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Abstract: Infrared small target detection (ISTD) plays a crucial role in precision guidance, anti-missile
interception, and military early-warning systems. Existing approaches suffer from high false alarm
rates and low detection rates when detecting dim and small targets in complex scenes. A robust
scheme for automatically detecting infrared small targets is proposed to address this problem. First, a
gradient weighting technique with high sensitivity was used for extracting target candidates. Second,
a new collection of features based on local convergence index (LCI) filters with a strong representation
of dim or arbitrarily shaped targets was extracted for each candidate. Finally, the collective set of
features was inputted to a random undersampling boosting classifier (RUSBoost) to discriminate the
real targets from false-alarm candidates. Extensive experiments on public datasets NUDT-SIRST and
NUAA-SIRST showed that the proposed method achieved competitive performance with state-of-
the-art (SOTA) algorithms. It is also important to note that the average processing time was as low as
0.07 s per frame with low time consumption, which is beneficial for practical applications.

Keywords: local convergence index; multi-feature modeling; multi-scale and multi-directional
gradient weighting; random undersampling boosting; infrared small target detection

1. Introduction

Infrared small target detection is one of the key technologies for infrared search and
tracking systems and it is extensively used in a variety of applications such as aerospace,
navigation, and early-warning systems [1,2].

In the context of small target detection in infrared images, a complex scene is a scene
with a large number of objects and background features, such as buildings, clouds, shadows,
noise, etc., that can make it difficult for algorithms to distinguish between the true targets
and their surrounding environment and clutter. Additionally, a complex scene may involve
multiple targets with varying sizes and intensities. Conversely, some datasets used in
earlier research on infrared small target detection were considered as containing simple
scenes due to their relatively clean backgrounds with minimal interference, as shown in
Figure 1.

Due to the limitations of remote infrared sensing imaging, some useful features (e.g.,
texture features) are difficult to extract due to the small target size, complex background,
clutter, and noise, which can lead to high false alarm rates and low detection rates of
detection algorithms [3]. Therefore, IR small target detection algorithms that are function
robustly with complex scenes are the focus of IR search-and-tracking research.

Generally, infrared small target detection methods can be classified into non-deep
learning and deep learning methods.
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and the fact that their shapes are all similar to a 2D Gaussian distribution, it is feasible to 
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Owing to the fact that there is a shortage of real data for small targets in practical 
applications, there are large-sized images in practical applications that make it difficult to 
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which requires the algorithm to be interpretable. We therefore propose a novel method 
for detecting infrared small targets using local convergence index (LCI) filters [14] and a 
random undersampling boosting classifier (RUSBoost) [15]. First, target candidates are 
extracted using a multi-scale, multi-directional, gradient weighting technique, which 
helps to detect dim, small targets with weak boundaries. Second, features are extracted 
for each candidate based on each candidate’s intensity, geometry, and LCI response (LCI 
filters are based on gradient convergence rather than intensity, which can effectively rep-
resent low-contrast objects in a densely cluttered background). Third, the feature set is fed 
into the boosting classifier to distinguish between real targets and false-alarm candidates. 
We determined that RUSBoost was an appropriate classifier, since our dataset was 
skewed, with a small number of true target candidates and a large number of false-alarm 
candidates. 

The major contributions of this research can be summarized as follows: 

1. A novel detection scheme for infrared small targets based on an LCI filter is pro-
posed, with a high detection rate and a low false alarm rate that outperforms SOTA 
techniques; the scheme also has low time consumption and is beneficial for practical 
applications against complex scenes. 

2. In the coarse detection stage of candidate regions, the sensitivity and accuracy of in-
frared small target detection are significantly improved by introducing a multi-scale 
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frared small target detection, we used RUSBoost as a classifier, which combines un-
dersampling and ensemble learning. For larger sample sizes, undersampling can 

Figure 1. Samples of simple and complex scenes. (a,b) Simple scenes. (c,d) Complex scenes used in
our experiments.

Deep learning methods, especially convolutional neural networks (CNNs), can auto-
matically learn high-level features from raw data, eliminating the need for feature engi-
neering. Therefore, they are particularly suitable for classifying targets with complex color,
texture, and shape features in visible light images. Deep learning has been introduced
into the field of infrared small target detection, achieving promising results [4–7]. How-
ever, deep learning usually requires a large amount of annotated data and computational
resources to achieve satisfactory performance.

Non-deep learning methods rely on prior knowledge. These methods [8–13] require
significant expertise and effort in mathematical modeling or feature engineering, making
it challenging to achieve optimal results. For the task of infrared small target detection,
owing to the lack of color, texture, and shape features of small targets in infrared images
and the fact that their shapes are all similar to a 2D Gaussian distribution, it is feasible to
design handcrafted features for description.

