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Abstract: Polarimetric synthetic aperture radar (PolSAR) has unique advantages in building ex-
traction due to its sensitivity to building structures and all-time/all-weather imaging capabilities.
However, the structure of buildings is complex, and buildings are easily confused with other objects
in polarimetric SAR images. The speckle noise of SAR images will affect the accuracy of building
extraction. This paper proposes a novel building extraction approach from PolSAR images with
statistical texture and polarization features by using a convolutional neural network and superpixel.
A feature space that is sensitive to building, including G0 statistical texture and PualiRGB features, is
constructed and used as CNN input. Considering that the building boundary of the CNN classifica-
tion result is inaccurate due to speckle noise, the simple linear iterative cluster (SLIC) superpixel is
utilized to constrain the building extraction result. Finally, the effectiveness of the proposed method
has been verified by experimenting with PolSAR images from three different sensors, including
ESAR, GF-3, and RADARSAT-2. Experiment results show that compared with the other five PolSAR
building extraction methods including threshold, SVM, RVCNN, and PFDCNN, our method without
superpixel constraint, the F1-score of this method is the highest, reaching 84.22%, 91.24%, and 87.49%,
respectively. The false alarm rate of this method is at least 10% lower and the F1 index is at least 6%
higher when the building extraction accuracy is comparable. Further, the discussion and method
parameter analysis results show that increasing the use of G0 statistical texture parameters can
improve building extraction accuracy and reduce false alarms, and the introduction of superpixel
constraints can further reduce false alarms.

Keywords: building extraction; G0 statistical texture; PolSAR; CNN; superpixel

1. Introduction

Buildings are the place where human beings depend for survival. They are the most
essential part of urban construction. Building identification and extraction from remote
sensing are of great value in urban planning and land use planning. Synthetic-aperture
radar (SAR) has the capability of all-time/all-weather imaging capabilities. Compared
with the SAR data of a single polarization channel, full polarimetric SAR (PolSAR) can
obtain more abundant backscattering information and provide more valuable feature
information for the recognition and extraction of features [1]. With the acceleration of
global urbanization, it is significant to accurately extract buildings from PolSAR images for
urbanization development monitoring [2,3].

In PolSAR images, buildings usually have specific characteristics in polarization fea-
tures and texture features, which are vital for extraction buildings. In polarization features,
Pauli decomposition parameters are commonly used and have been experimentally proven
to have good accuracy in PolSAR classification [4]. The building’s backscatter energy and
double scattering tend to be higher than other surrounding features, showing highlighting
in PauliRGB. However, polarimetric scattering information in PolSAR images is affected
by speckle noise, which could deteriorate the results. Due to that, some buildings are
easily confused with other objects that have the same scattering mechanism as buildings [5].
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Considering the coherent speckle, statistical information for building extraction is partic-
ularly important. There are many SAR statistical distribution models, including Wishart
distribution [6,7], K distribution [8], G0 distribution [9], etc. Among these SAR statistical
distribution models, the G0 distribution can simulate extremely heterogeneous areas, such
as urban areas. Further, texture parameters based on G0 distribution have been applied in
PolSAR image classification and segmentation. The comprehensive utilization of two or
more polarization and texture features plays an important role in improving the extraction
accuracy of urban data [10,11], and it is also one of the development trends.

Various classification algorithms have been introduced into PolSAR image building
extraction or urban classification to improve accuracy. Traditional machine learning meth-
ods have been applied successively to PolSAR image building extraction, including the
eigenvalue-based method [12], the K-means clustering algorithm, the maximum likelihood
classification method [13], support vector machines [14], the decision tree algorithm [15],
the random forest algorithm [16], etc. With the development of machine learning technol-
ogy, deep learning methods have been increasingly used for SAR image target extraction
and classification [17,18] in recent years. Especially, the deep learning method using CNN is
almost the most widely used PolSAR deep learning classification method [19]. PolSAR data
are made into a six-channel as the CNN input (RVCNN), including SPAN, the normalized
polarimetric power ratio, and three relative correlation coefficients [20], which proves the
suitability and potential of CNN in the classification of PolSAR. The Polarimetric-Feature-
Driven Deep CNN uses the SPAN, entropy, mean alpha angle, anisotropy, and two null
angle parameters of θnull_Re [T12] and θnull_Im [T12] as the input of the CNN [21]. The
Polarimetric-Feature-Driven Deep CNN (PFDCNN) proved that the addition of polariza-
tion features is beneficial to the application of CNN in the classification of PolSAR. However,
speckle noise has an effect on building extraction in PolSAR images by the CNN method.

Superpixels are meaningful atomic regions that contain spatial context information,
which could be generated by SLIC or other segmentation methods [22]. A superpixel
is a spatially continuous collection of pixels with similar features that adhere well to
surface feature boundaries. The introduction of superpixels can suppress the speckle
noise while maintaining the statistical and texture features of the image and utilizing
context information [23]. Considering that the SLIC algorithm can generate compact,
nearly uniform superpixels and that the algorithm is simple and computationally efficient,
superpixels have been successfully applied to the segmentation of PolSAR images [24], the
classification of features [25], or to optimize the results of PolSAR classification [26].

Therefore, this paper proposes a novel building extraction approach from a PolSAR
image with statistical texture and polarization features by using a convolutional neural
network and superpixel. This method combines Pauli decomposition parameters and
the G0 statistical texture parameter as the input dataset of CNN, then makes use of the
superpixel generated by SLIC to optimize pixel-based initial classification results to reduce
the inaccuracy of building boundaries due to noise effects.

