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Abstract: Vegetation communities play a key role in governing the atmospheric-terrestrial fluxes
of water, carbon, nutrients, and energy. The expanse and heterogeneity of vegetation in sub-arctic
peatland systems makes monitoring change at meaningful spatial resolutions and extents challenging.
We use a field-collected spectral endmember reference library to unmix hyperspectral imagery and
map vegetation coverage at the level of plant functional type (PFT), across three wetland sites in
sub-arctic Alaska. This study explores the optimization and parametrization of multiple endmember
spectral mixture analysis (MESMA) models to estimate coverage of PFTs across wetland classes.
We use partial least squares regression (PLSR) to identify a parsimonious set of critical bands for
unmixing and compare the reference and modeled coverage. Unmixing, using a full set of 110-bands
and a smaller set of 4-bands, results in maps that effectively discriminate between PFTs, indicating a
small investment in fieldwork results in maps mirroring the true ground cover. Both sets of spectral
bands differentiate between PFTs, but the 4-band unmixing library results in more accurate predictive
mapping with lower computational cost. Reducing the unmixing reference dataset by constraining
the PFT endmembers to those identified in the field-site produces only a small advantage for mapping,
suggesting extensive fieldwork may not be necessary for MESMA to have a high explanatory value
in these remote environments.

Keywords: sub-arctic peatland-wetlands; hyperspectral; PLSR; G-LiHT; plant functional type;
multiple endmember spectral unmixing

1. Introduction

Earth systems modeling relies on accurate estimates of vegetation composition and
distribution to characterize atmospheric-terrestrial fluxes of water, carbon, nutrients, and
energy. Within a landscape type, species richness positively correlates with rates of mi-
crobial activity and decomposition [1,2]. The composition of plant types influences soil
temperature and moisture, which in turn regulates microbial activity and governs carbon
and nitrogen cycling, and thus the long-term balance of greenhouse gas emission and
sequestration [3–8]. The most recent iteration of the Model for Interdisciplinary Research
on Climate, Earth System version 2 for Long-term (MIROC-ES2L) simulations, incorporates
a land based biogeochemical component that links the interactions of soil nitrogen-carbon
and vegetation [9]). Knowing the vegetation distribution in vast peatlands and at a realistic
spatial scale is thus key for modeling these stores and fluxes.

Spectra containing multiple vegetation types require a deconvolution approach that
can determine the fractional abundance of each vegetation component [10]. Image analysis
algorithms like random forest and maximum likelihood result in hard-edged binning of
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pixels where each pixel represents one class of material. More advanced spectral unmixing
tools, such as spectral mixture analysis (SMA) analyzes sub-pixel fractions of component
materials. SMA can distinguish between materials that are spectrally and functionally
similar such as between multiple anthropogenic surfaces or multiple plant functional
types (PFTs) [11]. This ability to distinguish between materials that are spectrally similar,
makes SMA well suited to systems like peatlands that exhibit fine scale variability in
vegetation coverage [12].

Spectral unmixing compares each image pixel’s spectral profile to a spectral endmem-
ber reference set in order to identify the fraction of each endmember’s presence in the pixel.
Simple unmixing models use a single set of endmembers to unmix each image [13], ne-
glecting endmember variability [10,14,15]. MESMA is an extension of the simple unmixing
model, in which number and types of endmembers are allowed to vary on a per pixel basis,
thus accounting for endmember variability [16,17].

Here, we evaluate the effectiveness of using a field dataset of spectra and plot com-
position, collected across different wetland classes, to parameterize MESMA models to
predict fractional coverage of PFTs. Specific questions include (1) does using combined
ordination-partial least squares regression (PLSR) provide an effective feature selection
tool for identifying bands for unmixing hyperspectral imagery, (2) can we scale MESMA
predictive mapping using the feature selection tool, from a narrow sampled swath to a
larger unsampled area, and (3) does constraining MESMA to the verified endmembers
present at a site improve prediction of vegetation coverage.

This work complements the existing body of research publications in MESMA such
as [16–18] in three important ways. First, the field-collected pure spectral libraries of PFT
enhance the accuracy of deconvolution of mixed peatland vegetation associations within
a single pixel. The second contribution of this work is to demonstrate the use of PLSR as
a dimension reduction technique, particularly as applied to vegetation feature extraction
and the ability to scale from the small footprint of airborne hyperspectral imagery to the
larger footprint of multispectral satellite imagery. Lastly, the focus across multiple wetland
classes and hyperspectral tiles, permits the investigation of whether these methods can be
used to estimate fractional composition in heterogeneous areas with difficult field access.

