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Abstract: Underground coal fire is a global geological disaster that causes the loss of resources as well
as environmental pollution. Xinjiang, China, is one of the regions suffering from serious underground
coal fires. The accurate monitoring of underground coal fires is critical for management and extin-
guishment, and many remote sensing-based approaches have been developed for monitoring over
large areas. Among them, the multi-temporal interferometric synthetic aperture radar (MT-InSAR)
techniques have been recently employed for underground coal fires-related ground deformation
monitoring. However, MT-InSAR involves a relatively high computational cost, especially when
the monitoring area is large. We propose to use a more cost-efficient Stacking-InSAR technique to
monitor ground deformation over underground coal fire areas in this study. Considering the effects
of atmosphere on Stacking-InSAR, an ERA5 data-based estimation model is employed to mitigate the
atmospheric phase of interferograms before stacking. Thus, an adaptive ERA5-Corrected Stacking-
InSAR method is proposed in this study, and it is tested over the Fukang coal fire area in Xinjiang,
China. Based on original and corrected interferograms, four groups of ground deformation results
were obtained, and the possible coal fire areas were identified. In this paper, the ERA5 atmospheric
delay products based on the estimation model along the LOS direction (D-LOS) effectively mitigate
the atmospheric phase. The accuracy of ground deformation monitoring over a coal fire area has been
improved by the proposed method choosing interferograms adaptively for stacking. The proposed
Adaptive ERA5-Corrected Stacking-InSAR method can be used for efficient ground deformation
monitoring over large coal fire areas.

Keywords: coal fire detection; atmospheric correction; Stacking-InSAR; ground deformation

1. Introduction

Underground coal fire combustion has caused serious resource loss in many coun-
tries [1–4]. Coals burning underground change the ground environment to different
degrees, causing ground high temperature anomalies, ground deformation, land destruc-
tion and other ecological environmental disturbances [5–7]. Xinjiang, China, is one of the
regions suffering from serious underground coal fires due to the extremely dry climate,
special geological conditions and large mining activities [8–10]. The accurate monitoring
of underground coal fires is critical for management and extinguishment. At present,
the methods used to detect coal fires mainly include geophysical exploration, geochemical
exploration [11,12], thermal exploration, drilling exploration and remote sensing tech-
niques [13–16]. The first four types can accurately detect coal fires in small areas but are
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unsuitable for multi-time synchronous identification and monitoring in large coal fire
areas. Fortunately, remote sensing techniques can efficiently identify the range of coal
fires in large areas by extracting and analyzing the land surface temperature anomalies,
ground deformation and collapse, which makes up for the shortcomings of these detection
methods [17–20].

Based on land surface temperature (LST), the thermal infrared remote sensing tech-
nique can be used to extract the surface thermal anomaly by a certain threshold determi-
nation method, so as to identify coal fire regions [21–24]. However, there are many low
specific heat capacity substances on the surface of mining areas, and the surface tempera-
ture is greatly affected by the seasons. Additionally, the resolution of a thermal infrared
image is low. These factors are likely to cause misidentification of some coal fire areas.

Thanks to the large-width imaging of SAR satellites and the sensitivity of radar signal
to the deformation phase, differential interferometric synthetic aperture radar (D-InSAR)
is an effective technique for ground deformation monitoring over large areas. However,
D-InSAR is easily affected by the phase decoherence caused by system noise, orbit error
and other noise sources. Therefore, multi-temporal InSAR (MT-InSAR) techniques, such as
PS-InSAR [25], SBAS-InSAR [26] methods, have been proposed, which use time-series SAR
images covering the same area to form interferometric pairs of different spatio-temporal
baselines, to then separate the errors effectively based on redundancy observation. There-
fore, MT-InSAR has been developed into a useful tool for monitoring ground deformation
and has been applied in earthquakes [27], volcanoes [28], glacier movement [29], land-
slide [30], mining activity [31] and so on. In recent years, scholars have used this technique
to monitor deformation caused by coal fires [32–35].

PS-InSAR and SBAS-InSAR techniques obtain ground deformation on coherent points.
These techniques are based on permanent scatterers (PSs) for deformation monitoring, while
in some regions with few strong scatters, the monitoring results will be unreliable due to the
insufficient spatial density of monitoring points. The DS-InSAR technique [36] can improve
the drawback, which is used to monitor the deformation of non-urban areas through
distributed scatterers (DSs) obtained by homogeneous pixel identification and distributed
phase optimization. Meanwhile, recently, the polarimetric information of SAR images has
been employed to improve interferograms’ phase qualities, thus enhancing the density
of ground deformation monitoring pixels [37–39]. The above time-series InSAR methods
come with a relatively high computational cost, especially when the monitoring area is
large. In contrast, the Stacking-InSAR, which linearly stacks the unwrapped interferograms
and weights them by a relatively simple mathematical model, can efficiently and rapidly
obtain accurate deformation results. It has great potential in monitoring coal fire-related
ground deformation over large regions.