This paper is organized as follows: Section 2 introduces this method from character-
istics and methods, including PauliRGB, G0 statistical texture parameters, convolutional
neural networks, and the generation of superpixels. In Section 3, the accuracy of the pro-
posed method is verified using three types of data, and five building extraction algorithms
are compared, which include threshold, SVM, RVCNN, PFDCNN, and our method with-
out superpixel constraint. Section 4 discusses the characteristics of the method and the
influence of the parameters of the method. The conclusion is in Section 5.

2. Method

The process of the proposed method to extract buildings from PolSAR images is
described in this section. The main steps are shown in Figure 1. Firstly, we extract the
PauliRGB three-channel data, which can characterize the polarization information of the
PolSAR data. The G0 statistical texture parameter that can characterize the statistical in-
formation of PolSAR is also extracted. They are then combined into a feature set, and
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samples are collected and selected as input to the convolutional neural network for training.
Subsequently, the preliminary result of polarimetric SAR buildings is obtained. For mis-
classification problems in the initial extracted building, superpixel constraints are applied
to the preliminary results to reduce them. After obtaining the superpixel area and the
preliminary extraction area of the building, we will modify the building area with the
superpixel constraint. Finally, obtain a final building extraction result.
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2.1. Building Feature Set Extraction from SAR Image

PolSAR images have abundant polarization information and texture information for
building feature extraction. Therefore, this part introduces the PauliRGB features used
to describe the polarization information and the G0 statistical texture parameters used to
describe the polarization statistical texture information, which form the feature set extracted
by the building.

In general, the electromagnetic scattering of a radar target can approximate a linear
process. After determining the scattering space coordinate system and its corresponding
polarization basis, there is a linear transformation relationship of the polarization com-
ponents between the radar emission wave and the target scattering echo. The scattering
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process of the target can be represented by a 2× 2 complex matrix, which is the Sinclair S
matrix, as follows [27]:

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH and SVV represent the co-polar scattering components, and SHV and SVH
represent the cross-polar scattering components. In the monostatic case, the two cross-polar
components are equal, i.e., SHV = SVH.

In the actual analysis of PolSAR data, the polarization covariance matrix C is intro-
duced to describe the dynamically changing environment and objectives. Covariance
matrix C can be written as:

C3 =
1
2

 〈|SHH|2〉
√

2〈SHHS∗HV〉 〈SHHS∗VV〉√
2〈SHVS∗HH〉 2〈|SHV|2〉

√
2〈SHVS∗VV〉

〈SVVS∗HH〉
√

2〈SVVS∗HV〉 〈|SVV|2〉

 (2)

2.1.1. PauliRGB

The scattering S matrix is expressed by Pauli decomposition as the complex sum of
the Pauli matrices. The scattering S matrix is associated with each basis matrix, with

S =

[
SHH SHV
SVH SVV

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
0 1
1 0

]
+

d√
2

[
0 −j
j 0

]
(3)

where a, b, c, d are all complex and are given by the following:

a =
SHH + SVV√

2
(4)

b =
SHH − SVV√

2
(5)

c =
SHV + SVH√

2
(6)

d = j
SHV − SVH√

2
(7)

The Pauli decomposition of deterministic targets consists of four scattering mecha-
nisms. The first scattering mechanism is a single scattering from a plane surface. The second
and third are double or even bounce scattering from corners with a relative orientation of 0◦

and 45◦, respectively. The final scattering mechanism is all the antisymmetric components
of the scattering S matrix.

In the monostatic case, the Pauli matrix basis can be simplified to the first three
matrices and d = 0. The power of the three matrices can be described as follows:

u = 10lg
(
|a|2
)

(8)

v = 10lg
(
|b|2

)
(9)

ω = 10lg
(
|c|2
)

(10)

Generally, buildings are dominated by double scattering. Buildings with orientation
angles have strong 45◦ double scattering. Non-buildings mainly include rivers, roads, and
bare land, with odd-level scattering and other types of scattering. The vegetation scattering
mechanism is more complicated than other non-building phenomena. The vegetation’s
power in Pauli decomposition is similar to the buildings, which have an orientation angle.
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2.1.2. G0 Statistical Texture Parameter

To better simulate extreme heterogeneous regions in SAR images, Freitas [28] proposed
the G0 distribution. It models texture variables using an inverse gamma distribution based
on the multiplicative model. The uniformity of the target can be reflected by the texture
parameter of the G0 distribution [29]. This parameter can provide valid information in
building extraction.

For non-uniform regions, the texture features of the object target have a wealth of
available information. The SAR image uses the multiplicative model to model it. The
SAR images can be expressed as multiplicative products of mutually independent texture
variables τ and speckle variables X:

Z = τ·X (11)

where Z represents SAR image data. It may be an intensity image, an amplitude image, a
covariance matrix, or a coherence matrix. τ represents the texture variable, reflecting the
average backscattering coefficient of the scatters in the ground-resolving unit. It models
the inverse gamma (γ−1) distribution for heterogeneous regions, for example, urban areas.
X represents the speckle of the SAR image, which obeys the gamma distribution for the
L-look single-polarimetric SAR intensity image [30] and the Wishart distribution for the L-
look multi-polarimetric SAR image [31]. According to Equation (11), the SAR image obeys
the G0 distribution, and the probability density distribution of the L-look multi-polarimetric
SAR image is

pC(C) =
LdL|C|L−dΓ(dL + λ)(λ− 1)λ

Γd(L)|Σ|LΓ(λ)
×
(

Ltr
(

Σ−1C
)
+ λ− 1

)−λ−dL
(12)

where λ is the texture parameter, d is the scattering vector dimension, Γ(·) is the gamma
function, Γd(L) = π

1
2 d(d−1)Γ(L) . . . Γ(L− d + 1), Σ is the mean, and tr(·) is the trace of

the matrix.
Regarding the G0 texture parameter estimation of L-look multi-polarimetric SAR data,

according to the study of Khan [32], we can make M = tr
(

Σ−1C
)

. Then, the vth moments
of M can be uniformly expressed as

E{Mv} =
(
λ− 1

L

)v Γ(λ− v)
Γ(λ)

Γ(Ld + v)
Γ(Ld)

(13)

Doulgeris [33] estimates the texture parameter λC of the G0 distribution for multi-polarimetric
SAR image by using the second-order moment of M.