2. Materials and Methods
2.1. Study Site

The study sites are wetland-peatlands in the Alaskan Kenai Peninsula’s western
lowlands (Figure 1); the westward region of the Peninsula tends toward alpine tundra
and grades into wetlands [19,20]. The existing wetland map (EWM) of the Peninsula
wetlands [21] is based on a combination of remotely sensed imagery and geomorphology,
which categorizes the wetlands into five classes: wet herbaceous, aquatic herbaceous, low
shrub, sedge, and black spruce (Figure 2). Our analyses include wet herbaceous, low shrub,
sedge, and black spruce wetlands, but do not include the relatively rare and difficult to
access aquatic herbaceous wetland.

2.2. Workflow Overview

The research workflow (Figure 3) can be summarized in four main procedural steps. In
the field, we collected reflectance and plot composition during a field campaign in August
2019. We used these data to build two spectral reference libraries, one using a small set of
PLSR identified bands, and a second using all bands. We use multi-dimensional ordination
on field data to characterize floristic composition of wetland classes. We use combined
PLSR-ordination, to identify critical bands for separating PFTs. We explore MESMA models’
sensitivity to parameterization by modeling and comparing the outcomes of unmixing:
(1) for unmixing imagery when constraining the models by the vegetation known to be
present versus unmixing using the full complement of PFTs, and (2) comparing unmixing
results of the two spectral libraries. We initially evaluate whether spectral feature selection
will result in lower computational times and better classification, by unmixing a small
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swath, we then scale up to a larger footprint to assess whether the lower computational
costs and more accurate mapping hold across larger spatial scales.

Figure 1. A map of Alaska (left) with the Kenai Peninsula outlined in yellow. On the right, the map of
the Kenai Peninsula shows the National Wildlife Refuge (green), the 2014 flight campaign of NASA
Goddard’s LiDAR Hyperspectral Thermal mission(G-LiHT) (grey bars), and the approximate location
of the three sampling sites (BAR, Bridge Access Road; BC, Beaver Creek; LL, Lily Lake) referenced in
this research (yellow boxes).

Figure 2. Images illustrating the four wetland classes sampled for this research. (A). Sedge Peatland
(Beaver Creek) (B). Low Shrub (Lily Lake) with the spectrometer set up (C). Wet Herbaceous (Bridge
Access Road) with transect flags (D). Black spruce.
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Figure 3. Synoptic workflow illustrates the four main procedural steps: Data Acquisition, Data
Processing, Spectral Unmixing, Accuracy Assessment.

2.3. Data Acquisition

We geolocated plots in the field in order to compare with airborne Goddard’s LiDAR
Hyperspectral Thermal (G-LiHT) acquisitions. All sites were selected to be within the
G-LiHT swath using ArcGIS Online, and the Global Navigation Satellite System (GNSS,
Bad Elf Surveyor) to acquire ~1-m geolocation accuracy. We discarded plots having less
than 1-m location precision. The field data collection was also constrained to be within
a G-LiHT swath that had an accessible wetland. At any one particular site so described,
we first located ourselves within the swath, then generated a random number to walk
to a starting point where the transect end could be secured. We ran 60-m transects and
measured vegetation within a meter square plot, using the point intercept method, every
4–6 m (depending on the geolocation accuracy). We surveyed vegetation composition using
line-point intercept methodology [22–26] and identified the dominant plant communities
according to the Alaskan Vegetation Classification (AVC) system [27] (Table A1). For the
plant functional types, we employed the line-point intercept method [26] of vegetation
survey using a 2-m long, 13 mm diameter steel rod marked into upper and lower meters to
record vegetation. Presence was recorded as 1 hit per point, per stratum, per taxon for a
total of 144 plots. We recorded the vegetation at either the genus or species level depending
on our knowledge. Tree samples in this dataset were almost invariably small (<15 cm).
Areas with grown Picea mariana, for example, were outside of the wetland sites.