The atmospheric delay is caused by the difference of the atmospheric signal in the
SAR image at different imaging times due to the influence of the propagating medium.
The atmospheric delay includes ionospheric delay and tropospheric delay. For short
wavelength SAR data, the tropospheric delay is more common in the atmospheric delay
error [40–43]. Therefore, most of the current atmospheric correction studies are focused
on tropospheric delay [41], including turbulence and vertical stratification. The turbu-
lence part is independent of topography and mainly affected by atmospheric turbulence.
The vertical stratification part is related to topographic relief, and the effect is more visible
in mountainous areas. Coal fires in Xinjiang are often located in mountainous regions with
serious atmospheric phase delays. Atmospheric delay cannot be accurately eliminated by
temporal–spatial filtering based on the statistical characteristics of the tropospheric delay
in space and time. The linear model of Stacking-InSAR may correct the differential phase
for atmospheric contributions, but at the same time it will likely mask ground deformation
signals correlated with topography [44]. Accordingly, it may not accurately divide the coal
fire range based on the obtained ground deformation results. Therefore, the tropospheric
error should be corrected based on the external atmospheric data [45].
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Atmospheric delay (mainly tropospheric delay) correction methods based on external
atmospheric data include GPS data, surface meteorological data and global weather forecast
models [46–48]. The common approach of calculating tropospheric delay using global
weather forecasting models is to integrate zenith delay first and then convert it to LOS
(line-of-sight). However, the atmosphere is a dynamic and complex system. In the region
of uneven atmospheric distribution, the atmospheric delay phase in the zenith distance di-
rection is divided by an angle factor to convert to LOS (Zenithal-LOS, Z-LOS), which could
produce a large error. Therefore, a precise atmospheric phase delay estimation model along
the LOS direction (D-LOS) has been proposed [48–50]. The high-precision atmospheric
phase delay results based on this model have been verified in many regions [51,52]. It is
expected to be useful for the accurate extraction of ground deformation over spontaneous
coal fire areas.

To this end, an Adaptive ERA5-Corrected Stacking-InSAR method is proposed in
this study. In this method, the ERA5 atmospheric phase delay product generated by an
accurate model based on the D-LOS direction is used, and the interferograms with better
phase quality after correction are adaptively selected for stacking. It has been applied to
monitor ground deformation of coal fires over the Fukang coal fire area in Xinjiang, China.
Firstly, precise atmospheric phase delay products were obtained based on ERA5 reanalysis
data, and 57 small baseline interferograms were generated using Sentinel-1 data. Then,
the atmospheric phase term in the interferogram was removed by using ERA5 data, and the
quality of the original interferogram and the corrected interferogram was compared and
analyzed. Finally, based on original and corrected interferograms, ground deformation
results were obtained by adaptively choosing the interferograms with better quality for
stacking, and the possible coal fire areas were identified.

This paper is organized as follows. Section 2 introduces the study area and datasets.
Section 3 gives the details of the methods used in this study. In Section 4, the results are
described and analyzed. In Section 5, the accuracy and validity of the results are discussed.
Section 6 provides the conclusion.

2. Study Area and Datasets
2.1. Study Area

As shown in Figure 1, the Fukang coalfield, the study area selected in this paper, is
located in the north-central part of the Xinjiang Uygur Autonomous Region, China, at the
northern foot of Bogda and the southern part of Junggar Basin. The geomorphic features
of the region can be divided into three units from south to north: southern mountainous
area, central plain and northern desert. The height varies greatly and the average altitude
is high. The temperature difference between day and night is in the tens of degrees range.
This belongs to a typical continental arid climate in the medium temperate zone. The coal
in this region is of good quality, low metamorphism and high calorific value. Moreover,
the unique climate conditions and important mining activities aggravate the weathering
and rupture of coal outcrops and surrounding rocks. This leads to the surface collapse and
prominent coal fire problems [9].

2.2. Datasets
2.2.1. ERA5 Dataset

The ERA5 dataset comprises the fifth-generation atmospheric reanalysis of global
climate provided by the European Center for Medium-Range Weather Forecasts (ECMWF).
It combines model data with observations from around the world into a globally complete
and consistent dataset. The dataset provides hour-by-hour observations of atmospheric,
land and ocean climate variables, spanning from 1979 to near real-time [53,54]. The ERA5
dataset has a higher resolution in time and space than the ERA-Interim dataset, with a
horizontal resolution of 31 km per hour. Moreover, the ERA5 dataset has a shorter temporal
sampling than Generic Atmospheric Correction Online Service for InSAR (GACOS) [55].
The higher temporal resolution reduces the acquisition error between SAR data and meteo-
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rological data. It is worth noting that although the spatial scale of the study area in this
paper is slightly smaller than the spatial resolution of ERA5, we will obtain more accurate
atmospheric parameters through interpolation. The selection of the scope of the study
area is to some extent a priority, so we sample the ERA5 atmospheric delay products to a
smaller spatial scale according to the study area. The effect of tropospheric noise related to
topography on smaller spatial scales can be reduced in certain case. Accordingly, the ERA5
data with the closest acquisition time to SAR images have been selected in this study.

