
Citation: Gao, Y.; Solórzano, J.V.;

Estoque, R.C.; Tsuyuzaki, S. Tropical

Dry Forest Dynamics Explained by

Topographic and Anthropogenic

Factors: A Case Study in Mexico.

Remote Sens. 2023, 15, 1471. https://

doi.org/10.3390/rs15051471

Academic Editor: Weiqi Zhou

Received: 31 December 2022

Revised: 24 February 2023

Accepted: 4 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Tropical Dry Forest Dynamics Explained by Topographic
and Anthropogenic Factors: A Case Study in Mexico
Yan Gao 1,2,* , Jonathan V. Solórzano 3 , Ronald C. Estoque 4 and Shiro Tsuyuzaki 2

1 Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México,
Morelia 58190, Mexico

2 Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
3 Posgrado en Geografía, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional

Autónoma de México, Morelia 58190, Mexico
4 Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute,

Tsukuba 305-8687, Japan
* Correspondence: ygao@ciga.unam.mx

Abstract: Tropical dry forest is one of the most threatened ecosystems, and it is disappearing at an
alarming rate. Shifting cultivation is commonly cited as a driver of tropical dry forest loss, although
it helps to maintain the forest coverage but with less density. We investigated tropical dry forest
dynamics and their contributing factors to find out if there is an equilibrium between these two
processes. We classified multi-temporal Sentinel-2A images with machine learning algorithms and
used a logistic regression model to associate topographic, anthropogenic, and land tenure variables
as plausible factors in the dynamics. We carried out an accuracy assessment of the detected changes
in loss and gain considering the imbalance in area proportion between the change classes and the
persistence classes. We estimated a 1.4% annual loss rate and a 0.7% annual gain rate in tropical dry
forest and found that the topographic variable of slope and the anthropogenic variable of distance to
roads helped explain the occurrence probability of both tropical forest loss and tropical forest gain.
Since the area estimation yielded a wide confidence interval for both tropical forest loss and gain
despite the measures that we took to counterbalance the disproportion in areas, we cannot conclude
that the loss process was more intense than the gain process, but rather that there was an equilibrium
in tropical dry forest dynamics under the influence of shifting cultivation.

Keywords: land use and land cover change; shifting cultivation; tropical forest gain and loss;
topographic factors; distance to roads; logistic regression

1. Introduction

Tropical and subtropical dry forests are one of fourteen biomes identified at the global
scale [1]. In Mexico, tropical dry forests (TDFs) cover extensive areas in the western Pacific
lowland from southern Sonora to northern and central Chiapas [2]. TDFs host a large
variety of fauna and flora, playing an important role in biodiversity conservation and
providing food and shelter for local people [3,4]. Despite having the highest level of
endemism in the American continent [5], TDFs in Mexico are conventionally perceived
as having less commercial value compared with temperate forests, and they are mainly
designated for shifting cultivation and cattle ranching [6,7].

Land use and land cover change (LULCC) contributes to about one-tenth of the annual
carbon emissions [8], in which deforestation shares more than three times that of the other
LULCC categories combined [9]. In Mexico, at the national level, TDF decreased at a rate of
0.4%, about 100,000 ha every year [10]. Regional studies have reported higher deforestation
rates, reaching 1.4% per year [11]. Large dry forest tracts have disappeared in recent years
mainly to support agriculture and cattle ranching. About 70% of pre-Hispanic TDF has
been converted to other land use types, and about 62% of the remaining TDF is in an altered
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and disturbed state [6]. In addition to carbon loss, the loss of TDF leads to the loss of
biodiversity and soil erosion and increases the vulnerability of local people who depend
on TDFs for food and shelter. The disturbance also fundamentally alters environmental
conditions and constrains the forest’s capacity to regenerate [12].

In previous studies, different drivers have been associated with the LULCC of tropical
forests, such as the expansion of agriculture (frequently large-scale and industrialized)
or livestock activities, as well as socio-economic conditions such as poverty. Especially,
topographical and distance-related measures have been reported as determinant factors
to explain which areas will undergo a LULCC process. For example, it was reported that
the probability of an area experiencing a LULCC process is related to a poverty index, the
population size of nearby settlements, topographical variables, and distance to roads [13].
Nonetheless, these can sometimes be a product of complex relationships [13,14].

Shifting cultivation is widely practiced in the global south and plays an important
role in food security in Asian, African, and Latin American countries [15,16]. In Mexico,
shifting cultivation is the main driver of disturbances in TDFs, especially in the southern
part of the country [17]. This agriculture system includes cycles of clearing, cultivation, and
fallow period. During clearing, the standing vegetation is cut down and burned to create
fields and produce ash which provides nutrients for farming. The cleared parcels have an
average size of 2.5 ha and crops are grown for subsistence [18]. Cultivation starts during
the rainy season when maize crops are planted and harvested after six months of growth.
After harvesting until the next plantation, livestock graze on crop residues. The cultivation
cycle repeats for about 2–3 years and then the land is left to rest in a fallow period for
about 3–8 or more years, during which natural vegetation grows as a mixture of shrubs
and trees. Shifting cultivation creates a landscape with a mosaic of patches currently being
cropped and patches in the fallow period with natural vegetation under various stages of
regeneration. The regenerated natural vegetation keeps the area a forest, however, with
less biomass density [19].