Owing to the fact that there is a shortage of real data for small targets in practical
applications, there are large-sized images in practical applications that make it difficult to
train and apply deep learning; moreover, infrared target detection is a risk-sensitive task
which requires the algorithm to be interpretable. We therefore propose a novel method
for detecting infrared small targets using local convergence index (LCI) filters [14] and a
random undersampling boosting classifier (RUSBoost) [15]. First, target candidates are
extracted using a multi-scale, multi-directional, gradient weighting technique, which helps
to detect dim, small targets with weak boundaries. Second, features are extracted for each
candidate based on each candidate’s intensity, geometry, and LCI response (LCI filters
are based on gradient convergence rather than intensity, which can effectively represent
low-contrast objects in a densely cluttered background). Third, the feature set is fed into
the boosting classifier to distinguish between real targets and false-alarm candidates. We
determined that RUSBoost was an appropriate classifier, since our dataset was skewed,
with a small number of true target candidates and a large number of false-alarm candidates.

The major contributions of this research can be summarized as follows:

1. A novel detection scheme for infrared small targets based on an LCI filter is pro-
posed, with a high detection rate and a low false alarm rate that outperforms SOTA
techniques; the scheme also has low time consumption and is beneficial for practical
applications against complex scenes.

2. In the coarse detection stage of candidate regions, the sensitivity and accuracy of
infrared small target detection are significantly improved by introducing a multi-scale
and multi-directional gradient weighting strategy.

3. To solve the imbalance problem between true targets and false-alarm sources for
infrared small target detection, we used RUSBoost as a classifier, which combines
undersampling and ensemble learning. For larger sample sizes, undersampling can
fully reflect its advantages and improve the operational efficiency while balancing
the dataset.
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The remaining part of the work is structured as follows: Section 2 describes the pre-
sented methodology, Section 3 goes into detail about the experiments used to demonstrate
the effectiveness of the approach, and Section 4 provides the conclusion.

2. Methodology
2.1. Related Works

Infrared small target detection algorithms can be broadly classified into data-driven
deep neural networks or model-driven algorithms that do not learn. Typically, deep neural
networks consider infrared small target detection as a semantic segmentation task. Li
et al. [4] modified a U-shaped structured network for infrared small target detection using a
densely nested interactive module and obtained good target detection results. Hou et al. [5]
proposed a robust infrared small target detection network in which a handcrafted feature
extraction structure was designed based on the local saliency of small infrared targets
and embedded in a convolutional neural network. Zhang et al. [6] proposed an attention-
guided pyramidal context network, which constructs a framework combining contextual
pyramidal modules and attention mechanisms to integrate contextual information. Dai
et al. [7] introduced a unique deep network for infrared small target detection that integrates
labeled data and domain knowledge with discriminative networks and standard model-
driven approaches. Although these methods perform better than model-driven algorithms,
a higher detection rate depends on more and better-labeled samples. In addition, these
methods have a low generalization capability due to various dense clutter in practical
applications.

Non-learning, model-driven approaches depend heavily on prior knowledge in infrared
scenes and mainly include background estimation-based, target saliency-based, and sparse
representation-based approaches. Background estimation-based methods—including top-hat
operations, median filtering, maximum filtering, and morphological reconstruction—may
incorrectly detect edge clutter as targets in complex scenes. Target saliency-based approaches,
such as the local contrast metric (LCM) [8] and the multi-scale patch-based contrast measure
(MPCM) [9], have a reduced detection rate when the target is dim and small. For sparse
representation-based algorithms, the detection task is modeled as a convex optimization
problem by exploiting the low-rank nature of the background image and the sparseness
of the target image. Gao et al. [10] proposed an infrared patch image (IPI) model that can
separate small target images from background images by reconstructing low-rank and sparse
matrices. Based on Gao’s study, the sparse prior information, and non-local autocorrelation
prior information of the target, researchers developed the column-weighted IPI model [11],
the nonnegative infrared patch image model (NIPPS) [12], and the tensor kernel parametric
partial sum model (PSTNN) [13]. For conventional infrared images, these approaches
provide reliable small-target detection capabilities. For infrared images with dim objects or
complicated backgrounds, however, high-intensity clutter may readily compromise detection
accuracy. In addition, the image decomposition and iterative optimization activities of the
above methods are time-consuming and difficult to use for real-time target detection.