λC =
2LVar{M}+ d(Ld− 1)

LVar{M} − d
(14)

According to Var(x) = E
(
x2)− E2(x), the estimation formula of the G0 distribution

texture parameter of the multi-polarimetric SAR image can be expressed as

λ =
Ld + 1

Ld Var{x}
E{x}2 − 1

+ 2 (15)

where x = tr
(

Σ−1C
)

.
The range of λ calculated using Equation (15) is usually too broad, which inconve-

niences the display of images and the statistics of samples. For this reason, this paper takes
the logarithm operation as a new statistical texture feature named G0-para

G0-para = log(λ) (16)
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2.2. Preliminary Building Extraction by CNN

First, we select the training sample and verification sample sets, count the number
of building pixel points in the true ground map of the image, and select the positive
training sample by random. Additionally, we select the same number of non-building
negative samples in the non-building area. The test sample set, identical to the total number
of training samples, is selected from the unselected samples. For the construction of a
single sample, the pixels are selected and taken as the sample center, and then the range
of size N × N is selected as the sample. Second, the acquired samples are input to the
convolutional neural network. After the training is sufficient, we use the fitted model to
extract the building. The learning ability of convolutional neural networks enables the use
of contextual information in PolSAR images. The model of PolSAR building extraction
under the convolutional neural network is obtained after training. It will be used to extract
the building.

2.2.1. Convolution Layer

Each convolutional layer can obtain multiple feature maps, and generating one feature
map includes two processes: convolution and nonlinear activation. The convolution process
consists of two parts, the convolution kernel and a bias parameter, which are shared during
the generation of a featured image [34]. For an N-channel image of size W×H, using a
two-dimensional convolution kernel of size w f × h f , the convolution calculation at x(ii, jj)
is as follows:

xk(i, j) =
N

∑
n=1


w f−1

∑
p=1

h f−1

∑
q=1

xn

(
i·s f + p, j·s f + q

)
·hk(p, q)

+ bk (17)

where xk(ii, jj) is the result of the value obtained by the kth convolution kernel, xn(i, j) is
the pixel value of the (i,j) position of the n channel, and hk (p,q) is the filter kernel (p,q)
the weight of the position, bk is the weight value of the kth convolution kernel, and s f is
the stride of the convolution kernel movement. The size of the obtained feature map is((

W −w f

)
/s f + 1

)
×
((

H − h f

)
/s f + 1

)
.

The nonlinear activation process enhances the nonlinear characteristics [34]. It is
necessary to use a nonlinear activation function. The process takes xk(ii, jj) as an input. It
is activated by a nonlinear function to obtain an activation value, which constitutes the
final feature image. The specific formula is as follows:

Z(xk(ii, jj)) = f (xk(ii, jj)) (18)

where the nonlinear activation function f(·) is in many forms, such as sigmoid, tanh, and
ReLU. Because the ReLU function can better solve the gradient disappearance problem
in the training process compared to other activation functions, it can make the network
sparse, reduce the parameter interdependence, and alleviate the over-fitting problem [35].
Therefore, we use the ReLU function as the nonlinear activation in this paper. Its expression
formula is as follows:

ReLU(x) =
{

x x > 0
0 x ≤ 0

(19)

2.2.2. Pooling Layer

The pooling layer summarizes the features of the convolution by downsampling,
thereby expanding the receptive field while reducing the computational complexity in
the training process [36]. The pooling operation allows the same result even if the image
features have a small translation or rotation. Usually, the pooling operation involves
maximum pooling and average pooling. This paper uses the maximum pooling operation,
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taking Z(xk(ii, jj)) as input, using the size of the pooling window wp × hp and the stride
size sp. The pooled output value is xk

(
iip, jjp

)
. The calculation process is as follows:

xk
(
iip, jjp

)
= max

0≤iip≤hp−1,0≤jjp≤wp−1
Z(xk(ii, jj)) (20)

The resulting pooled result size is
((

W −w f

)/(
s f ·sp

)
+ 1
)
×
((

H − h f

)/(
s f ·sp

)
+ 1
)

.

2.2.3. Fully Connected Layer

After the convolution and pooling layers are superimposed several times to obtain
the feature image, the output feature map needs to be compressed into a one-dimensional
vector. The fully connected layer can integrate high-dimensional features obtained by the
convolutional layer and pooling layer. The fully connected layer maps the input dataset to
the output set by feed-forward mode, and each neuron is fully connected to all neurons
in its previous layer. The output of each node is a weighted unit, followed by a nonlinear
activation function to distinguish those that are not linearly separable [37]. Taking al as the
input and al+1 as the output of the l + 1th layer, the calculation process is as follows:

al+1 = f
(

wl ·al + bl
)

(21)

where wl is the weight matrix, bl is the offset matrix, and f (·) is the activation function. The
activation function is the ReLu function. Softmax is used in the final output classification
result so that the output probability value is between 0 and 1 and the sum is 1.

2.3. SLIC Superpixel Generation and Superpixel Constraint

A superpixel region is a collection of spatially contiguous pixels with similar charac-
teristics that maintain similar ground boundary contours. Superpixels are often used in the
pre-processing steps of image information extraction. In the field of image classification,
it can be considered that all pixels in a superpixel belong to the same category. Then,
superpixel classification is utilized to reduce noise interference in an image. Speckle noise
is an important factor that affects the classification accuracy of PolSAR images. In recent
years, superpixel-based classification methods have achieved better classification effects in
PolSAR images [38,39].