This paper aims to understand the contributing factors to the dynamics of TDFs and
whether there is a balance between TDF loss and gain under the influence of shifting cultiva-
tion. We first obtained areas of TDF loss and gain by comparing multiple dates of land use
land cover maps created by classifying Sentinel-2A images with a machine learning algorithm.
Then, using a logistic regression model, we analyzed the plausible factors including topo-
graphic, anthropogenic, and land ownership that are associated with TDF changes. Lastly, we
projected the areas of future TDF loss and gain to shifting cultivation.

2. Materials and Methods
2.1. Study Area

The study area is within the Ayuquila River watershed, in the state of Jalisco, Mexico
(Figure 1). It is one of the first areas in Mexico designated as a Reduction of Emission from
Deforestation and Forest Degradation (REDD+) experimental area because of its importance
in biodiversity and water provision, among other ecosystem services [20]. The watershed has
a wide range in topography, from 260 m to 2500 m above mean sea level (amsl). The monthly
average temperature is about 18–22 degrees Celsius, and the annual average precipitation is
800–1200 mm, which occurs mainly during the rainy season, from June to October [21]. The
dominant forest type is TDF, which is comprised of deciduous and semi-deciduous trees that
lose their leaves during the dry season, typically from November to May. TDF covers about
24% of the watershed, and it has been intensively used for shifting cultivation, cattle grazing,
and fuel wood collection. As in the rest of Mexico, most of the forests (59% to 80%) in the
Ayuquila watershed are under the authority of ejidos, which is a communally managed land
tenure system of rural agrarian settlements [18].
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Figure 1. Location of the study area in the central west of Mexico. The background is a natural color 
composite of Landsat 8 imagery. The distribution of the tropical dry forest in the study area is shown 
in light green color. 
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obtained from Google Earth Engine archive. All Sentinel-2A bottom-of-atmosphere reflec-
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the official website of the National Institute of Statistics and Geography (INEGI) of Mexico 
with a 15 m spatial resolution, and the topographic variables of slope and aspect were 
calculated using the DEM to reflect terrain changes. Data on accessibility including dis-
tance to roads and distance to agriculture were calculated using the proximity function 
with roads data downloaded from the INEGI and agriculture data (including both irri-
gated and temporal agriculture) extracted from the INEGI land use land cover and vege-
tation maps, series VII, at the scale of 1:250,000. 
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Figure 1. Location of the study area in the central west of Mexico. The background is a natural color
composite of Landsat 8 imagery. The distribution of the tropical dry forest in the study area is shown
in light green color.

2.2. Data

This study collected and used a variety of datasets (Table 1). Sentinel-2A images were
obtained from Google Earth Engine archive. All Sentinel-2A bottom-of-atmosphere re-
flectance images were atmospherically corrected with Copernicus scihub using the sen2cor
algorithm. In addition, elevation data (Digital Elevation Model: DEM) were obtained from
the official website of the National Institute of Statistics and Geography (INEGI) of Mexico
with a 15 m spatial resolution, and the topographic variables of slope and aspect were
calculated using the DEM to reflect terrain changes. Data on accessibility including distance
to roads and distance to agriculture were calculated using the proximity function with
roads data downloaded from the INEGI and agriculture data (including both irrigated and
temporal agriculture) extracted from the INEGI land use land cover and vegetation maps,
series VII, at the scale of 1:250,000.

Table 1. Datasets used.

Datasets Resolution Date/Value
Range Description Source

Sentinel-2A 10 m, 20 m 15 May 2019;
15 March 2022

Orthorectified, radiometrically
calibrated and atmospherically

corrected

https:
//doi.org/10.5270/S2_-znk9xsj
(accessed on 12 November 2022)

Elevation 15 m 292–2132 m above
sea level

Six scenes of Digital Elevation
Model (DEM) (E13B12, E13B13,

E13B14, E13B23, E13B24) to
cover the study area,

downloaded from

https://www.inegi-org.mx/app/
geo2/elevacionesmex/ (accessed

on 2 December 2022)

Slope 15 m 0.6–73.9 (◦) Arctan(rise/run) Calculated using the DEM

Aspect 15 m 0.0–359.76 (◦)

Represents the compass
direction that the slope of the

terrain faces. An aspect of
0 means that the slope is

north-facing, 90 east-facing,
180 south-facing, and

270 west-facing.

Calculated using the DEM

https://doi.org/10.5270/S2_-znk9xsj
https://doi.org/10.5270/S2_-znk9xsj
https://www.inegi-org.mx/app/geo2/elevacionesmex/
https://www.inegi-org.mx/app/geo2/elevacionesmex/
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Table 1. Cont.

Datasets Resolution Date/Value
Range Description Source

Distance to roads 10 m 0–4235.6 (m) Euclidean distance was used to
represent distance to roads.

https://www.inegi.org.mx/
temas/viascomunicacion

(accessed on 2 December 2022)

Distance to
agriculture 10 m 0.0–9235.4 (m) Euclidean distance was used to

represent distance to agriculture.

https://www.inegi.org.mx/
temas/usosuelo (accessed on

2 December 2022)

Land ownership 10 m
1: ejido and
communal.