2.2. Overall Framework

To detect small targets in complex scenes, a fast algorithm with high sensitivity can
be used initially to extract dim target candidates. Then, a multi-feature model can be
built, and a classifier can be applied to further reduce false-alarm candidates. This reliable
scheme has been used for small object detection in medical images, such as fundus lesion
detection [16–18] and lung nodule detection [19]. Figure 2 shows the overall framework of
the proposed algorithm, which includes candidate extraction using multi-directional and
multi-scale Gaussian derivative kernels, multi-feature modeling using a local convergence
index filter, and candidate classification by training a RUSBoost classifier.
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2.3. Candidate Extraction

Since infrared small targets usually exhibit stronger intensity in the local context [20],
edge features will exist even for dim targets. The edges of targets are very different
from those of other targets in terms of background clutter: edges of clutter are usually
disconnected or long, while edges of targets are short and encircling. Therefore, edge
detection algorithms can be used to extract candidates of infrared small targets. Compared
with other techniques, multi-directional and multi-scale Gaussian derivative kernels can
easily remove background noise and enhance the gradient boundaries of small targets [21].

The directional derivatives of the Gaussian kernel in different directions were obtained
as Gaussian derivative kernels for different scales and orientations, which were calculated
using Equation (1):

GD(x, y, σG, θG) = −
G(x, y, σG)

σ2
G

(x cos θG + y sin θG), (1)

where G(x, y, σG)= (1/
√

2πσ2
G)e
−(x2+y2)/2σ2

G is the Gaussian kernel and σG ∈ {1, 2, 3} px
is its corresponding standard deviation, which is used to regulate the scale of the kernel.
θG ∈ {0, π/6, π/3, π/2} is the rotation angle.

Then, the gradient significance values for different scales and different orientations
were obtained by the convolution of the original infrared image (IO) with the rotated
Gaussian derivative kernel:

IM(x, y, σG, θG) = [(ω(θG) ∗ GD(x, y, σG, θG)⊗ IO(x, y))2+

(ω(θG + π/2) ∗ GD(x, y, σG, θG + π/2)⊗ IO(x, y))2]1/2 , (2)

where ⊗ is the convolution operator, and ω(θG) is the normalization factor of the Gaussian
derivative kernel GD(x, y, σG, θG). Samples of gradient significance images for different
scales and orientations are shown in Figure 3.

In IM, a pixel with a smaller gradient magnitude means its corresponding area is
smooth, and a pixel with a higher value is the edge of the image. First, we normalized IM
to obtain INM. Then, the gradient-weighted image was obtained by:

IW(x, y, σG, θG) =
1− INM(x, y, σG, θG)

2

1 + INM(x, y, σG, θG)
2 , (3)
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The final gradient-weighted image IWOS was obtained by summing IW of all orien-
tations and scales as follows, and adaptive threshold processing was applied to IWOS to
obtain the binary candidate image ICAN .

IWOS(x, y, σG) =
3

∑
σG=1

π/2

∑
θG=0

IW(x, y, σG, θG) (4)

Then, a set of infrared small targets (Ck∈{1,··· ,NC}, where NC is the total number of
components) was extracted from each component by analyzing the connected components
in each candidate image. To further remove false-alarm candidates with significant differ-
ences from the small targets (e.g., large cirrus clouds and long edges), the aspect ratio of the
area of the object and the minimum bounding rectangle were calculated, thus reducing the
false positive rate, complexity, and time consumption for the next step. In our experiments,
if the area of the object and the aspect ratio of the minimum bounding rectangle were less
than 400 px and 4, respectively, the object was included in the final selection of candidate
set Mk∈{1,··· ,Ns}. The parameters were adjusted to provide the maximum detection rate.

2.4. Multi-Feature Modeling

In this step, we constructed a multi-feature model for each candidate, in which we
extracted three types of features, namely intensity-based features, geometry-based features,
and LCI-based features [22]. Table 1 describes the features we used in the proposed method.
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Table 1. Description of extracted features in multi-feature modeling.

Type Name Description

Intensity-based features
Imean, Istd, Iske The mean, standard deviation and skewness

Ient, Iene The entropy and energy
Icon The contrast

Geometry-based features

Srec Ratio of the target area to the area of the enclosing matrix

Scir
Ratio of the target area to the square of the perimeter of the

outer contour
Ssol Ratio of the target area to the convex area

Secc
Ratio of distance between the foci and the major axis length

of the ellipse with a same second moment as the region

LCI-based features
FARF, RARF ARF filter responses on and its radius average
FSBF, RSBF SBF filter responses on and its radius average
FDRF, RDRF DRF filter responses on and its radius average

2.4.1. Intensity-Based Features

Intensity features are integral to feature extraction in many image classification meth-
ods [23–25]. We used a candidate region extraction algorithm based on edge extraction, so
some candidate regions were edges of complex backgrounds with intensity features that
were often quite different from those of bright true targets. The features we used included
mean (Imean), standard deviation (Istd), entropy (Ient), energy (Iene), skewness (Iske), and
contrast (Icon), which were extracted from the target in the center of the candidate areas.