2.3.1. SLIC Superpixel Generation

This paper uses the SLIC algorithm to obtain superpixels from PolSAR images. Con-
sidering that the target decomposition parameter is an important feature for describing the
class information, the three components of the Pauli decomposition have obvious physical
meaning. Therefore, the PauliRGB is used to replace the spectral features in the traditional
optical image. The main details of the processing steps are as follows:

1. Generate center seed points: Firstly, we generate a PauliRGB gradient image. Secondly,
select the seed point as the initial center of the superpixel according to the step S
sampling. Finally, adjust the seed point to the lowest point of the gradient image in
the local S ∗ S range;

2. Local K-means: First, the distance of each pixel to the center of the superpixel is
calculated in the range of 2S ∗ 2S of each superpixel center and divide the pixel
into the nearest superpixel. Second, SLIC’s search scope is limited to 2S ∗ 2S, which
speeds up algorithm convergence. The distance between two pixels is measured in
d. Third, we assume that the Pauli decomposition feature vectors of pixel (xi, yi) and
pixel (xj, yj) are (Pai , Pbi

, Pci ) and (Paj , Pbj
, Pcj ). The computational formula of spatial

distance, Pauli distance, and distance d is defined as follows:

ds =
√(

xi − xj
)2

+
(
yi − yj

)2 (22)
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dp =
√
(Pai − Pai )

2 +
(

Pbi
− Pbi

)2
+ (Pci − Pci )

2 (23)

d =

√(
dp

maxdp

)
+

(
ds

S

)2
(24)

After the calculation, we update the center of each superpixel. Next, we repeat the
above steps until convergence or it reaches the maximum number of iterations. Finally,
a superpixel of approximately S ∗ S size can generate;

3. Post-cluster processing: The superpixels with less than a certain number of pixels are
merged into the nearest superpixel to obtain the final PolSAR superpixel image.

2.3.2. Superpixel Constraint

For PolSAR images, the target decomposition parameters are an important feature to
describe ground information. The Pauli decomposition’s three components have obvious
physical significance, representing odd scattering, dihedral angular scattering, and π/4
even scattering, respectively. Meanwhile, a PauliRGB composite image is the standard
display mode of PolSAR images. Therefore, in this paper, Pauli features are used to replace
spectral features in traditional optical images.

Aiming at the effect of speckle noise in PolSAR data on building extraction and the
over-smoothing phenomenon caused by CNN, a superpixel constraint method based
on the CNN classification result is proposed to extract buildings more accurately. After
obtaining the superpixel area and the preliminary extraction area of the building, we
modify the building area with the superpixel constraint. First, the extracted results in the
same superpixel area are counted. For the statistical results, if the number of buildings in
the statistics is less than the number of non-buildings, the buildings in the superpixel will
be classified as non-buildings; otherwise, the pixels in the superpixel will not be modified.

3. Experiment and Results

In order to prove the effectiveness of the method, three different PolSAR sensors
are adopted, including E-SAR, GF-3, and RADARSAT-2. In the case of a convolutional
neural network using the same sample and the same structure and training mode, we
compare the results of our method with those of other methods. Further, we also compare
the convolutional neural network method for PolSAR classification and the method we
propose. In this section, the experimental data, experimental sample construction, and
training patterns are described, and the experimental results are illustrated.

3.1. Study Area and Data Set

Three different study areas and data sets are used in this paper. The optical images of
Figure 2(a2,b2,c2) are from Google Earth. Figure 2(a3,b3,c3) is the true ground map, which
is derived from the distribution vector of buildings and the interpretation of optical remote
sensing images taken at the same time.

The first study data were obtained by E-SAR. E-SAR is an experimental SAR devel-
oped in Germany with optional vertically polarized or horizontally polarized antennas.
We conducted experiments using the airborne L-band fully polarimetric E-SAR data of
Oberpfaffenhofen, Germany, obtained in July 1999. The azimuth of the image has been
conducted with 2-look processing; the image size is 1408× 1540 pixels; and the azimuth
resolution and ground resolution are both about 3 m. The image mainly includes land
types such as buildings, woodlands, farmland, and roads. The E-SAR image and the real
surface are shown in Figure 2(a1,a3).

The second study data were obtained by GF-3. GF-3 is a C-band SAR satellite plat-
form developed by China. This study used PolSAR data acquired on 9 December 2016 in
Huashan, Wuhan, China. The GF-3 image size is 550× 650 pixels, which means that the az-
imuth resolution and ground are both about 8 m. The image and the real surface are shown
in Figure 2(b1,b3). The third study’s data was obtained by RADARSAT-2. RADARSAT-2
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is a C-band SAR satellite platform developed in Canada. This study uses PolSAR data
acquired on December 7, 2011, in Wuhan, China. The image size is 450 × 550 pixels, the
azimuth resolution is 5 m, and the ground resolution is 4.7 m. The image and the real
surface are shown in Figure 2(c1,c3).
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3.2. Sample Construction and Network Parameters

In the extraction of PolSAR buildings, the use of CNN to achieve the extraction of
buildings, the construction of training samples, and the initialization of convolutional
neural network parameters are essential for the effective acquisition of the model for
PolSAR building extraction.

In the construction of the sample, we used the real surface map to select the building
as a positive sample and the non-building as a negative sample. For the selection of positive
samples, we selected 15% of the building area pixels randomly as the center point of the
sample. For the selection of negative samples in the non-building area, we randomly
selected the same number of pixels as the positive sample as the center point of the sample.
We used these pixels as the center point of the sample. After that, a window of size N × N
was constructed, centering on the selected pixel point, and the data in the window were
taken as a sample, and the size of the sample is N×N× C, where C is the number of
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channels. The label value corresponds to the category of the central pixel point. After an
experimental analysis, the sample map size of ESAR data were selected as 25× 25 pixels,
and the sample map size of RADARSAT-2 and GF-3 data were selected as 29× 29 pixels.
See Section 4.2.2 for details.