0: other

The land ownership was
categorized into two categories:
both ejido and communal, and
other type which cover 38.6%
and 61.4% of the study area,

respectively.

https://www.gob.mx/ran#709
(accessed on 2 December 2022)

2.3. Classification

Training samples were collected for the eleven land use/land cover classes (Table 2),
using Sentinel-2A images and high spatial resolution images in Google Earth (GE) as
reference. The number of training samples for the 2019 and 2022 imagery is presented
in the last column of Table 2. Figure 2 shows the distribution of the sample classes in
Sentinel-2A bands. We also referred to the INEGI land use land cover and vegetation maps,
series VII (1:250,000), which was produced during the period of 2015–2017 for the spatial
distribution of different types of forests and agriculture. The distribution of TDF and oak
and pine forests shows a general ascending pattern following elevation. We used two
classification algorithms, namely artificial neural network and random forest, to classify
the Sentinel-2A images in 2019 and 2022.
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Table 2. Definition of land cover/land use classes (in reference to the INEGI series VII class definition).

Classes Change Classes Class Definition

The Number of
Training Samples

in Pixel for
2019/2022

Tropical dry forest Tropical dry forest
Dense and sparse vegetation

in different stages
of succession

25,883/22,876

Temperate forest Temperate forest Coniferous and mountain
cloud forest 10,504/15,296

Oak forest Oak forest
Forest formation distributed
between tropical dry forest

and temperate forest
8580/20,237

Irrigated agriculture
with crops

Agriculture

Crops in different
growing stages 7307/13,581

Irrigated agriculture
without crops (wet)

Wet agricultural fields
temporarily without crops 1116/5590

Irrigated agriculture
without crops (dry)

Dry agricultural fields
temporarily without crops 2075/5047

Greenhouse Agriculture fields covered
by greenhouse 907/3632

Burned Burned agriculture
or forest area 314/1226

Temporal
agriculture and

pasture

Rain-fed annual agriculture
and grassland fields 20,546/11,679

Water
Other

Waterbody 3573/6117

Urban
Urban landscape and

scattered houses
in rural areas

1380/833

2.3.1. Artificial Neural Network

Artificial neural network (ANN) is a machine learning algorithm that uses a network
of nodes to perform supervised classifications [22,23]. Typically, each neuron in an ANN
receives a series of inputs, and then performs a weighted sum of them and outputs a
value of 1 if its sum is over a threshold and a value of 0 if not. Finally, the complete
network can classify a different set of inputs based on the neuron’s weights [24]. Training a
neural network requires that the user specifies the network structure and sets the learning
parameters [22]. In our case, to train the ANN, the sample data were split in the proportion
of 0.7, with 70% of the data assigned as training data and the remaining 30% as test data.
This algorithm applied a 5-fold cross-validation (CV) with 5 repetitions.

A 5-fold CV involves randomly dividing the training data into 5 groups, or folds, of
approximately equal size [25]. The first fold is treated as a validation set, and the method is
fit on the remaining 4 folds. The mean squared error, MSE, is computed with the data in
the held-out fold. The process resulted in 5 estimates of the test error and the 5-fold CV
estimate is computed by averaging these errors (Equation (1)).

CV5 = 1/5
5

∑
i=1

MSEi (1)

2.3.2. Random Forest

Random forest (RF) is a non-parametric machine learning algorithm that generates
robust predictions by creating a set of regression trees from the bootstrap sampling of the
original data and improving prediction accuracy by aggregating the results [26]. RF has
been shown to be resistant to problems of overfitting and noise, and it has been widely
used for the supervised classification of land use and land cover [27,28]. In this study,
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we used RF to classify land use/land cover types of the study area in 2019 and 2022
using Sentinel-2A images. The sample was split with a proportion of 0.2, with 20% of the
samples used as training data and the remaining 80% as test data. The tuning parameters
were tested for the number of variables randomly sampled as candidates at each split
(mtry: 2, 6, 10) and accuracy was used to select the optimal model. The final value used for
the model of the 2022 image classification was mtry = 2 (Figure A1), and for the model of
the 2019 image classification, the value was mtry = 6 (Figure A2). The “rf” method uses a
default ntree of 500, which is a recommended value for remote sensing applications [29].

Consistent with the ANN classification algorithm, the RF algorithm also applied 5-fold
cross-validation with 5 repetitions.

2.4. Change Analysis

We first reclassified the land use/land cover maps in 2019 and 2022 by grouping the
classes of irrigated agriculture, temporal agriculture, greenhouse, and burned area into
the class of agriculture, and by grouping water and urban into the class other (Table 2).
The class burned area was grouped into the agriculture class because burning is part
of the shifting cultivation and temporal agriculture field preparation practice [30]. The
reclassified land use/land cover maps had five classes, namely TDF, temperate forest, oak
forest, agriculture, and other.

We performed the LULCC by overlaying and comparing the reclassified maps in 2019
and 2022. To analyze the dynamics of TDF, we focused on the following classes of changes
and persistence: TDF persistence (35.1% of the study area), TDF loss to agriculture (1.7%),
TDF gain from agriculture (1.1%), and other changes (62.1%). To remove the noise, we
applied a filter of 2 ha since the average size of shifting cultivation was recorded as 2.5 ha
and applied a 4-neighbor rule (QGIS sieve function) since it obtained better results.