2.4.2. Geometry-Based Features

Geometric features are also significant features that can be used to characterize the
overall shape of a target [26]. Real targets tend to have smoother edges and more rounded
geometry than false targets [20,27]. We can extract geometric properties to describe the
shape of the candidate, mainly including the following:

• Rectangularity (Srec): the ratio of the target area to the area of the enclosing matrix.
• Roundness (Scir): the ratio of the target area to the square of the outer contour perimeter.
• Solidity (Ssol): the ratio of the target area to the convex area.
• Eccentricity (Secc): the ratio of the distance between the focal point and the long axis

length of the ellipse with a same second moment as the region.

2.4.3. LCI-Based Features

Local convergence index (LCI) filter features are obtained mainly by gradient conver-
gence without intensity information, and thus can characterize small, low-contrast, infrared
targets hidden in a cluttered background [14]. The LCI filter measures the convergence de-
gree of the surrounding pixels to the central pixel of interest by means of the gradient map
of a local region (support region)., as shown in Figure 4. Given a two-dimensional input
image, P(x, y) is a pixel of interest, Q(k, l) is a pixel in the support region, and the support
region is a circular area of radius r. The angle θ(k, l) is the orientation of the gradient vector
g(k, l) for line PQ. cos θ(k, l) calculates the convergence index of the gradient vector at
(k, l). The final convergence index (CI) is defined as the average of the convergence index
at all pixels as follows:

CI(x, y) =
1
M ∑

(k,l)∈S
cos θ(k, l), (5)

where M is the number of points in the support region S, and θ(k, l) is the gradient vector
of points (k, l). The output of CI is between −1 and +1. If all gradient vectors point to the
pixel of interest, CI will get a maximum of +1, which can be used to describe a small target
in the shape of a bottom cap. For a small infrared target with a gray level higher than the
background, its value tends to −1.
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Figure 4. The convergence index (CI) filter. (a) Support region and the angle θ(k, l). (b) Union of N
half-lines.

In practical calculations, CI of all pixels in S is usually not calculated. As shown in
Figure 4b, the points are obtained by sampling in N directions with the pixel of interest as
the starting point. The angle θ in the support region line Li is calculated as follows:

θ(x, y, αi, m) = αi − φ(x, y, αi, m)

φ(x, y, αi, m) = tan−1
(

∂
∂x I(x+m sin(αi),y+m cos(αi))
∂

∂x I(x+m sin(αi),y+m cos(αi))

)
, (6)

where φ(x, y, αi, m) is the angle related to the gradient vector, and its coordinates lie in the
αi direction of the pixel of interest with the radial coordinate m.

Different CI filters are formed according to different support regions and search
methods, among which the adaptive ring filter (ARF) [28] and the sliding band filter
(SBF) [29] are the most typical CI filters.

The support region of an ARF is a ring band, and the radius can be adaptively changed,
as shown in Figure 5a. The response of an ARF is given by:

FARF(x, y) = max
0≤r≤Rmax

1
N × d

N

∑
i=1

r+d

∑
m=r

cos(θ(αi, m)), (7)

where N denotes the number of support region lines as described above, Rmax is the radius
of the support region, and d is the width of the band. The value m on different support lines
is the same, so the support region is a circle (T) or a ring, which facilitates the extraction of
convergent features for small circular targets.

We take the center coordinate of each candidate as the point of interest for the ARF. In
addition to the filtering results, the radius that causes the maximum response is calculated
and used as an LCI feature:

RARF(x, y) = max
0≤r≤Rmax

1
N × d

N

∑
i=1

r+d

∑
m=r

cos(θ(αi, m)), (8)

where RARF is the radius that causes the maximum response, corresponding to the highest
convergence of the point of interest (x, y).
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Since the shape of a small target is not necessarily circular, the SBF allows a more
flexible characterization of target convergence properties. As shown in Figure 5b, the SBF’s
support region is a band of fixed width with different radii in each direction, and the
response is obtained by:

FSBF(x, y) =
1
N

N

∑
i=1

[
max

Rmin≤r≤Rmax

r+d

∑
m=r

cos(θ(αi, m))

]
, (9)

where Rmin and Rmax are the inner and outer sliding band limits, respectively.
Similarly, we use SBF response at the center of the candidate region as one of the

local convergence index features. Considering that the SBF has different radii on different
support lines, the average radius can be used as the second feature:

RSBF(x, y, i) = argmax
Rmin≤r≤Rmax

r+d

∑
m=r

cos(θ(αi, m)), (10)

RSBF(x, y) =
1
N

N

∑
i=1

RSBF(x, y, i), (11)

where different support lines have different RSBF(x, y, i), and RSBF(x, y) is the average radius.
Although the above two methods have a certain ability to describe small infrared

targets, they still have drawbacks: the search area is a fixed circular region, while the actual
data of small infrared targets may have different scales and shapes, making it difficult
to find a definite support region for CI index calculation. Setting a larger region will be
time-consuming and introduce more errors. The search region should ideally be more
adaptive according to the shape of the target. Therefore, we propose a new CI filter called
the Deformable Region Filter (DRF). The DRF has an adaptive support region, which is
related to the target shape, as shown in Figure 5c.