To learn the higher-level features of the feature set in the sample while extracting the
building, we use a CNN. The CNN that we construct is a Lenet5-like network, shown in
Figure 3, which is a relatively simple convolutional neural network. The structure includes
two convolutional layers, two pooling layers, and two fully connected layers, wherein
the convolutional layer has several convolution kernels of 500 and 100, respectively. The
number of fully connected layers is 200 and 84, respectively. The size of the convolution
kernel is 3× 3 pixels, and the size of the pooled layer is 2× 2 pixels. The stride size is
1 pixel. The initialization of all parameters in the network selects randomly from a Gaussian
distribution with a variance of 1. In addition to the bias parameter, the initialization of the
bias parameter is zero. In the convolutional neural network training, we used 500 training
samples as one batch, and the learning rate during training was 0.01. In training, the loss
value is less than 0.005 as a complete fit, and the model can be acquired for subsequent
building extraction.
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3.3. Building Extraction Results and Analysis

For the three different PolSAR images, we extracted the buildings based on our
method and five other methods separately. The five other methods include: using feature
extraction and an eigenvalue-based method [12] and using the support vector machine
(SVM) classifier [40] by using the feature set we propose for building detection, real vector
representation tailored for Convolutional Neural Network (RVCNN) [20], Polarimetric-
Feature-Driven Convolutional Neural Network (PFDCNN) [21], the proposed CNN of
PauliRGB and G0, and the method of adding superpixel constraints on this basis. The SVM
classifier kernel is a radial basis function, the gamma coefficient is 0.2, determined by the
number of channels, and the penalty parameter is 200. The RVCNN method inputs the
normalized six-dimensional real feature vector, which contains the coherence or covariance
matrix of multi-looked PolSAR data, into the four-layer convolutional neural network
for PolSAR classification. The PFDCNN uses classical roll-invariant polarimetric features
and hidden polarimetric features in the rotation domain to drive the proposed deep CNN
model. The samples used for the experiments are consistent, whether it is a different CNN,
SVM, or eigenvalue-based method.

For the evaluation of accuracy, we use the accuracy rate (AR), the false alarm rate
(FAR), and the F1-score [41] for the harmonic evaluation of the detection rate and false
alarm rate. Among them, the accuracy rate is the correct proportion of the number of
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building pixels in the real building, and the false alarm rate is the number of non-building
pixels in the extracted building. The F1-score is a way of combining the precision and recall
of the model, and it is defined as the harmonic mean of the model’s precision and recall.
What is more, the CNN training samples are not excluded for the calculation of AR, FAR
and F1-score.

3.3.1. ESAR

For the extraction of buildings from ESAR data, the buildings with large dip angles are
very similar to the vegetation, and the parking lot with vehicles is similar to the buildings.
The building extraction results of the six methods are shown in Figure 4.
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(b) PauliRGB and G0 statistical texture parameters using SVM results; (c) RVCNN; (d) PFDCNN;
(e) PauliRGB and G0 Statistical texture parameters using CNN; (f) as the result of introducing
superpixel constraints in (e).

In the ESAR data experiment results, it shows that the method using CNN is more
effective than other methods. The CNN can accurately determine the location of the
building. In the SVM method, vegetation is easily misclassified as a building because it has
a similar scattering mechanism to buildings with large orientation angles. The method of
using thresholds to extract buildings from the image is not effective. For all methods using
CNN, the proposed method has a relatively high accuracy for the extraction of buildings,
and the false alarm rate of it is lower than that of other non-CNN methods. In terms of
details, the method proposed by us can extract large-angled buildings and suppress the
interference of parking lots, which have a regular arrangement of vehicles. The accuracy
comparison is shown in Table 1.

Table 1. Different methods of building extraction effects under ESAR data.

Feature Method AR (%) FAR (%) F1-Score (%)

Eigenvalue Threshold 22.20 39.23 32.52
PauliRGB + G0 SVM 61.85 58.15 49.92
6D-Vector [38] CNN 85.18 27.89 78.10

Polarimetric Features [39] CNN 85.64 45.54 66.58
PauliRGB + G0 CNN 88.05 25.01 80.99
PauliRGB + G0 CNN + Superpixel 86.14 17.61 84.22
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3.3.2. GF-3

For the extraction of buildings in GF-3 data, the buildings include relatively high
residential buildings, individually distributed villas, houses under construction, and large
single-unit buildings. Non-buildings include vegetation, water, roads, bare soil, etc. The
building extraction effect is shown in Figure 5.
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Figure 5. GF-3 image building extraction results. (a) Quan’s threshold extraction method;
(b) PauliRGB and G0 statistical texture parameters using SVM results; (c) RVCNN; (d) PFDCNN;
(e) PauliRGB and G0 Statistical texture parameters using CNN; (f) as the result of introducing
superpixel constraints in (e).

From Table 1, the extraction accuracy rate and false alarm rate of the building using the
three methods of the CNN are better than the methods of using the SVM method and the
threshold to obtain buildings. Among the three methods using CNN, our proposed feature
set and method for building extraction can better extract buildings, including the control
of the boundary of the building and the suppression of false alarms. In terms of details,
the method proposed by us can have a better suppression effect on non-buildings, such as
streetlamps on the side of the road than other CNN methods. The accuracy comparison is
shown in Table 2.

Table 2. Different methods of building extraction effects under GF-3 data.