(a) (b)

(c) N

Urumqi

Xinjiang

Elevation(m)

Figure 1. Sketch map of the study area. (a) Shows the geographical location of study area, (b) is
optical image and (c) is DEM over the study area derived from SRTM data. The red box indicates the
detection range of ground deformation in (b,c). The red triangles in (c) represent the detected coal
fire points.

2.2.2. Sentinel-1 Dataset

This study used Sentinel-1A data provided by the European Space Agency (ESA). It is
a C-band satellite with a 12-day revisit period. The standard acquisition mode of Sentinel-1,
Interferometric Wide (IW), provides a ground resolution of about 5 m × 20 m (Range ×
Azimuth) with a footprint of 250 kilometers width. The Sentinel-1A satellite provides
high-quality data with a low revisit time and global coverage that are freely available to
use for ground deformation monitoring over a wide range of areas. In this study, 23 images
from 3 May 2019 to 9 May 2020 were selected. A 30 meter resolution DEM, derived from
the Shuttle Radar Topography Mission (SRTM) data, was used to remove the topographic
contribution to the phase in the differential interferometric processing chain. Based on
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the SBAS-InSAR technique, 57 small baseline interferograms were obtained, and their
spatio-temporal baseline distributions are shown in Figure 2.

Figure 2. Temporal and perpendicular baseline distribution of the acquisitions used in this study.
Plus symbols represent the acquisitions and red lines denote the interferometric pairs used to form
interferograms. The perpendicular baseline was set to be within 150 m, and the maximum temporal
baseline was 144 days.

3. Methods
3.1. Direction-LOS (D-LOS) Phase Delay Calculation

Variations of temperature, pressure and humidity in the troposphere make the atmo-
spheric refractive index N not constant, which includes the dry component Ndry and the
wet component Nwet. The delay of the atmosphere to the radar signal can be expressed as
the atmospheric refractive index N [56]:

N(T, P, e) = k1
P
T
+ k2

e
T
+ k3

e
T2 = Ndry + Nwet (1)

where T is the temperature, P is the partial pressure of dry air, e is the partial pressure of
water vapor , k1=0.776 KPa−1, k2=0.716 KPa−1 and k3=3.75e3 K2Pa−1.

For a specific position between h1 and h2, the atmospheric phase delay term is

ϕatm =
−4π

λ
10−6

∫ h2

h1

[Ndry(~h) + Nwet(~h)]d~h

=
−4π

λ
10−6

∫ hsat

hground

[Ndry(~h) + Nwet(~h)]d~h
(2)

where λ is the radar wavelength. For an orbital SAR image, h2 will be the location of
the satellite when the image was acquired, hsat, and h1 will be the ground location of the
pixel for which the atmospheric artifacts are calculated, hground. For the interferogram,
the differential atmospheric delay ∆ϕatm is the difference between the atmospheric delay
at two acquisition times. Unlike the phase delay obtained by integrating along the zenith
direction and then transforming to the LOS direction, a more accurate phase delay can
be obtained by integrating along the LOS direction directly through the above equation.
Therefore, this method is denoted as D-LOS [49]. The steps are as follows:
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a. Determination of the sampling locations along the LOS path.

The LOS vector,
−−→
LOS, is calculated from the Cartesian coordinates of the ground point

and the satellite,

−−→
LOS = ~γsat − ~γground (3)

The direction vector, ˆµLOS, which describes the LOS direction, is calculated from the
unit vector,

ˆµLOS =

−−→
LOS∥∥∥−−→LOS

∥∥∥ =
[
µ̂x, µ̂y, µ̂z

]
(4)

Once the direction vector is determined, the coordinates of any point on the LOS path
can be obtained:

Pix = Gx + (∆LOS · i)µ̂x
Piy = Gy + (∆LOS · i)µ̂y
Piz = Gz + (∆LOS · i)µ̂z

 (5)

where the required sampling data are based on the available global atmospheric model
data resolution. In general, the LOS spatial sampling resolution is set to 200 m for efficient
calculation without loss of reliability [50].

b. Interpolation of atmospheric parameters.

After obtaining the position of any point in the LOS direction according to Equation (5),
the atmospheric parameters at these positions could be obtained from the existing global
atmospheric model data. For the ERA5 data used in this paper, raster sampling values
are 37 pressure levels at altitude and 31 km horizontally. To obtain more accurate spatial
sampling values of atmospheric state parameters at the desired location, cubic spline and
bilinear interpolation are employed for interpolating the vertical and horizontal directions,
respectively. It should be noted that the atmospheric parameters are consistent with the
datum for DEM data in the case of vertical interpolation.