The gradient method is used to obtain the candidate regions of small infrared targets.
Thus, the white pixel region in the binary candidate image ICAN , with sufficient gradient
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information, can be used as the search region. The search region can be described as
follows:

SR = {(x, y)|ICE(x, y) = 1}, (12)

where ICE is the result of dilating ICAN using 3 × 3 structural elements to obtain a larger
search field. The average of all coordinates in SR is calculated as the coordinate of the pixel
of interest. Subsequently, this coordinate is used as the origin of the coordinate system.

Then the points on the support region line Ii can be obtained by:

Li = {(x, y)|x = [m cos αi], y = [m sin αi], m ≥ 1}, (13)

where αi = 2π(i− 1)/N, i ∈ {1, · · · , N}, [x] is for rounding x. Theoretically, a larger N
means a smaller angle, which allows for a more accurate description of the convergence
of a target in multiple directions. Since small targets in this study occupied fewer than
200 pixels, the value of N was set to 36.

The set of coordinates of the support region in a certain direction can be expressed as:

SRLi = SR ∩ Li. (14)

Considering the special case where SRLi is an empty set, we complement it using the
adjacent support line SRLi−1, which can be obtained as follows:

SRLi = {(x, y)|x = [m cos αi], y = [m sin αi],
Rmin(i− 1) ≤ m ≤ Rmax(i− 1)} , (15)

where Rmin(i− 1) and Rmax(i− 1) correspond to the maximum and minimum distances
from the point on the line E to the pixel of interest, respectively.

The final response of the DRF is obtained by:

FDRF(x, y) =
1
N

N

∑
i=1

[
max

Rmin(i)≤r≤Rmax(i)

r+d

∑
m=r

cos(θ(αi, m))

]
(16)

and the average radius can be obtained by:

RDRF(x, y, i) = max
Rmin(i)≤r≤Rmax(i)

r+d

∑
m=r

cos(θ(αi, m)) (17)

RDRF(x, y) =
1
N

N

∑
i=1

RDRF(x, y, i). (18)

We conducted ARF, SBF and DRF filtering, respectively, on normalized images, and
used the obtained filtering response and estimated radius as LCI features for subsequent
classification. To maximize the LCI response of the infrared small target, we reversed the
obtained gradient.

The complete feature set F consisted of 16 features, including 6 intensity-based features,
4 geometry-based descriptors, and 6 LCI-based features, as detailed in Table 2. All features
were extracted from each candidate in set M and normalized before input to the classifier.

Table 2. Main characteristics of the datasets we used.

Datasets Image Type Background NI Target Type

NUAA-SIRST Real Cloud/city/sea 427 Point/spot/extended
NUDT-SIRST Synthetic Cloud/City/Sea/Field/Highlight 1327 Point/spot/extended
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2.5. Classifier and Detector

In many infrared small target detection algorithms, there is a problem of detecting
more false targets than real targets, which forms uneven categories. Therefore, we used
RUSBoost [30] in the classification step to distinguish between real targets and false-alarm
candidates.

RUSBoost uses an adaptive boosting classifier (AdaBoost) [31] to train the sample set
and random undersampling (RUS) [15] technology to solve the problem of class imbalance.

The main idea of the Adaboost algorithm is to train multiple weak classifiers through
different sample sets and conduct joint evaluation on the final samples; that is, combine
multiple weak classifiers into a strong classifier. During the training process of each
weak classifier, the weight of the samples changes adaptively. The weight of the wrongly
predicted samples increases in the next round of training, while the weight of the correctly
predicted samples decreases [31].

Before training, the category distribution of the dataset can be changed by using
RUS technology [15]. The class imbalance problem can be solved by randomly deleting
instances from most classes to get a specific sample distribution. In particular, in each
iteration of the AdaBoost algorithm, RUSBoost randomly undersamples a subset of the
majority class, causing the weak learner to be trained using a balanced dataset. Each weak
learner generates a prediction of the new input data weighted by the learner’s stage values.
The sum of all weighted predictions is assigned as the final classification result.

In the context of infrared small target classification, RUSBoost was a suitable classifier,
as we were dealing with skewed datasets with a few true target candidates and mostly
false-alarm candidates.