2.5. Accuracy Assessment

Since classification errors often propagate to the result of change analysis, especially
with post-classification comparison, it is important to evaluate the accuracy of the map of
change in addition to the classifications. In a map of change detection, the classes of change
usually occupy small proportions in comparison to the classes of persistence, and therefore,
omission errors in the classes of change classes are often exaggerated due to the imbalance
in area proportions and cause big uncertainty in the estimation of accuracy and areas. To
counterbalance this effect, we implemented the method that was detailed in [31]. We created
a buffer area the size of 12 pixels around the classes of change, assuming changes are more
prone to occur in the buffer areas, and assigned 75 points to the class of TDF persistence
and 75 points to the class other persistence. Following stratified random sampling [32],
and assuming the standard error of the change map as 0.01, the user’s accuracy of TDF
persistence 84%, TDF loss 60%, TDF gain 50%, and other 90%, and counting the 150 points
from the buffer areas, the total number of random points needed for a statistically valid
accuracy assessment was 1178 points. The points were distributed as follows: 331 points
in TDF persistence, 300 points in TDF gain, 300 points in TDF loss, and 93 points in other
persistence. The distribution of the verification points is shown in Figure 3.

We exported those points to Google Earth and interpreted them visually to obtain the
ground truth data. During visual interpretation, we considered an area of 100 m2 around
each point, which is equivalent to the pixel size of Sentinel-2A images. We compared
the ground truth data with the map of LULCC and verified the obtained changes and
persistence. We summarized the results of the accuracy assessment in an error matrix.
We incorporated the area proportion of the mapped changes and calculated the overall
accuracy, producer’s accuracy, and user’s accuracy with confidence intervals (CIs) and
estimated the weighted areas of TDF loss and gain with their respective CIs. The accuracy
assessment was carried out using Open Foris tools developed by the FAO (https://github.
com/openforis/accuracy-assessment/ (accessed on 15 December 2022)).

https://github.com/openforis/accuracy-assessment/
https://github.com/openforis/accuracy-assessment/
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Figure 3. The map of the land use land cover change (LULCC) and the distribution of the
verification points.

2.6. Examining the Spatial Variables Contributing to TDF Loss and Gain

We used the verified points of TDF change and persistence to analyze the effect
of spatial variables on TDF dynamics (loss to and gain from shifting cultivation). We
considered topographic variables, such as elevation, aspect, and slope, and anthropogenic
variables, such as distance to roads and distance to agriculture and land tenure represented
by ejido and communal lands or other land ownership (Table 1). The spatial variables were
resampled to 10 m spatial resolution to be consistent with the LULCC maps. We fitted two
types of logistic regression models, one for TDF loss and the other for TDF gain. In these
models, the dependent variables were change (1) and persistence (0), and the independent
variables are the spatial variables (Figure 4).

First, we fitted the models including all the spatial variables to detect the significant
terms, and then we fitted additional models using only the significant terms. We used the
Akaike information criterion (AIC) to select the best model (Equation (2)). AIC is calculated
using the number of independent variables (K) and the log-likelihood estimate of the model
(L). Using AIC as a criterion, the best model would explain the biggest amount of variation
in the data using the smallest number of independent variables [33]. We selected the best
model that had the lowest AIC and was at least two units lower than the AICs of other
competing models.

AIC = 2K − 2 ln(L) (2)

Before fitting the models, a Pearson correlation analysis was performed to avoid using
strongly colinear variables in the models. A Pearson correlation coefficient of ≥0.8 was
interpreted as an indicator of strongly collinear variables.

The TDF loss models had 94 verified random points for TDF loss and TDF persistence,
respectively, with the explicative variables extracted to each of these 188 points. The TDF
gain models had 46 verified random points for TDF gain and persistence, respectively, also
with the variables extracted to each of those 92 points. Both TDF loss and TDF gain points
were a subset of the verification dataset for the change analysis.

2.7. Projecting Future TDF Loss and Gain

We predicted the probability of the occurrence of TDF loss and TDF gain using the
best models. We reclassified the probability maps using a threshold of 0.5 and calculated
the map areas with a probability higher than 0.5 as predicted areas of TDF loss or TDF gain.
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2.8. Comparison of Forest Loss and Gain

We compared the TDF loss and TDF gain by computing the statistics of their patch
size and distribution. We assumed that smaller areas of forest loss might be related to
areas under a shifting cultivation scheme (around 2.5 ha), contrary to larger areas of forest
loss, which might be related to large-scale agricultural management. Thus, we expected
a smaller area in TDF gain in comparison to TDF loss. We used a non-parametric Mann–
Whitney test to test the difference between the median values of the areas of the TDF loss
and TDF gain [34].

3. Results

This section presents the results of the classification accuracy assessment, change
detection, influencing factors modeling with the logistic regression model, and future
projection of TDF loss and gain.

3.1. Classification Model Validation

The accuracy of the classification result was evaluated with the test data using an
error matrix (Appendix A Tables 2–4 and A1). The classification of the 2019 image using
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the ANN obtained an overall accuracy of 0.9714 with a 95% CI of (0.9695, 0.9732), and
using the RF, the classification obtained an overall accuracy of 0.9901 with a 95% CI of
(0.9894, 0.9908). The classification of the 2022 image using the ANN obtained an overall
accuracy of 0.9452 with a 95% CI of (0.9423, 0.948), and using the RF, the classification
obtained an overall accuracy of 0.9766 with a 95% CI of (0.9754, 0.9777).

Table 3. Error matrix with sample points. OA: overall accuracy; PA: producer’s accuracy; UA: user’s
accuracy; CI: confidence interval; MA: map area; AP: area proportion; Buffer-TDF-P: buffer in TDF
persistence, Buffer-O: buffer in other.