Feature Method AR (%) FAR (%) F1-Score (%)

Eigenvalue Threshold 67.02 41.35 62.55
PauliRGB + G0 SVM 78.95 41.63 67.11
6D-Vector [38] CNN 94.69 24.91 83.75

Polarimetric Features [39] CNN 95.33 24.09 84.51
PauliRGB + G0 CNN 95.56 15.45 89.71
PauliRGB + G0 CNN + Superpixel 94.97 12.2 91.24

From Table 2, we can see that the accuracy of the building extraction is higher in
the three methods using CNN. The proposed method with the selected feature set can
have higher building extraction accuracy and a lower false alarm rate than the comparison
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methods in building extraction. In the case of high accuracy in building extraction, the false
alarm rate is reduced by about 11%, and the F1-score is increased by more than 6.7% by the
proposed method.

3.3.3. RADARSAT-2

The buildings in this data image mainly include factory buildings, residential build-
ings, and tall buildings. Non-buildings include forests, vegetation, roads, and railways.
Among them, roads and railways have many similarities to buildings in terms of the scatter-
ing mechanism and spatial structure, which have a significant influence on the extraction of
buildings. The building extraction results under different methods are shown in Figure 6.
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(b) PauliRGB and G0 statistical texture parameters using SVM results; (c) RVCNN; (d) PFDCNN;
(e) PauliRGB and G0 Statistical texture parameters using CNN; (f) as the result of introducing
superpixel constraints in (e).

The three methods using CNN have resulted in a significant improvement in the
overall extraction of the building, and the accuracy of the outlines and targets of the
building has also improved. In the method of using convolutional neural networks, the
feature sets, and methods we use can make the railways and highways better differentiated
from buildings than the other two methods. There is still the phenomenon that some
railways are mistakenly divided into buildings in the experiment. In detail, our approach
can more accurately describe the boundary of the building. The building extraction accuracy
is shown in Table 3.

Table 3. Different methods of building extraction effects under RADARSAT-2 data.

Feature Method AR (%) FAR (%) F1-Score (%)

Eigenvalue Threshold 64.11 25.13 69.07
PauliRGB + G0 SVM 84.03 45.06 66.44
6D-Vector [38] CNN 93.62 29.99 80.11

Polarimetric Features [39] CNN 94.29 30.82 79.80
PauliRGB + G0 CNN 94.37 21.76 85.55
PauliRGB + G0 CNN + Superpixel 93.64 17.89 87.49
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From the experimental results of three different types of data, the proposed method
can improve the extraction effect of buildings compared to other methods. The main
improvement is the suppression of false alarm rates in building extraction. This method
can distinguish buildings from similar buildings. In the case of the building extraction
accuracy rate, the false alarm rate has been reduced by at least 12%, and F1 has increased
by more than 7%.

4. Discussion
4.1. Method Characteristic Analysis

In this section, we analyze the characteristics of this method in three aspects. Firstly, the
advantages of the combination of the polarization feature and the statistical texture feature
are discussed. Furthermore, we compare the effects of using a single feature and multiple
features in the same way. Secondly, the ability of CNN to utilize the spatial information of
polarimetric SAR building is analyzed. In the case of the same features, we use CNN and
multi-layer perceptrons (MLP), respectively, to extract PolSAR buildings and then compare
the accuracy of their results. Finally, the effect of applying superpixels is discussed on the
accuracy of the results. By keeping the characteristics and methods unchanged, the effects
of using a superpixel constraint on the accuracy of the results are compared.

4.1.1. Combination of Polarization and Statistical Features

PauliRGB is the most basic and commonly used method for characterizing PolSAR.
However, using only PauliRGB to learn building features can only train the optimal feature
information of buildings in PauliRGB images. In this case, the information in the PolSAR
image is not sufficient. Further, there are some targets in PauliRGB images that are similar
to the scattering mechanism and spatial structure of buildings. In the case of using only
PauliRGB, they are easy to mistakenly divide into buildings, such as the parking lot, the
street tree, etc., as shown in Figure 7.

As unique and vital information in PolSAR data, statistical information can describe
the heterogeneity of PolSAR. The statistical texture parameters can be used to interpret the
statistical information of PolSAR features. The building area appears as a heterogeneous
area in PolSAR. The different arrangement of the buildings results in different textures.
In PolSAR images, the scattering mechanisms of different components of the same building
may be different, so the building area contains essential context information. In view of the
above situation, the G0 distribution model can apply uniformly to them and contribute to
building extraction.

Furthermore, the use of CNN for PolSAR data classification has demonstrated that the
introduction of appropriate features affects the classification of PolSAR. Through the G0

statistical texture parameters under different data in the Figure 7c group, the G0 statistical
texture parameters can strengthen the characteristics of buildings and weaken the non-
building features of buildings, such as the building features in Figure 7(A(d),B(d),E(d)) are
enhanced, the street tree features in Figure 7 (B(d),D(d)) are adequately distinguished, and
in C(d) and D(d), neatly arranged cars in the parking lot and roads, their differentiation
from buildings has enhanced. Therefore, we add the G0 statistical texture parameter
to the input of CNN based on PauliRGB. The building extraction results are shown in
Figure 7b,e,h. Combined with Figures 7 and 8, the introduction of G0 statistical texture
parameters on PauliRGB can improve the building extraction effect. By comparing the
two groups in (e,f) of Figure 7, the outlines of the buildings in A(f) and E(f) become more
accurate, and the results of the extraction are less misclassified. The street trees in B(f) and
D(f) with similar spatial structures of buildings are more accurately distinguished, and
the cars on the parking lot where the parts of C(f) had a misclassified result are accurately
classified. According to the overall results in Figure 8, after adding the G0 statistical texture
parameters, the building extraction results of the three data indicate that the accuracy of
the building profile is improved, the misclassification phenomenon is improved, and the
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non-building can be effectively distinguished, which has a similar scattering mechanism
and spatial structure to buildings.
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Figure 7. Buildings and similar building features in the PolSAR image (A,B,C) images from ESAR.
Group (D) images from GF-3 and Group (E) images from RADARSAT-2. Where (a) is the optical
image, (b) is PauliRGB, (c) is the mask of the real building distributed on PauliRGB (red area), and
(d) is the G0 statistical texture parameter. (e) Classification results obtained by using only PauliRGB
as CNN input training, in which red is a building, green is a non-building, and (f) is a classification
obtained by adding a G0 statistical texture parameter to PauliRGB as a CNN input training, in which
red is a building and green is a non-building.
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Figure 8. Comparison of feature sets under three data using G0 texture parameters before and
after comparison. (a,b) is the experimental result under ESAR data, (c,d) is the experimental result
under GF-3 data, and (e,f) is the experimental result under RADASAT-2 data. Where (a,c,e) is the
experimental result of the input of only PauliRGB and (b,d,f) is the experimental result of the input
texture parameter of PauliRGB and G0.