3.2. Stacking-InSAR

The Stacking-InSAR, namely interferogram stacking, is a kind of InSAR time-series
technique. In 1998, the Stacking-InSAR technique was first proposed by Sandwell and
applied to the post-earthquake deformation analysis of the Landers earthquake area [57].
Subsequently, many researchers used it to monitor ground deformation of large magnitudes,
such as earthquake [58], landslide [59–62] and volcanoes [44]. It assumes that the ground
deformation in the study area is linear in the Stacking-InSAR technique. To improve
the signal-to-noise ratio (SNR) in the stacked phase and reduce the influence of noise,
the unwrapped phases of a series of interferograms are stacked and average weighted. Its
model can be simply expressed as Equation (6):

Vmean =
λ

4π
· ∑N

i=1 ϕi∆Ti

∑N
i=1 ∆T2

i
(6)

where Vmean is the annual average deformation rate in the LOS direction; ϕi is the un-
wrapped phase of the interferogram and ∆T is the time baseline corresponding to the
interferogram. N is the number of stacked interferograms. The standard deviation of the
average deformation rate can be expressed as Equation (7):

std(Vmean) =

√√√√√ 1
n
·

∑n
i=1

(
∆T2

i ·
(

ϕi
Ti
−Vmean

)2
)

∑n
i=1 ∆T2

i
(7)
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3.3. An Adaptive ERA5-Corrected Stacking-InSAR

As shown in Figure 3, an adaptive ERA5-Corrected Stacking-InSAR method is pro-
posed in this paper. Its main steps include:

Sentinel-1 images

Co-registered to 
common master image

Generate small baseline 
interferometric pairs and 
original interferograms

ERA5 Products 
based on D-LOS 

Geocode back

Pixel selection based on TPC

Comparison of phase 
standard deviation

The ground deformation result

Geocode 

Phase unwrapping

Interferograms after 
atmospheric correction

ERA5 dataset

Geocode back

Pixel selection based on TPC

Phase unwrapping

The phase SD of 
ERA5 residual < Original

N

The original 
interferograms

Y

The ERA5-corrected 
interferograms Stacking-InSAR

Figure 3. Data processing flowchart of adaptive ERA5-Corrected Stacking-InSAR.

(1) In order to ensure the quality of the interferograms and reduce the influence of
spatio-temporal incoherence as much as possible, the small baseline principle is used to
generate interferometric pairs;

(2) According to Equations (2)–(5), an ERA5 atmospheric delay product based on
D-LOS model is generated;

(3) The atmospheric delay product in the radar coordinate system after geocoding is
removed from the original interferogram to obtain the atmospheric corrected interferogram;

(4) To ensure the precision and reliability of the unwrapped results, the temporal phase
coherence (TPC) index is used to select pixels with high interferometric phase quality [63].
Its basic principle is shown in Equation (8):

γTPC =
1
M

∣∣∣∣∣ M

∑
i=1

ej·ψnoise,i

∣∣∣∣∣ (8)

where M is the number of interferograms and ψnoise,i is the noise phase corresponding to
the first interferogram. The larger the TPC, the higher the pixel’s quality;

(5) The interferogram phase is unwrapped on the coherent pixels selected by the TPC
index;



Remote Sens. 2023, 15, 1444 8 of 22

(6) The quality of the interferograms is compared and evaluated by standard deviation
(SD) of the unwrapped phase;

(7) The interferograms with lower phase SD than the original interferogram and
the high-quality original interferograms (generally lower than the average phase SD) are
selected for stacking. The ground deformation result of the study area is obtained.

4. Results and Analysis
4.1. Atmospheric Correction Results and Analysis

Figure 4 shows a part of the atmospheric delay products, namely atmospheric phase
screen (APS) estimated using ERA5 based on the D-LOS model. It can be found that the
phase of atmospheric delay is different in different periods. Furthermore, the distribution
of atmospheric delay is related to the topography of the study area. The APS using ERA5
based on the D-LOS model is removed from the original interferogram to obtain the
interferogram after atmospheric correction.

In order to ensure the precision and reliability of the results, a value of 0.8 for the
temporal coherence estimator is used as the threshold to select pixels with high interfero-
metric phase quality. The standard deviation (SD) of the unwrapped phase is selected as
the evaluation index of interferogram quality.

As shown in Table 1, to evaluate atmospheric correction performance on the study
area, statistical analysis is carried out to all 57 interferograms by comparing their SD.
Furthermore, the overall change is shown in Figure 5. The light green bar represents
correction percentage. The positive value represents the decrease in SD, which can be
considered as a good atmospheric correction effect. The phase SD of most interferograms
decreases after atmospheric correction. The largest reduction is 63.72% of the 20190608–
20190620 interferogram pair. The average phase SD of the interferograms after atmospheric
correction is 13.6% lower than that of the original interferograms. Therefore, it can be
concluded that the D-LOS atmospheric phase correction method using ERA5 data has a
good correction effect in this study area.