Ground Data

TDF
persistence TDF loss TDF gain Other Buffer-

TDF-P Buffer-O MA
(ha) AP (%) UA

M
ap

da
ta

TDF
persistence 334 0 1 0 0 0 99,931 32.17 0.997

TDF loss 0 151 0 0 111 38 4814 1.55 0.503
TDF gain 0 1 58 0 113 128 3022 0.97 0.193

Other 12 2 1 78 0 0 176,813 56.92 0.839
Buffer-TDF-P 0 0 0 0 71 4 11,843 3.81 0.947

Buffer-O 0 0 0 0 13 62 14,206 4.57 0.827
Total 346 154 60 78 308 232 310,628
PA 0.965 0.981 0.967 1 0.231 0.267

Weighted
PA 0.814 0.389 0.210 1 0.676 0.823

Estimated MA
(ha) with 95%

CI

122,447 ±
12,126

6235 ±
5248

2784 ±
3774

148,295 ±
13,289

16,593 ±
1402

14,274 ±
1389

OA with 95%
CI

0.882 ±
0.018

Table 4. Result of the logistic regression predicting tropical forest loss to agriculture with all explica-
tive variables. ‘**’ significant at 0.01 level, ‘.’ significant at 0.1 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.0333 0.2062 −0.161 0.8717
Distance to roads −0.3395 0.1894 −1.792 0.0731

Distance to agriculture −0.0913 0.2155 −0.424 0.6718
Elevation −0.1282 0.1960 −0.654 0.5130

Slope −0.5004 0.1863 −2.685 0.0072 **
Aspect 0.1910 0.1578 1.210 0.2263
Tenure 0.0056 0.3178 0.018 0.9859

Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 235.37 on 181 degrees of freedom,
AIC: 249.37.

Based on the accuracy assessment, both ANN and RF achieved high overall accuracy
with comparable results (Tables 2–4 and A1). However, for both dates, the classified land
use/land cover maps obtained using the ANN had less of a salt and pepper effect and there
was less confusion between temperate forest and irrigated agriculture, especially in the
southern part of the maps (Figures A3–A6). For this reason, we chose the results obtained
using the ANN for the change analysis.

3.2. Verification of Detected Changes

The error matrix is presented in Table 3. The overall accuracy of the map of change was
0.882 ± 0.018. The unweighted producer’s accuracy for TDF loss was 0.981 and for TDF gain
was 0.967, while the user’s accuracy for TDF loss was 0.503 and for TDF gain was 0.193.

3.3. Tropical Dry Forest Loss

The model for TDF loss had 188 points, 94 points for loss, and 94 points for persistence.
Pearson correlation showed only a mild correlation (coefficient < 0.5) between the variables
(Table A5), and, therefore, all the variables were included in the logistic regression model.
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We scaled all the numeric variables using the mean and the standard deviation (STD) of the
samples before running the models, i.e., by subtracting the mean and dividing the STD.
The logistic regression model with all variables showed that slope was significant at the
0.05 level, and distance to roads was significant at the 0.1 level (Table 4). We built another
two models, one with the two significant variables (Table 5) and the other one with only
slope since it had a higher coefficient (Table 6). We selected the best model with the lowest
AIC (Table 5).

Table 5. Result of the logistic regression predicting tropical forest loss to agriculture with variables of
slope and distance to roads. ‘*’ Significant at 0.05 level, ‘**’ significant at 0.01 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.0280 0.1556 −0.180 0.8575
Slope −0.5613 0.1752 −3.205 0.0014 **

Distance to roads −0.4036 0.1730 −2.333 0.0197 *
Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 238.12 on 185 degrees of freedom,
AIC: 244.12.

Table 6. Result of the logistic regression predicting tropical forest loss to agriculture with the variable
slope. ‘***’ Significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

intercept −0.0154 0.1529 −0.101 0.9198
Slope −0.6454 0.1690 −3.818 0.0001 ***

Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 243.87 on 186 degrees of freedom,
AIC: 247.87.

3.4. Tropical Dry Forest Gain

The model for TDF gain had 92 points, with 46 points for TDF gain and 46 points
for persistence. The predictive variables were extracted to the location of each of these
points. Two points for gain were deleted since they had NA values in the variable aspect.
The final dataset had 90 points, including 44 points for gain and 46 points for persistence.
The Pearson correlation showed a mild correlation between the variables, with the highest
correlation being 0.66 between distance to agriculture and elevation (Table A6). The
correlation was also found in the TDF loss dataset, with lower coefficient (0.53). We scaled
all the numeric explicative variables similar to the procedure in the TDF loss models.

We tested the logistic regression model with all variables (Table 7). Both the distance to
roads and slope were significant with negative coefficients, showing that the probability of
TDF gain decreased with the increase in distance to roads and slope. We tested two more
models, first with the two significant variables (Table 8) and then with the variable that had
the highest coefficient (Table 9). When using only slope and distance to roads, the AIC of the
model decreased (Table 8). We selected the best model with the lowest AIC for TDF gain.