The details of the RUSBoost classifier are given in Algorithm 1 [22]. This study used
decision trees as weak learners in the RUSBoost algorithm. During training, the number of
trees was set to 90, and the learning rate was 0.03. Validation experiments were performed
using five-fold cross-validation on dataset NUAA-SIRST [32] and dataset NUDT-SIRST [33].

Algorithm 1. RUSBoost Classifier [22]

Input: Set D of training samples (F1, L1), · · · , (Fm, Lm) where m is the number of training
samples, Fi ∈ F and li ∈ L = {−1, 1}
Output: RUSBoost classifier H(x)
1: W1(i) = 1

m for all i
2: for t = 1:T do
3: D ← random undersampling (RUS) training set D
4: W̃i ← extract weights for the subset D̃
5: Call Weaklearn with subset D̃ and weights W̃t to get weak classifier ht:

6: ht = argmin∑
|W̃t |
1 W̃(i)[li 6= hj(Fi)], hj ∈ H

7: Pseudo-loss calculation for D and Wt:
8: εt = ∑m

1 Wt(i)[li 6= hj(Fi)]

9: Weight update parameter:
10: αt =

1
2 ln 1−et

et

11: Update weights and normalization:
12: Wt+1(i) = Wt(i) exp(−αtliht(Fi))/∑m

i=1 Wt+1(i)
13: end for
14: Output and final classifier:
15: H(x) = ∑T

t=1 αtht(x)/∑T
j=1 αt

3. Experiment Set

In this section, the evaluation metrics are introduced first. Then the candidate ex-
traction, feature extraction, candidate classification, and final algorithm are evaluated
and compared.
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3.1. Evaluation Metrics

In the candidate extraction step, recall (Re) and false positives per image (FPI) were
used to assess its performance and were calculated as follows:

Re =
Tcorrect

TALL
, FPI =

N
N1

, (19)

where TALL is the number of extracted candidates and Tcorrect is the number of candidates
with true target. N1 is the number of true images in a dataset and N is the number of
candidates with false target.

Then, we used receiver operating characteristics (ROC) [34] and the area under
ROC curve (AUC) to evaluate the performance of classification and the significance of
each feature.

The final result evaluation metrics for infrared small target detection algorithms
mainly included pixel-level and target-level evaluations. Semantic segmentation network-
based approaches mainly use pixel-level evaluations, such as intersection over union (IoU),
accuracy, and recall values. These metrics are primarily concerned with evaluating the
target’s shape and do not apply to small targets that lack shape information and texture.
Traditional algorithms mainly use target-level measures such as detection rate and false
alarm rate, which are more important criteria for single-frame detection. If the center of a
candidate region was more than three pixels away from the nearest target, we considered it
an incorrectly predicted one.

Intersection over union (IoU): IoU is a pixel-level evaluation metric. It focuses on the
shape of the measured object and is calculated by the area of the intersection divided by
the area of the union of predicted and labeled areas.

IoU =
AI
AU

, (20)

where AI and AU are the interaction areas and all areas.
Recall (Re): Re is a target-level evaluation metric calculated as Equation (19). False

alarm rate (Fa): Fa is another target-level evaluation metric. It quantifies the ratio of
incorrectly predicted pixels to the total number of pixels.

Fa =
Pf alse

PALL
, (21)

where Pf alse and PALL are the number of incorrectly predicted pixels and total pixels,
respectively.

3.2. Datasets

We used the NUAA-SIRST dataset and the NUDT-SIRST dataset to evaluate our
proposed algorithm, and their information is shown in Table 2.

4. Results
4.1. Candidate Extraction Evaluation

Candidate extraction is a crucial step in the algorithm, which requires high recall
and low FPI. Higher recall at this stage ensures higher recall for the final algorithm, and
lower FPI reduces the time consumption and false alarm rate Fa of the final algorithm.
Table 3 shows the recall and FPI of the proposed infrared small target candidate extraction
technique.
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Table 3. Candidate extraction results.

Datasets Recall FPI

NUAA-SIRST 0.9834 2.86
NUDT-SIRST 0.9665 1.86

The proposed method achieved a sensitivity of 0.9834 on the NUAA-SIRST dataset,
with a corresponding FPI of 2.86. On the NUDT-SIRST dataset, the sensitivity and FPI
values were 0.9665 and 1.86, respectively. These results demonstrate that our candidate
extraction algorithm had high sensitivity and generated a low average number of negative
samples per image. Figure 6 displays the original images and their corresponding gradient
magnitude images.
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Figure 6. The original images and their gradient magnitude images. The images in the first and
third rows are the original image, and the images in the second and fourth rows are the gradient
magnitude images. Red circles highlight the targets in the images.