Table 1. Statistics using D-LOS mitigation model for 57 interferograms in study area. Correction
percentage is calculated by the following equation: (Original−Residual)/Original.

ifg. Reference Secondary Phase SD Correction Percentage/%
Original ERA5 Residual

1 03 May 2019 15 May 2019 0.7197 0.819 −13.80
2 03 May 2019 27 May 2019 1.0875 0.8687 20.12
3 03 May 2019 08 June 2019 1.5488 0.9662 37.62
4 15 May 2019 27 May 2019 0.9027 0.7415 17.86
5 15 May 2019 08 June 2019 1.6538 1.0448 36.82
6 15 May 2019 20 June 2019 1.4149 1.2141 14.19
7 27 May 2019 08 June 2019 2.1456 1.0152 52.69
8 27 May 2019 20 June 2019 0.9351 1.1429 −22.22
9 27 May 2019 02 July 2019 1.6791 1.4598 13.06

10 08 June 2019 20 June 2019 2.7458 0.9963 63.72
... ... ... ... ... ...
17 02 July 2019 26 July 2019 1.8197 1.3066 28.20
... ... ... ... ... ...
21 26 July 2019 07 August 2019 1.6325 1.5131 7.32
... ... ... ... ... ...
33 24 September 2019 06 October 2019 0.6633 1.0748 −62.04
... ... ... ... ... ...
52 03 April 2020 15 April 2020 1.8175 0.7095 60.96
53 03 April 2020 27 April 2020 0.7391 1.3078 −76.94
54 03 April 2020 09 May 2020 0.7281 0.9989 −37.20
55 15 April 2020 27 April 2020 2.0743 1.483 28.50
56 15 April 2020 09 May 2020 2.1282 1.2939 39.20
57 27 April 2020 09 May 2020 0.6743 0.896 −32.87

Mean 1.4305 1.2359 13.60
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Figure 4. Atmospheric phase screen (APS) estimated by D-LOS model using ERA5. (a–k) Shows the
estimation of APS by D-LOS model for some interferograms showing the maximum and minimum
values obtained.
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Interferogram Pair

Figure 5. Phase standard deviation of original interferogram and ERA5 residual interferogram.
The light green bar represents the Original−Residual/Original rate of phase standard deviation
change. The positive value represents the decrease in standard deviation.

As shown in Figure 6a–h, four groups of interferogram results with reduced phase SD
after correction are selected for comparison. Figure 6a,c,e,g are the original unwrapped
results of the interferograms 20190527–20190608, 20190608–20190620, 20190726–20190807
and 20200403–20200415, respectively. The short temporal and perpendicular baseline
preclude deformation and DEM phase errors. Therefore, the phase component can be
considered as atmospheric artifacts in the original interferograms. The distribution of phase
values shown in the figure has a certain tendency. The phase SD of these four interferograms
is 2.1456, 2.7458, 1.6325 and 1.8175, respectively. Figure 6b,d,f,h are the residual unwrapped
phases of the corresponding interferograms after atmospheric correction. It can be seen
that the trend characteristics in the unwrapped results are significantly reduced, and the
phase SD is reduced to 1.0152, 0.9963, 1.5131 and 0.7095, respectively.

Figure 6 shows that the original phase unwrapped value has a certain trend. At the
same time, it can be seen from Figure 4 that the vertical stratification part of tropospheric
delay has a strong correlation with topography. This correlation is more visible when
looking at the phase-elevation scatter plots in Figure 7. It is evident that the slope of
the fitting line between the unwrapped phase and the terrain is significantly reduced
after removing APS predicted by the D-LOS model using ERA5. The tropospheric delay
related to elevation is effectively weakened. However, although the 20190726–20190807
interferogram shown in Figure 7e,f has improved, the effect is not evident. The correlation
between tropospheric delay and topography is weak. Most of the atmospheric delay here
may come from the turbulent part unrelated to topography.
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(a) 20190527--20190608 (b) 20190527--20190608

ERA5 residual

SD: 1.0152 rad

(c) 20190608--20190620 (d) 20190608--20190620

Original

SD: 2.7458 rad

ERA5 residual

SD: 0.9963 rad

(e) 20190726--20190807 (f) 20190726--20190807

Original

SD: 1.6325 rad

ERA5 residual

SD: 1.5131 rad

Original

SD: 1.8175 rad

ERA5 residual

SD: 0.7095 rad

(g) 20200403--20200415 (h) 20200403--20200415

Original

SD: 2.1456 rad

N

Figure 6. Phase comparison between original interferograms and ERA5 residual interferograms
after TPC selection. (a,c,e,g) represents the original interferogram of 20190527–20190608, 20190608–
20190620, 20190726–20190807 and 20200403–20200415, respectively. (b,d,f,h) represents the interfero-
gram with residual phase after atmospheric correction of corresponding time, respectively.
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R²=0.8960