Combined with Table 4, we find that after using the G0 statistical texture parameters,
the false alarm rate reduced by at least 5% and the evaluation parameter F1 increased by
about 5% when the accuracy improved. Therefore, combining PauliRGB and G0 statistical
texture parameters can improve the extraction of buildings using CNN.

Table 4. Building extraction accuracy table using G0 statistical texture parameters.

E-SAR GF-3 RADASAT-2

AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%)

PauliRGB 80.05 30.49 74.41 93.29 20.54 85.82 93.99 29.4 80.63
PauliRGB + G0 88.05 25.01 80.99 95.56 15.45 89.71 94.37 21.76 85.55

4.1.2. CNN’s Use of Spatial Information

The convolutional layer and the pooled layer are used alternately to simulate the
working model of the human cerebral cortex through convolution and weight sharing. The
deep features of the input target are learned and acquired, and the perception domain of the
network is expanded, thereby fully utilizing the spatial features. Therefore, convolutional
neural networks, as a classifier with a deep architecture, can reveal the deep features in
buildings in PolSAR images where shallow layers’ features cannot be found.
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To verify that convolutional neural networks can effectively apply spatial information
to PolSAR buildings, we use convolutional neural networks to compare the use of multi-
layer perceptrons (MLP) for PolSAR building extraction. The difference between MLP and
CNN is that the MLP is composed of a fully connected layer, and there is no convolution
layer or pooling layer. The MLP cannot expand the receptive field and make full use of
the spatial characteristics. We use a four-layer MLP with neurons of 500, 350, 200, and 84,
using the feature set of PauliRGB and G0 statistical texture parameters as input. The MLP
and CNN building extraction effects are compared, and the results of that are shown in
Figure 9.
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RADASAT-2 data. Where (a,c,e) is the experimental result of the MLP and (b,d,f) is the experimental
result of the CNN.

After using CNN to learn the spatial information of the building and obtain deeper
features, the extraction effect of the building improves, the phenomenon of misclassification
is reduced, and the outline of the building becomes accurate. In Table 5, compared with the
use of MLP, the accuracy of CNN for building extraction increased by about 13%, the false
alarm rate decreased by at least 17%, and the F1 parameter increased by at least 17%.
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Table 5. Building extraction accuracy table using the MLP and CNN methods.

E-SAR GF-3 RADASAT-2

AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%)

MLP 75.36 57.67 54.21 81.37 40.94 0.6844 79.93 39.63 68.78

CNN 88.05 25.01 80.99 95.56 15.45 0.8971 94.37 21.76 85.55

4.1.3. Effect Analysis of Superpixel

Speckle is a unique scattering phenomenon of PolSAR images. Speckles increase the
difficulty of image interpretation and reduce the performance of image segmentation and
classification. In the extraction of PolSAR buildings, due to the influence of the speckles,
many non-buildings are mistakenly extracted into buildings. The superpixel algorithm
aggregates pixels into area units of roughly uniform size. Reasonable superpixels are
conducive to overcoming the interference of speckle noise in PolSAR images.

Considering that the distribution of buildings on the earth’s surface cannot be a
scattered distribution of single pixels, we apply superpixel constraints to the building of
PolSAR imagery. The core idea of the superpixel constraint is to filter the building extraction
results by using each superpixel region and to filter out the scattered extraction results.
From Figure 10b,d,f, the scattered misclassification results are corrected while maintaining
the outline of the building after the introduction of superpixels. In Table 6, after using the
superpixel constraint, the accuracy of the building extraction result decreases slightly, the
false alarm rate decreases significantly, and the evaluation parameter F1 increases from
2% to 4%. Therefore, the introduction of superpixels can provide better adaptability and
usability for the extraction of buildings under PolSAR.
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Table 6. Building extraction accuracy table using the superpixel methods.

E-SAR GF-3 RADASAT-2

AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%) AR (%) FAR (%) F1-Score (%)

Non-superpixel 88.05 25.01 80.99 94.37 21.76 85.55 95.56 15.45 89.71

Superpixel 86.14 17.61 84.22 93.64 17.89 87.49 94.97 12.2 94.12

In this paper, the feature set of PauliRGB and G0 statistical texture parameters is used
as the input to CNN. It combines polarization information and the unique statistical texture
information of the building under the PolSAR image, which improves the information
utilization rate of the building and makes the building’s extraction more accurate. The use
of CNN to fully dig out building information in PolSAR images significantly improves
building extraction. The introduction of superpixel segmentation optimizes the building
extraction accuracy and makes the building contour boundary more accurate.

4.2. Parameter Impact Analysis

In the experiment of classifying PolSAR features using CNN, different parameters have
an impact on the accuracy of feature classification. In the building extraction experiment of
this paper, many factors that have an impact on building extraction are found, including
different sample selection methods, different training samples in the total building pixel
ratio, and different sizes as CNN inputs. We discuss them in this section.