The gradient magnitude was obtained as a core step of candidate extraction and was
calculated using Equation (2). As shown in the figure, the proposed method exhibited a
strong response to dim targets with bright and complex backgrounds, facilitating the easy
extraction of targets later.

4.2. Candidate Classification Evaluation

In the process of multi-feature modeling, we extracted intensity features (IF) to describe
the grayscale statistics of the target; geometric features (GF) to describe the shape of the
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target; and LCI features (LCI) to describe the gradient convergence of the target, which
included the ARF feature (ARF), SBF feature (SBF), and the DRF feature (DRF) proposed by
us. The ROC curve and AUC value were used to measure the classification performance
of different features, and the results are shown in Table 4 and Figure 7. On the real
dataset NUAA-SIRST, the AUC value was 0.97491 when using only intensity and geometric
features for classification, which increased to 0.98679 after adding LCI features. Weak
targets were easy to miss when using only intensity characteristics and geometric shapes
of targets; however, adding LCI features that measure gradient but are not affected by
intensity enabled correct identification of such targets. Therefore, the performance of the
model was improved with the introduction of LCI features. At the same time, the addition
of our proposed DRF feature also improved the model performance, with an AUC value
of 0.98639.

Table 4. Candidate classification results.

Feature Subset NUAA-SIRST NUDT-SIRST

IF 0.94412 0.9747
GF 0.938 0.96678

IF + GF 0.97083 0.99342
IF + GF + ARF 0.97425 0.9953
IF + GF + SBF 0.97559 0.99541
IF + GF + DRF 0.98762 0.99573

All 0.98882 0.99661
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NUAA-SIRST, and (b) results on NUDT-SIRST.

Figure 7b shows the results on the synthetic dataset NUDT-SIRST. Excellent results
were obtained using only the geometry and intensity information of the target, with an
AUC value of 0.99342. This was possible because the same object was used for many
different backgrounds in synthetic images. The LCI features did not significantly improve
the model, and its AUC value was 0.99661.

In terms of time consumption, the extraction time for intensity features, geomet-
ric features, and LCI features in each candidate region was 0.001 s, 0.001 s, and 0.01 s,
respectively.
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4.3. Detection Results

Table 5 shows IoU, Re, and Fa values achieved on NUDT-SIRST and NUAA-SIRST
datasets by our method compared with different SOTA methods: Filter-based methods in-
clude top-hat [35] and max–median [36]; local contrast-based methods include WSLCM [37]
and TLLCM [38]; local rank-based methods include IPI [10], NRAM [39], RIPT [40],
PSTNN [13], and MSLSTIPT [41]; CNN-based methods include MDvsFA-cGAN [33],
ACM [32], and ALCNet [7]. Since our candidate extraction algorithm adopted the edge
extraction method, we successively performed the morphological closing operation and
corrosion operation on the candidate mask to eliminate holes and excessive edges when
calculating IoU. Regarding IoU value at the pixel level, our algorithm was not better than
CNN networks on pixel segmentation but it was better than traditional algorithms, such as
filter-based, local contrast-based, and local rank-based methods. CNN-based algorithms,
such as MDvsFA-cGAN, ACM, and ALCNet, achieve higher Re than other traditional
algorithms due to their data-driven approach, which aims to minimize loss or maximize
accuracy. On target-level evaluation metrics, the values of Re in datasets NUDT-SIRST
and NUAA-SIRST were 0.9064 and 0.9060, respectively, which were lower than those of
ACM and ALCNet, but higher than those of most traditional algorithms. Although the
detection rate of our algorithm was lower than that of the CNN-based algorithms, our
framework can be applied to images with different resolutions and requires fewer images
to train the model. Additionally, our algorithm appeared to be more effective in eliminating
false alarms, with the values of Fa in the two datasets being 9.833× 10−6 and 9.06× 10−6,
respectively, which were much lower than in other traditional algorithms, and the average
Fa of the two datasets was lower than that of ALCNet. In the candidate extraction step, we
extracted all targets that met the gradient threshold through gradient weight technology,
which contained a large number of true targets, which explains why the detection rate of
our algorithm was higher than most traditional algorithms. However, less consideration
was given to the problem of false alarm removal. Therefore, in the next step, we further
applied multi-feature modeling and classification to remove false alarms.

Table 5. IoU, Re, and Fa values achieved on the NUDT-SIRST and NUAA-SIRST datasets.