R²=0.9184

R²=0.0725

R²=0.1905

R²=0.2165

R²=0.9190 R²=0.0874

Original ERA5 residual

Original ERA5 residual

Original ERA5 residual

Original ERA5 residual

(a) 20190527--20190608 (b) 20190527--20190608

(c) 20190608--20190620 (d) 20190608--20190620

(e) 20190726--20190807 (f) 20190726--20190807

(g) 20200403--20200415 (h) 20200403--20200415

R²=1.561*10-5

Figure 7. Unwrapped phase-elevation scatter plots for original phase and ERA5 residual phase.
(a,c,e,g) represents the original phase-elevation of 20190527–20190608, 20190608–20190620, 20190726–
20190807 and 20200403–20200415, respectively. (b,d,f,h) represents the residual phase-elevation of
corresponding time, respectively.
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According to Table 1, the phase SD of some interferograms increases after removing
APS predicted by the D-LOS model using ERA5. As shown in Figure 8, the unwrapped
phase of the interferogram 20190924–20191006 with increased phase SD after correction was
selected for demonstration. Figure 8a,c shows the original and residual phase, respectively,
of the interferogram 20190924–20191006. Figure 8b,d shows the distribution relationship
between the corresponding phase and the elevation. It can be seen that the unwrapped
phase of the original interferogram is small, and that the correlation between the phase
shown in the scatter plot and the elevation is weak. In addition, from Table 1, among the
17 interferograms with increased phase SD after atmospheric correction, the original un-
wrapped phase SD of 14 interferograms is lesser than the average value of the original
unwrapped phase SD. The phase SD of the three other interferograms increased after cor-
rection. It can be inferred that these 17 interferograms are less affected by the atmosphere,
and the quality of the original interferograms is better.

6 6

(a) 20190924--20191006

Original

SD: 0.6633 rad

R²=0.2819

R²=0.7208

Original

ERA5 residual

(c) 20190924--20191006

ERA5 residual

SD:1.0748 rad

(b) 20190924--20191006

(d) 20190924--20191006

6-6

Figure 8. (a,c) show the original and residual phase, respectively, of the interferogram 20190924–
20191006. (b,d) show the distribution relationship between the corresponding phase and elevation,
respectively.

4.2. Deformation Monitoring Result and Analysis

In this paper, 57 original interferograms were first used for Stacking-InSAR (referred
to as Original Stacking-InSAR) to obtain the average deformation velocity in the LOS
direction of the study area, as shown in Figure 9a. Negative LOS values indicate movement
away from the satellite, while positive values indicate movement toward the satellite.
The red triangle in the figure represents the location of the coal fire point, and the area
circled by the black box is the main coal fire deformation area. It can be seen that there
is visible deformation around most coal fire points, while the deformation trend around
some coal fire points is not significant. A large area of abnormal deformation is shown
in the red box in the southeastern part of the study area, which is magnified as shown
in Figure 9e. According to Figure 1c, there is a mountainous area with a high altitude.
Therefore, it is highly likely to be affected by the atmosphere. The topography-related
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tropospheric delay exists in the interferograms in this region, which leads to the anomaly
of the average velocity.

(a)

(c) 

(b)

(d)

(e) (f)

(g) (h)

Main coal fire 
deformation area

Abnormal 
deformation area

Coal fire point

① ②

③

Figure 9. Deformation monitoring results. (a–d) are the deformation monitoring results of Origi-
nal Stacking-InSAR, Original ERA5-Corrected Stacking-InSAR, Effective ERA5-Corrected Stacking-
InSAR and Adaptive ERA5-Corrected Stacking-InSAR, respectively. (e–h) are the areas in the red
boxes of (a) corresponding to the magnification of the results of (a–d). The black boxes in (a) indicate
the three main coal fire deformation areas over the study area.
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Subsequently, the atmospheric products estimated from the D-LOS model of the ERA5
dataset obtained above were removed from the 57 original interferograms. The ERA5-
Corrected Stacking-InSAR method was used to calculate the average deformation velocity
(referred to as Original ERA5-Corrected Stacking-InSAR). The result is shown in Figure 9b.
As can be seen from the deformation velocity map, the deformation range of the main coal
fire in the middle of the study area practically does not change. However, the abnormal
deformation value of the red box in the southeast direction (as shown in Figure 9f) decreases
significantly. Then, 40 interferograms with reduced SD of the unwrapped phase after
atmospheric correction were selected for stacking (referred to as Effective ERA5-Corrected
Stacking-InSAR). The average deformation velocity map obtained is shown in Figure 9c.
Similarly, the abnormal deformation (magnified as shown in Figure 9g) in the red box
range described above is further reduced. This indicates that the above atmospheric
products have achieved good results in correcting the interferogram in the study area.
The phase quality of the stacked interferogram determines the accuracy of the Stacking-
InSAR processing results.

Finally, 40 interferograms with reduced SD of unwrapped phase after atmospheric
correction and 17 original interferograms with increased SD of phase after atmospheric
correction that are not seriously affected by the atmosphere were stacked for Stacking-
InSAR calculation (referred to as Adaptive ERA5-Corrected Stacking-InSAR). The obtained
average deformation result is shown in Figure 9d. It can be clearly seen that the abnormal de-
formation value in the red box range obtained by Effective ERA5-Corrected Stacking-InSAR
(Figure 9g) is reduced more significantly (magnified as shown in Figure 9h). Consequently,
this confirms that, as expected, the more interferograms with better quality, the more precise
and reliable the deformation results obtained by Stacking-InSAR.

5. Discussion
5.1. Internal Accuracy

The standard deviation of average deformation velocity is a direct evaluation index
of the quality of time-series InSAR results, which represents the separation degree of
deformation phase and residual phase. The smaller standard deviation of the average
deformation velocity, the smaller residual phase in the deformation velocity and the higher
theoretical accuracy of the deformation estimation results [64].