Table 7. Results of the logistic regression model predicting tropical forest gain from agriculture using
all predictive variables. ‘*’ Significant at 0.05 level, ‘***’ significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.5174 0.4098 −1.263 0.2068
Distance to roads −1.1118 0.4646 −2.393 0.0167 *

Distance to agriculture −0.5781 0.4486 −1.289 0.1975
Elevation 0.0339 0.3880 0.087 0.9304

Slope −1.2231 0.3482 −3.512 0.0004 ***
Aspect 0.3379 0.2732 1.237 0.2162
Tenure 0.3454 0.5667 0.610 0.5422

Null deviance: 124.72 on 89 degrees of freedom, Residual deviance: 81.26 on 83 degrees of freedom, AIC: 95.26.
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Table 8. Results of the logistic regression model predicting tropical dry forest gain using slope and
distance to roads as predictive variables. ‘**’ Significant at 0.01 level, ‘***’ significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

intercept −0.3025 0.2910 −1.040 0.2986
Slope −1.3311 0.3430 −3.881 0.0001 ***

Distance to roads −1.1214 0.3918 −2.862 0.0042 **
Null deviance: 124.72 on 89 degrees of freedom Residual deviance: 85.49 on 87 degrees of freedom AIC: 91.49.

Table 9. Results of the logistic regression model predicting tropical dry forest gain using slope as a
predictive variable. ‘***’ Significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.1527 0.2427 −0.629 0.5291
Slope −1.1712 0.3287 −3.563 0.0004 ***

Null deviance: 124.72 on 89 degrees of freedom Residual deviance: 106.11 on 88 degrees of freedom AIC: 110.11.

3.5. Probability of Future Tropical Dry Forest Loss and Gain

The probability of future TDF loss and TDF gain were predicted with the best models
(Figure 5). For both TDF loss and gain, the best models included slope and distance to
roads, although in the model of TDF gain, both variables had higher coefficients (Table 8).
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of TDF loss predicted with slope and distance to roads. (b) Probability of TDF gain predicted with
slope and distance to roads.

The potential areas of TDF loss and gain were predicted by reclassifying the probability
maps with a threshold of 0.5 (Table A7). Overall, 43.1% of the total TDF area was predicted
as TDF loss and 35.4% as TDF gain (Table A7), showing that TDF loss was a dominant
process in the study area. This pattern coincides with the area estimates for loss and gain,
although their CIs overlapped (Table 3).

3.6. Comparison of the Verified Forest Loss and Gain

The statistics for TDF loss showed a median size of 7.2 ha, an average of 14.3 ha, a
minimum of 2.1, and a maximum of 130 ha. In comparison, the statistics for TDF gain
showed a smaller size with a median of 5.3 ha, an average of 9 ha, a minimum of 2.2 ha,
and a maximum of 62.8 ha. Despite being apparently larger in size, TDF loss in patch sizes
is not significantly different from TDF gain, based on the Wilcox test for samples with a
non-parametric distribution, with a p-value = 0.083. The size distribution of the TDF loss
and TDF gain is shown with the boxplot in Figure 6.
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4. Discussion
4.1. TDF Dynamics

During 2019–2022, in our study area, the average TDF loss and TDF gain were esti-
mated at 6235 ha and 2784 ha, respectively, and the average rate of TDF loss and TDF gain
was estimated at 1.6% and 0.7% per year, respectively. The rate of TDF loss was higher than
the national level TDF loss estimated at 0.4% per year by [10], but it was comparable with
the annual TDF loss rate of 1.4% at the regional level estimated by [12]. As for TDF gain,
we did not find studies at the national or regional level to compare with. Both the areas
and the rate of TDF loss were much higher than TDF gain. Nonetheless, the confidence
intervals of the estimated areas of both classes overlapped; thus, we cannot be sure that
there is a significant difference between both estimates. According to our results, TDF gain
and loss are in equilibrium in the region. However, due to the relatively large confidence
intervals for both area estimates, we recommend taking this conclusion with precaution.

Having smaller patch sizes, areas of TDF gain can be more readily related to TDF
regrowth during the fallow period of shifting cultivation. On the other hand, large patches
of TDF loss (around or more than 80 ha) are more readily related to large-scale plantations,
which might not be under a shifting cultivation scheme. According to our results, the
area of TDF loss and gain were not significantly different. Therefore, although large-scale
plantations are more common in the study site, most of the TDF loss areas seem to be
related to small-scale areas, probably under shifting cultivation or other management that
could further imply a TDF recovery.

Processes such as shifting cultivation do not affect net vegetation distribution; however,
they can result in an overall decrease in vegetation density and cause carbon release into
the atmosphere and affect the carbon budget [20]. For TDF regeneration, assisted natural
regeneration—a practice to convert degraded forests into more productive forests with
improved ecosystem services by managing regeneration rather than relying on pure natural
processes—is recommended [35,36]. Although this study consists of an evaluation of TDF
gain and loss in terms of area, a more detailed analysis should be made to obtain the carbon
balance in the study area.

As for the contributing factors, for TDF loss, both slope and distance to roads were
significant predictive variables, with slope having a higher coefficient. Both variables had
negative coefficients, showing that with the increase in either slope or distance to roads,
the probability of TDF being converted to agriculture decreases. For TDF gain, the same
variables were significant and with negative coefficients, showing that with the increase
in slope and distance to roads, the probability of TDF recovery decreases. Interestingly,
in both models, slope had a higher coefficient and therefore is a more important factor to
determine the probability of both TDF loss and gain. In the case of TDF loss, this pattern
is probably related to the fact that frequently areas with higher slopes and farther away
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from established roads are not preferred to establish agricultural or livestock activities, due
to the costs and difficulties associated with the transportation of products and animals to
those areas. In the case of TDF gain, its dependence on TDF loss (i.e., for an area to gain
TDF, first it must lose it) causes the same relation with those two variables.