Method
NUDT-SIRST NUAA-SIRST

IoU Re Fa IoU Re Fa
(×10−2) (×10−2) (×10−6) (×10−2) (×10−2) (×10−6)

Top-hat [35] 20.72 78.41 166.7 7.143 79.84 1012
Max–median [36] 4.197 58.41 36.89 4.172 69.2 55.33

WSLCM [37] 2.283 56.82 1309 1.158 77.95 5446
TLLCM [38] 2.176 62.01 1608 1.029 79.09 5899

IPI [11] 17.76 74.49 41.23 25.67 85.55 11.47
NRAM [39] 6.927 56.4 19.27 12.16 74.52 13.85

RIPT [40] 29.44 91.85 344.3 11.05 79.08 22.61
PSTNN [13] 14.85 66.13 44.17 22.4 77.95 29.11

MSLSTIPT [41] 8.342 47.4 888.1 10.3 82.13 1131
MDvsFA-cGAN [33] 75.14 90.47 25.34 60.3 89.35 56.35

ACM [32] 67.08 95.67 10.18 70.33 93.91 3.728
ALCNet [7] 81.4 96.51 9.261 73.33 96.57 30.47
Proposed 49.64 90.64 9.833 44.35 90.6 9.06

For better visualization, Figures 8 and 9 show qualitative evaluations on two datasets
of different methods, including top-hat [35], LCM [8], MPCM [9], IPI [10], RIPT [40],
NRAM [39], PSTNN [13], RTRC [42], TMESNN [43] and our proposed method. Classic
infrared target detection algorithms, such as top-hat and LCM, cannot avoid the occurrence
of false alarms in various scenarios. Models based on low-rank decomposition, such as IPI,
RIPT, and NRAM, perform well in simple scenarios but slightly worse in complex ones.
For example, the image containing a complex background in line 5 shows a large number
of false alarms, and PSTNN and TMESNN even missed the weak target. Our approach
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generated accurate target localization and segmentation with a very low false alarm rate
compared with traditional methods.
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The proposed algorithm was also evaluated for time consumption. It consisted of three
processes: candidate extraction, multi-feature modeling, and feature classification. Table 6
shows the running time of each step of the process on NUAA-SIRST. In the candidate
extraction step, multiple convolution operations were first used to find the target candidate
region, which consumed 0.02 s. Then, image blocks were extracted for subsequent feature
extraction, which took approximately 0.002 s to extract an image block. Therefore, the
running time of this step was mainly determined by the number of extracted candidates.
Considering that the number of candidates ranged from 0 to 20, the running time of this
step was roughly between 0.02 s and 0.06 s. Meanwhile, feature extraction expended
0.012 s of time for each candidate, so the running time of the multi-feature modeling
step ranged from 0 s to 0.24 s. The average discriminant time of the final classifier was
0.04 s. In other words, the algorithm took longer to run for complex backgrounds, such as
buildings, because more candidates could be extracted and classified. For relatively simple
backgrounds, such as the sky, the time consumption was as low as 0.07 s, which shows the
practical application potential of this algorithm. We also made a comparison with other
algorithms in terms of time consumption, and the results are shown in Table 7. Although
our algorithm was not the fastest, compared with PSTNN and NRAM with similar speed,
it had greater advantages in detection rate and false alarm elimination.

Table 6. Time consumption of each step of the process.

Step Time (s)

Candidate extraction 0.02–0.06
Multi-feature modeling 0.01–0.24
Classifier and detector 0.04

Table 7. Processing time for each image in the NUAA-SIRST dataset by different algorithms.

Method Time (s)

Top-hat 0.1056
LCM 7.3676

MPCM 0.1261
IPI 5.4185

NRAM 0.1507
PSTNN 0.1687
RTRC 0.7576

TMESNN 0.1393
proposed 0.1652

5. Conclusions

In this paper, a novel approach for infrared small target detection was proposed by
combining gradient weighting with LCI features, and small infrared targets were accurately
identified using RUSBoost. The problem that detection algorithms are prone to false and
missing detections under complex scenes was explicitly addressed by this method. LCI-
based descriptors were shown to characterize low-contrast objects well, since the LCI filters
were gradient convergence-based. Extensive experiments on NUDT-SIRST and NUAA-
SIRST datasets demonstrated that the performance of the proposed method was competitive
with SOTA but with lower time consumption. The proposed method has limitations in its
single-frame nature since it is specifically designed for single-frame infrared target detection
applications. In applications that allow for multiple frames, multi-frame-based algorithms
can obtain more temporal information from the image sequences, which can enable better
suppression of noise similar to targets in the images. Our future works will focus on
improving the detection of infrared small targets in high-frequency regions, including
skyline and horizontal plane lines. To achieve this goal, we plan to explore an integrated
learning framework that combines deep features with physical characteristics. We believe
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that this approach could effectively enhance the detection performance of infrared dim
small targets and provide more reliable solutions for real-world applications.
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