Figure 10a–d shows the standard deviation of the average velocity of the Original
Stacking-InSAR result, Original ERA5-Corrected Stacking-InSAR result, Effective ERA5-
Corrected Stacking-InSAR result and Adaptive ERA5-Corrected Stacking-InSAR result,
respectively. The above results are amplified by Figure 10e–h in the area circled by the red
box in (a). The overall standard deviation of all high coherence point targets is distributed
between 0 and 5 mm/year, and the monitoring results are relatively reliable. In addition,
the standard deviation of high coherent pixels in Figure 10e is further reduced in Figure 10f–
h, which is consistent with the corrected change in deformation anomalies in Section 4.2.

5.2. Comparison with GACOS-Corrected Stacking-InSAR Results

The Generic Atmospheric Correction Online Service (GACOS) atmospheric delay
products, which are based on numerical weather models, are the highest-resolution atmo-
spheric model of ECMWF. By using the iterative tropospheric decomposition interpolation
model, the stratified and turbulent components are separated, and the high-resolution
zenith total delay (ZTD) is generated [55,65,66]. In recent studies, the GACOS atmospheric
delay products have been applied in Stacking-InSAR to obtain the ground deformation [62].

As mentioned in Sections 2 and 3, the ERA5 dataset has a shorter sampling time.
At the same time, a realistic integration strategy along the LOS direction (D-LOS) has been
used for estimating atmospheric artifacts. Therefore, the ground deformation result and
standard deviation of the LOS velocity result base on GACOS-Corrected Stacking-InSAR
were acquired (Figure 11).
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(a)

(c) 

(b)

(d)

(e) (f)

(g) (h)

Abnormal 
deformation area

Figure 10. Standard deviation of the LOS velocity. (a–d) are the results of Original Stacking-InSAR,
Original ERA5-Corrected Stacking-InSAR, Effective ERA5-Corrected Stacking-InSAR and adaptive
ERA5-Corrected Stacking-InSAR, respectively. (e–h) are the areas in the red boxes of (a) corresponding
to the magnification of the results of (a–d).
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(a)  (b)  

N

① ②

③

Main coal fire deformation area

① ②

③

Figure 11. The results of GACOS-Corrected Stacking-InSAR. (a) is deformation monitoring result
and (b) is standard deviation of the LOS velocity. The black boxes in (a) indicate the three main coal
fire deformation areas over the study area.

It can be seen from Figure 11 that, compared with Original Stacking-InSAR, ground
deformation errors caused by atmospheric delay are effectively alleviated by atmospheric
correction. However, compared with the result of proposed Adaptive ERA5-Corrected
stacking-InSAR, the abnormal deformation value in the southeast toward the mountain
area is more visible in the result of GACOS-Corrected stacking-InSAR. In order to fur-
ther verify the performance of the proposed adaptive ERA5-Corrected Stacking-InSAR,
the mean values of standard deviations of the LOS velocity in the three main coal fire
deformation areas in Figure 11 are calculated, respectively, (Table 2). As shown in Table 2,
after atmospheric correction, the standard deviation of LOS velocity in the three main
coal fire areas decreases compared with the Original Stacking-InSAR. The mean values of
standard deviations of the adaptive ERA5-Corrected stacking-InSAR method in the three
main coal fire deformation areas are minimal, so the deformation result in the coal fire area
obtained by the proposed method has a better performance relative to the study area.

Table 2. Statistics on the mean values of standard deviations in the three main coal fire deforma-
tion areas.

Deformation Area
1©

Deformation Area
2©

Deformation Area
3©

Original Stacking-InSAR 2.0764 1.8943 2.9254

ERA5-Corrected Stacking-InSAR
Original ERA5-Corrected 1.5697 1.4391 1.8363

Effective ERA5-Corrected 2.0869 1.7874 2.1903

Adaptive ERA5-Corrected 1.5101 1.4220 1.6294

GACOS-Corrected Stacking-InSAR 1.5214 1.4407 1.8645

5.3. Coal Fire Related Ground Deformation Anomalies Identification

In Section 4.2 above, four groups of deformation results in the study area were obtained.
Kriging interpolation was performed. The mean value minus standard deviation of the four
groups of interpolated raster images was used as the threshold to recognize the deformation
anomalies. As shown in Figure 12, the red area is the deformation anomalies, and the black
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triangles show the detected coal fire points. Figure 12a–d shows the deformation anomalies
identified by Original Stacking-InSAR result, Original ERA5-Corrected Stacking-InSAR
result, Original ERA5-Corrected Stacking-InSAR result and Adaptive ERA5-Corrected
Stacking-InSAR result, respectively. With the improvement of Stacking-InSAR results,
the deformation abnormal areas obtained by the southeastern division of the study area
decrease. The coincidence with the detected coal fire points gradually increase. Many
deformation studies [67] in mining areas show that ground cracks generally appear in
places with large curvatures, but not in places with maximum deformation. Normally,
coal fire points are marked near ground cracks. Thus, the location of coal fire point and
deformation anomaly area is not highly consistent.