4.2. Methodological Challenges and Insights

The wide range in area estimation of TDF loss and TDF gain partly comes from the
fact that these two change classes occupied a small proportion of the area in comparison to
classes of persistence, and therefore, (small) a number of omission errors were exaggerated
due to the imbalance in area proportions. We intended to counteract this imbalance in area
proportion by creating buffer zones of 12 pixels of Sentinel-2A images (120 m) around the
change areas, assuming that omission errors are prone to occur near detected changes [31].
However, we did not succeed in reducing the confidence intervals. One possible reason
could be that the buffer size is not wide enough to cover the points of omission errors. For
future work, we will consider using different buffer sizes to find out how buffer size affects
the reduction in omission errors.

The maps of predicted forest loss and gain created using our models show that forest
loss and gain follow a similar spatial distribution because of their dependence on the same
explicative variables: slope and distance to roads. These maps were created using a limited
number of factors including slope, elevation, and distance to roads; thus, other plausible
factors that might explain forest loss and gain were omitted. For example, factors related
to the presence of large-scale agriculture companies or certain governmental incentives.
Nonetheless, our maps can give a general idea of which areas are prone to being under
shifting cultivation management.

We analyzed TDF dynamics for a rather short time window (2019–2022). Although we
could capture the TDF gain and loss from shifting cultivation, an analysis with a longer time
span, e.g., 10–30 years, could potentially allow us to have a more precise area estimation of
TDF gain and loss (with a smaller confidence interval).

For TDF dynamics, time series analysis of climate data (air temperature, precipitation)
is useful to exempt false changes introduced by climate variations. Table 10 shows the
annual average temperature and annual precipitation for our study area. The precipitation
data were derived from CHIRPS “Climate Hazards Group InfraRed Precipitation with
Station Data” and the temperature data are from MODIS “Land surface temperature”.
The annual temperature was rather stable for the period of 2018–2022, while the annual
precipitation showed some variation, with much higher precipitation in 2022 than in 2019
(Table 10), which could explain why the vegetation in the 2022 image was greener even in a
dry season. Since we used a two-time classification comparison to analyze TDF dynamics,
and we provided independent training samples for the classification at each time point,
the effect of the interannual climate variations on the vegetation cover was well captured
with the image classification. Since we verified the changes using visual interpretation with
reference to very high spatial resolution images from Google Earth, the climate-induced
effects were largely removed from contributing factor analysis of TDF dynamics.

Table 10. Annual average temperature and annual precipitation in the Ayuquila River Watershed
for 2018–2022.

Temperature (°C) Precipitation (mm/Year)

2018 31.5 897.5

2019 31.2 885.4

2020 30.6 1179.5

2021 31.6 868.3

2022 30.5 1150.9
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5. Conclusions

We used multi-temporal Sentinel-2A images and topographic, anthropogenic and
land tenure factors to investigate the dynamics of tropical dry forest in terms of gain and
loss and the associated factors. We estimated a TDF loss rate of 1.6% per year and a TDF
gain rate of 0.7% per year. Although apparently TDF loss rate was higher than TDF gain,
because of the large confidence interval in our area estimate, we cannot conclude that TDF
loss was more intense but rather that the TDF loss was in equilibrium with TDF gain. In
future analysis, we will assess other methods that can help reduce the confidence intervals
in area estimates to obtain a clearer conclusion regarding TDF loss and gain.

As for the contributing factors, both TDF loss and gain were inversely related to slope
and distance to roads; therefore, these two factors explain the probability of a TDF area in
both gain and loss. In the case of TDF loss, this is related to the fact that agricultural or
livestock activities generally prefer flat areas for easy access and cheap cost; for TDF gain,
since it depends on TDF loss, the same relation with slope could explain the distribution of
TDF gain.
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Appendix A

BU: burned; GH: greenhouse; IC: irrigated agriculture with crops; ID: irrigated agri-
culture without crops (dry); IW: irrigated agriculture without crops (wet); O: oak forest;
TF: temperate forest; TA: temporal agriculture and pasture; TDF: tropical dry forest;
U: urban; W: water; UA: User’s accuracy; PA: Producer’s accuracy; OA: Overall accuracy.

Table A1. Error matrix for accuracy assessment of the classification in 2019 using ANN.

BU GH IC ID IW O TF TA TDF U W T UA

BU 366 0 0 0 0 0 0 1 0 0 0 367 0.997

GH 0 1100 0 0 0 0 0 1 0 18 0 1119 0.983

IC 0 0 3959 1 0 5 6 1 0 0 0 3972 0.996

ID 0 6 0 1260 0 0 0 206 0 26 0 1498 0.841

IW 0 0 0 0 1674 0 0 24 79 0 0 1777 0.942

O 0 0 0 0 0 5987 2 58 41 0 0 6088 0.983

TF 0 0 56 0 0 14 4575 0 4 0 0 4649 0.984

TA 0 0 0 174 6 24 0 3263 30 0 0 3497 0.933

TDF 0 0 0 0 11 89 1 0 6729 0 0 6830 0.985

U 0 0 0 73 0 0 0 0 0 183 0 256 0.715

W 0 3 0 0 0 0 0 0 0 0 1783 1786 0.998

Total 366 1109 4015 1508 1691 6119 4584 3554 6883 227 1783 31,839

PA 1 0.992 0.986 0.836 0.99 0.978 0.998 0.918 0.978 0.806 1

OA 0.970
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Table A2. Error matrix for accuracy assessment of the classification in 2019 using random forest.