4.2.1. Discussion of Sample Selection

In deep learning, the selection structure of the sample and the universality of the
sample are necessary for the trained model. Our sample selection method is different
from the sample selection method for convolutional neural networks for PolSAR image
classification. Generally, in the classification of PolSAR features by CNN, it is mainly to
use the real surface map to select M% samples for each type of ground object for training
and the remaining (1−M)% as the test sample set. The final evaluation in this method
is similar to the test sample set. The number of buildings in the real object distribution
is significantly less than that of other non-building objects, and the proportion of similar
buildings in the PolSAR image is less than that of the non-building objects. We propose
to randomly select the building elements using the buildings in the real surface map and
select the training samples of N and the test samples of N. Then, for the non-building
area, we select a specific non-building area instead of all non-building areas, and randomly
select a number N of non-building training samples and a number N of test samples in the
non-building area.

Under this method, we use fewer training samples than under other CNN classification
methods. It increases the proportion of non-building land types with similar buildings
in the training sample in all non-buildings. By increasing the training frequency of the
object samples that are easily misclassified, the convolutional neural network model can
learn a useful PolSAR building identification model at a relatively small cost. The building
extraction effect under different sample selection methods is shown in Figure 11, and the
results are not superpixel-constrained. Through the graphical representation of the two
samples, we can see that the trained model is more focused on distinguishing non-buildings
similar to buildings by increasing the utilization of non-building samples in the training
sample. This process improves the accuracy of building extraction, and the description of
the boundary of the building is more accurate than before.
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4.2.2. Different Image Block Sizes on Building Extraction

Using image blocks as input and CNN to learn depth features shows strong recognition
ability, but the ability has certain defects in space segmentation. Over-smoothing of the
boundary often occurs in the classification results, and it is easy to cause smaller targets
to be ignored. Although a certain degree of excessive smoothing of the edges can be
understood and accepted. Additionally, the use of the minimum adaptive map for CNN
can slightly slow down the smoothing phenomenon [42]. However, we find that the use of
small image block sizes during building extraction is not the best for building extraction,
so we test the size of the image blocks.

In this paper, we use three different types of PolSAR data. For different data, we
select different-sized samples in the same position as the input of CNN. Here we will
discuss the effect of different speckle sizes on building extraction, and the results are not
superpixel-constrained. The building extraction evaluation index F1 size under different
sizes is shown in Figure 12.
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We have found that a large image block size will lead to the occurrence of serious
over-smoothing, resulting in poor extraction of the building. Too small a pattern will also
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lead to a decrease in extraction accuracy. It can be seen from the figure that, under the
three-image data, the scale has an outstanding building extraction result of 25× 25 pixels to
29 × 29 pixels. The size of the sample spots under GF-3 and RADASAT-2 images is suitable
for 29 × 29 pixels. The size of the sample spots under ESAR images is 25 × 25 pixels. At
this scale, the boundary smoothing phenomenon has a good balance with the building
extraction accuracy.

4.2.3. The Size of Different Training Samples on Building Extraction

The number of building training samples is significant for the training of CNN. Too
few building training samples will lead to insufficient robustness of the model, resulting
in a high rate of missed detection of the final building extraction results. Conversely, too
many building training samples can lead to high training costs in model training, which is
undesirable in the application. Therefore, we tested the ratio of the number of pixel points
in the building training sample to the number of total building pixel points and gave the
final training sample ratio through experiments.

In this paper, we use the three different types of PolSAR sensor data. For different types
of data, we select different proportions of samples as the input of CNN. By comparing
the building extraction results at different scales, we obtain the sample ratio we need.
The building extraction accuracy of the three data sets increases as the proportion of the
training samples increases, as shown in Figure 13. After the selection ratio reaches 15%,
the extraction accuracy of the building tends to be gentle with the increase of the sample
proportion, and even a slight decrease. It shows that the increase in the number of building
samples has improved the extraction effect of the building, but the data redundancy caused
by the excessive number of training samples does not significantly help the extraction effect.
Taking into account the real distribution factors of the building and the cost factor of the
training model, we selected 15% of the building elements in the real building as training
samples for all three types of data.
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5. Conclusions

This paper proposes a method for building extraction with multi-features using con-
volutional neural networks and superpixels for PolSAR images. G0 statistical texture
parameters and PauliRGB in the proposed method are used as a new feature set as input to
CNN for training. The combination of polarization features and statistical texture features
can reduce the influence of other classes with the same spatial structure as the building on
the building extraction results. The superpixel constraint applied to the preliminary results
decreases the effect of noise, optimizes the boundary of building extraction results, reduces
the appearance of false alarms, and improves the overall effect of building extraction.

In this paper, we use the PolSAR data from ESAR, GF-3, and RADASAT-2 sensors for
experimental verification. The F1 parameter of building extraction accuracy is improved by
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at least 6%. The false alarm rate is reduced by at least 10% when the building extraction
accuracy is comparable, which proves that our method is more suitable for the extraction
of PolSAR buildings. After using the G0 texture parameter, F1 is increased by about 5%.
Furthermore, after the superpixel constraint, the evaluation parameter F1 increases by 2%
to 4%. The proposed method achieved better building extraction results using CNN and
superpixel with G0 statistical texture and polarization features from PolSAR images.

For instance, there are still some misclassifications in some cases, such as the edge error
phenomenon and small house erasure phenomenon caused by the introduction of CNN,
and the incomplete phenomenon of the building caused by different scattering mechanisms
in different parts of the building. At present, deep learning requires a large amount of data,
but the amount of data used in PolSAR building extraction is limited. More data can be
used for support in the future.
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