According to the mine data obtained, the mining scope in the fire area can reach
several hundred meters. In this paper, we generated a 400-meter buffer at the location
of the coal fire points and intersected it with the deformation anomaly area shown in
Figure 12. The effect of ERA5-Corrected Stacking-InSAR results on the monitoring of
ground deformation in the coal fire area were evaluated by the size of the overlapping
area. As shown in Table 3, the area of abnormal deformation zones divided by the above
four results and the overlapping area with the coal fire point buffer zone are counted.
The ratio of coincidence area to area of abnormal deformation was used to evaluate the
results. The results in the table show that the effective deformation area divided by the
Original Stacking-InSAR result accounted for 2.96%; while the counterparts for the Original
ERA5-Corrected Stacking-InSAR, Effective ERA5-Corrected Stacking-InSAR and Adaptive
ERA5-Corrected Stacking-InSAR are 3.01%, 4.19% and 4.33%, respectively. Compared with
the effective deformation area divided by the Original Stacking-InSAR result, the effective
area identified by the other three methods increased by 1.6%, 41.5% and 46.3%, respectively.

(a)  (b)  

(c) 

Areas with abnormal ground deformation Coal fire point

(d)  

N

Figure 12. Areas with abnormal ground deformation. (a–d) are the divided results of Original
Stacking-InSAR, Original ERA5-Corrected Stacking-InSAR, Effective ERA5-Corrected Stacking-
InSAR and adaptive ERA5-Corrected Stacking-InSAR, respectively.
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Based on the optical image and the local geographical characteristics of the study
area, it is inferred that the abnormal deformation in the southeastern part of the study area
toward the mountainous area may be the result of the mountain erosion caused by the
water flow of melting snow. In the follow-up research work, we will combine more surface
information, such as temperature, to further accurately identify the coal fire area.

Given these points, the deformation result based on the proposed adaptive ERA5-
corrected Stacking-InSAR is beneficial to accurately monitor the ground deformation
range over large-scale coal fire areas rapidly and at a low cost. At the same time, it was
further proved that the quality and quantity of stacking interferometric pairs would have a
certain impact on the Stacking-InSAR results. The higher the quality and quantity of the
interferometric pair, the more precise and reliable the deformation velocity result obtained
by Stacking-InSAR.

Table 3. Statistics on the effectiveness of Stacking-InSAR results in identifying fire areas.

Area of Abnormal
Deformation/m²

Coincidence
Area/m² Validity/%

Original Stacking-InSAR 61,182,730.54 1,810,926.175 2.96

ERA5-Corrected Stacking-InSAR
Original ERA5-Corrected 60,468,157.06 1,819,869.388 3.01 (1.6)

Effective ERA5-Corrected 59,531,085.59 2,493,108.873 4.19 (41.5)

Adaptive ERA5-Corrected 55,993,651.4 2,424,075.254 4.33 (46.3)

6. Conclusions

To improve the monitoring efficiency of large-scale coal fire ground deformation,
an Adaptive ERA5-Corrected Stacking-InSAR method is proposed to monitor the ground
deformation over the Fukang coal fire area of Xinjiang in this study.

After atmospheric correction, the unwrapped standard deviations (SDs) of 40 inter-
ferograms are reduced, and the topography-related unwrapped phase terms are visibly
decreased. Specifically, the average phase SD of the corrected interferograms is reduced by
13.6% compared with that of the original ones. This indicates that the ERA5 atmospheric
product obtained by the D-LOS model can effectively remove the atmospheric delay in
the study area. The ground deformation result and standard deviation of the LOS velocity
result based on GACOS-Corrected Stacking-InSAR are also acquired, and the results show
that the proposed Adaptive ERA5-Corrected Stacking-InSAR method has a better and more
reliable performance.

By stacking the interferograms with different phase standard deviation, four ground
deformation results are obtained. Based on the detected coal fire points, the four obtained
ground deformation results are evaluated. Compared with the Original Stacking-InSAR,
the effective area identified by Original ERA5-Corrected Stacking-InSAR, Effective ERA5-
Corrected Stacking-InSAR and the proposed adaptive ERA5-Corrected Stacking-InSAR, is
increased by 1.6%, 41.5% and 46.3%, respectively. The proposed adaptive ERA5-Corrected
Stacking-InSAR method presents the best performance.

In this paper, the ERA5 atmospheric delay product generated based on the D-LOS
model is used to remove atmospheric delay in mountainous areas. By comparing the
interferogram quality before and after correction, an adaptive method that selects interfero-
grams with better phase quality for Stacking-InSAR deformation estimation is proposed.
The proposed adaptive ERA5-Corrected Stacking-InSAR can efficiently retrieve ground
deformation over underground coal fire areas with mountains. However, it is difficult to
accurately identify underground coal fire areas only relying on the ground deformation
anomaly. The proposed adaptive ERA5-Corrected Stacking-InSAR algorithm should be
combined with other techniques to more effectively delineate and identify underground
coal fire areas.
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