BU GH IC ID IW O TF TA TDF U W T UA

BU 951 0 0 0 0 0 0 5 0 0 0 956 0.995

G 0 2885 0 0 0 0 0 3 0 15 0 2903 0.994

IC 0 0 10,776 0 0 11 79 0 0 2 0 10,868 0.992

ID 0 0 0 3924 0 5 0 148 0 11 0 4088 0.96

IW 0 0 0 0 4423 0 12 0 27 0 0 4462 0.99

O 0 0 0 0 0 16,091 3 31 123 0 0 16,248 0.99

TF 0 0 47 0 2 12 12,148 0 4 0 0 12,213 0.995

TA 9 0 0 125 0 35 0 9166 3 42 0 9380 0.977

TDF 0 0 0 0 10 73 0 5 18,136 0 0 18,224 0.995

U 0 1 0 18 0 0 0 3 0 615 0 637 0.966

W 0 0 0 0 0 0 0 0 0 0 4914 4914 1

Total 960 2886 10,823 4067 4435 16,227 12,242 9361 18,293 685 4914 84,893

PA 0.991 0.9996 0.996 0.965 0.997 0.992 0.992 0.979 0.991 0.898 1

OA 0.9898

Table A3. Error matrix for accuracy assessment of the classification in 2022 using ANN.

BU GH IC ID IW O TF TA TDF U W T UA

BU 86 0 0 9 4 0 0 0 0 0 0 99 0.869

G 2 199 11 0 0 0 0 2 0 31 0 245 0.812

IC 0 3 2031 0 0 3 68 55 2 0 0 2162 0.939

ID 1 0 0 310 0 0 0 66 0 1 0 378 0.820

IW 2 4 8 0 320 0 0 0 0 0 9 343 0.933

O 0 0 41 0 0 2396 2 49 65 0 0 2553 0.939

TF 0 0 43 0 0 23 3094 0 0 0 0 3160 0.979

TA 0 0 70 307 0 57 0 5894 87 48 0 6463 0.912

TDF 1 0 0 0 12 93 1 61 7609 0 0 7777 0.978

U 0 64 0 1 0 0 0 45 0 343 0 453 0.757

W 0 0 0 0 0 0 1 0 0 0 1023 1024 0.999

Total 92 270 2204 627 336 2572 3166 6172 7763 423 1032 24,657

PA 0.935 0.737 0.922 0.494 0.952 0.932 0.977 0.955 0.980 0.811 0.991

OA 0.945

Table A4. Error matrix for accuracy assessment of the classification in 2022 using random forest.

BU GH IC ID IW O TF TA TDF U W T UA

BU 247 0 0 1 0 0 0 0 0 0 0 248 0.996

G 0 724 0 0 0 0 0 6 0 6 0 736 0.984

IC 0 0 5744 0 2 10 86 9 0 4 0 5855 0.981

ID 1 0 0 1377 0 0 0 28 0 11 0 1417 0.972

IW 0 0 0 0 883 0 0 0 1 0 11 895 0.987

O 0 0 0 0 0 6453 16 79 102 1 0 6651 0.970
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Table A4. Cont.

TF 0 0 117 0 0 21 8284 0 0 0 0 8422 0.984

TA 1 1 26 294 0 123 0 16,192 59 109 0 16,805 0.964

TDF 0 0 0 0 15 297 0 50 20,506 1 0 20,869 0.983

U 2 2 0 0 0 0 0 46 0 934 0 984 0.949

W 0 0 0 0 2 0 0 0 0 0 2863 2865 0.999

Total 251 727 5887 1672 902 6904 8386 16,410 20,668 1066 2874 65,747

PA 0.984 0.996 0.976 0.824 0.979 0.935 0.988 0.987 0.992 0.876 0.996

OA 0.977

Table A5. Pearson correlation between (numeric) explicative variables for TDF loss.

Explicative Variables Distance to
Roads

Distance to
Agriculture Elevation Slope Aspect

Distance to roads 1.00
Distance to agriculture 0.44 1.00

Elevation 0.45 0.53 1.00
Slope 0.31 0.46 0.35 1.00

Aspect 0.04 −0.05 −0.1 −0.01 1.00

Table A6. Pearson correlation between (numeric) explicative variables for TDF gain.

Explicative Variables Distance to
Roads

Distance to
Agriculture Elevation Slope Aspect

Distance to roads 1.00
Distance to agriculture 0.42 1.00

Elevation 0.48 0.66 1.00
Slope 0.33 0.33 0.29 1.00

Aspect 0.03 0.00 −0.02 −0.06 1.00

Table A7. Reclassified probabilities of TDF loss and gain using a threshold of 0.5.

Reclassified
Probabilities No. of Pixels Percentage Reclassified

Probabilities No. of Pixels Percentage

0.5, 0.788
(TDF loss) 4,798,436 43.08% 0.5, 0.953

(TDF gain) 3,941,964 35.39%

0.017, 0.5 6,340,498 56.92% 0.00002, 0.5 7,196,970 64.61%
Total 11,138,934 1 Total 11,138,934 1
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