy saving and emission reduction devel-
oped by Shandong Province. In 2011, the Shandong Province environmental protection
“12th Five-Year” plan stated that it would strongly develop new and renewable energy
to decrease the percentage of coal in energy consumption. Additionally, the Shandong
Peninsula urban agglomeration development plan (2016–2030) proposed to control the
development of coal within the urban agglomeration and build coal production bases
outside of the province. Moreover, urban agglomeration should prioritize the development
of clean coal power and the construction of nuclear power bases. Hence, the trend of
increasing carbon emissions in the Shandong Peninsula urban agglomeration slowed down
after 2010.
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We also found that in Shandong Peninsula urban agglomeration, the carbon emissions
of Jinan and Qingdao were higher than other cities. It seems possible that this result is due
to differences in the economic development of cities. Jinan City Master Plan (2011–2020)
mentioned that Jinan should strongly develop its provincial capital economy, which is
represented by the resident and headquarters economy. At the same time, Qingdao would
build an important advanced manufacturing base and a marine emerging industry cluster
in China according to the Qingdao City Master Plan (2011–2020). Jinan and Qingdao have
relatively high levels of economic development compared to other cities in Shandong
Province [43], which is consistent with our finding. Another possible explanation for
this is the expansion of construction land. The construction land in Jinan increased from
1.10 × 103 km2 in 2000 to 2.10 × 103 km2 in 2019, with an increase of 9.99 × 102 km2.
During the same period, the construction land in Qingdao increased from 1.11 × 103 km2

to 2.10 × 103 km2, meaning it increased by 88.83%. The construction land area in Jinan and
Qingdao increased, which led to an increase in carbon emission during the study period.
Furthermore, this result may be explained by the fact that economic development is linked
to energy consumption in cities. According to the China Energy Statistics Yearbook, Jinan
and Qingdao accounted for 30.84% of coal consumption in Shandong Province by the end
of 2019. The high inertia of energy carbon emissions in economic development [29] make it
difficult for Jinan and Qingdao to achieve economic and energy efficiency simultaneously
in the short term. As a result, the carbon emissions of Jinan and Qingdao were higher in
Shandong Province during the study period.

4.3. Analysis the Spatial Agglomeration of Carbon Emissions at the City Level

The result indicated that carbon emissions per capita had a spatial autocorrelation of ge-
ographical agglomeration during the study period at the city level. A possible explanation
for this is related to population movement. The population is distributed heterogeneously,
showing a clear geographical agglomeration [17]. The accelerated urbanization process,
on the other hand, has led to an enormous influx of people from rural areas into the
cities. In addition, population movement is characterized by a significant geographical
proximity [44]. Thus, population movement in Shandong Peninsula urban agglomeration
results in a geographic agglomeration of per capita carbon emissions at the city level.

We also found that Yantai showed a high–high cluster spatial pattern of carbon emis-
sions. This result may be due to regional economic development. The Shandong Peninsula
Blue Economic Zone Development Plan was approved by the State Council in 2011, which
stated that it would promote regional economic development. As an important component
of the Shandong Peninsula Blue Economic Zone, the GDP of Yantai was 3rd in all 16 cities
in Shandong Peninsula urban agglomeration (Figure 9). Carbon emissions are positively
correlated with economic development [45], which is consistent with our earlier finding. In
addition, there was a low–low cluster spatial pattern of land-average carbon emissions and
carbon emissions per capita in Jining during the study period. A possible explanation for
this might be related to the impact of coal consumption. During the study period, the coal
consumption for Jining was only 6.5% of the total coal consumption in Shandong Peninsula
urban agglomeration. Those findings seem to be consistent with other bodies of research,
which found that carbon emissions per capita as well as carbon intensity are increasing in
more economically developed regions [43].

In the context of climate change, land use carbon emissions are receiving increased
amounts of attention as urbanization accelerates. The study of land use carbon emissions at
the city level not only helps in understanding the regional land resource use situation, but
it also contributes to the formulation of appropriate policies for different city developments.
In the future, we will continue to conduct research on land use carbon emissions at the city
level from different perspectives.
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5. Conclusions

Urban agglomerations are the most promising core areas in China’s future economic
development pattern and are the main direction for China’s urban development. In the con-
text of the global urbanization process and economic globalization, urban agglomerations
are acting as a brand-new geographical unit for the country to participate in global compe-
tition. Here, we analyzed the spatial and temporal characteristics of carbon emissions from
various land uses in terms of the total carbon emissions, land-average carbon emissions,
and carbon emissions per capita of urban agglomerations. The detailed conclusions are
summarized as follows:

(1) Cropland area decreased, and the construction land area increased in Shandong
Peninsula urban agglomeration during 2000–2019, while the increased construction land
was mainly from cropland.

(2) The overall carbon emissions in Shandong Peninsula urban agglomeration showed
an uptrend during the study period, but the rising trend slowed down after 2010. The
carbon emissions of Jinan and Qingdao were higher than those of other cities in Shandong
Peninsula urban agglomeration at the city level.

(3) The overall spatial distribution of carbon emissions at the city level was charac-
terized by spatial heterogeneity, but the per capita carbon emissions showed the spatial
autocorrelation of geographical agglomeration. Since carbon emissions exhibit a positive
correlation with economic development, Yantai showed a high–high cluster spatial pattern
of carbon emissions. There was a low–low cluster spatial pattern of land-average carbon
emissions and carbon emissions per capita in Jining during 2000–2019.

This study takes Shandong Peninsula urban agglomeration as an example to study
land use carbon emissions at the city level, providing a new perspective for studying land
use carbon emissions in other urban agglomerations under global climate change. At
present, we have only studied carbon emissions at the city level from 2000 to 2019. In
future work, we will combine a long-term series of land use and energy data to explore
carbon emissions from land use under the influence of anthropogenic activities to provide
a theoretical foundation for sustainable regional development.
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