We collected taxa reflectance spectra using an Ocean Optics Flame-S spectrometer in
August (2019) to mirror the phenology of the G-LiHT sensor data. The spectrometer samples
between 350 and 1000 nm, at a resolution of 1.5 nm (full width half maximum, FWHM).
Measurements were made on clear days, within two hours of solar noon, at a height of 0.9 m
above ground using 8◦ fore optic, corresponding to a circular sampling footprint of ~133 cm2.
To account for changes in ambient light between scans we measured a reflectance standard
larger than the sampling footprint prior to each scan (Figure 2B, LabSphere, Spectralon, North
Sutton, NH, USA). To improve the signal to noise ratio, we truncated data at both ends of the
spectrum, below 400.18 nm, and above 900.21 nm. We visually inspected spectra for noise
and subsequently eliminated 4 noisy bands at ~750 nm. Reflectance measurements were
converted to ASCII files and imported into R statistical software (Figure 4).

Ground-based spectral measurements were made in homogenous plots, in situ, across
multiple wetland classes and include multiple taxa for each PFT profile (Table A2). We
refer to the ground spectrometer measurements as the handheld dataset (HHDS) to prevent
confusion with G-LiHT spectrometer measurements.



Remote Sens. 2023, 15, 1440 5 of 19

Figure 4. Spectral curves of PFT taken at Kenai wetland sites. (A). Averaged curves taken with a
handheld spectrometer. (B). Spectral curves for each PFT, gathered from G-LiHT imagery pixels,
shown here as a comparison to the handheld measurements.

The G-LiHT NASA campaign was flown on 18 and 19 August 2014 (Figure 1). The
analyses presented here use three tiles which we refer to using site names Bridge Access
Road, Beaver Creek, and Lily Lake (Table 1). G-LiHT data has ~1-m pixel resolution.

Table 1. Site locations and corresponding G-LiHT tiles.

Site Code Location (Latitude, Longitude) G-LiHT Tile

Bridge Access Road BAR 60.52, −151.21 Kenai_19Aug2014_l12s659
Beaver Creek BC 60.65, −151.04 Kenai_18Aug2014_l8s25

Lily Lake LL 60.54, −150.50 Kenai_18Aug2014_l2s693

G-LiHT’s nominal flying height was 335 m above ground level (AGL); at this altitude,
sensor reflectance is a near approximation of surface reflectance. The imaging spectrometer
was the Hyperspec (Headwall Photonics, Fitchburg, MA, USA) which operates in the
spectral region from 400 nm to 1000 nm with a spectral resolution of 1.5 nm (FWHM),
and a spatial resolution of ~1-m [28]. Reflectance products are available on the G-LiHT
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website (http://glihtdata.gsfc.nasa.gov accessed on 16 September 2019) as orthorectified
raster files.

To address the temporal disjunct between field sampling (mid-August 2019) and
the initial G-LiHT flyover (mid-August 2014), care was taken to capture field spectral
measurements under similar atmospheric, optical, and phenological conditions.

2.4. Data Processing
2.4.1. Plant Functional Type Grouping

PFT is a categorization of vegetation at a more general level than Genus or species
and defined by a characteristic feature, e.g., phenology or physiology. There is a robust
history of research in combining remote sensing with vegetation mapping at the level of
PFTs [29–31] and strong support for discriminating between vegetation at the level of PFTs
using hyperspectral data [32,33]. Vegetation was identified in the field, to either the family,
genus or species level depending on our ability to definitively classify the sample, and then
aggregated into PFT (Table 2).

We assess the ability to discriminate between averaged PFT spectral profiles by calculat-
ing M-statistics. The M-statistic quantifies the difference between two distributional peaks:

M =
meanspectra1 − meanspectra2

σ1 + σ2
(1)

where σ is the standard deviation of each distribution. It is useful in its ability to simultane-
ously compare many narrow bands and identify bands that can be used to discriminate
between objects [34]. An M-statistic <1.0 indicates significant overlap between spectral
histograms, while an M-statistic >1.0 indicates an ability to discriminate between the dis-
tribution curves, i.e., variance within PFT profiles is small relative to variance between
profiles [33]. We evaluate separability for three spectral ranges: visible 400–550 nm, red
edge position (REP) 680–720 nm, and near infrared (NIR) 721–800 nm.

Table 2. Taxa sampled across all sites, classified into PFTs.

Genus Species Plant Functional Type (PFT)

Andromeda polifolia Woody non-conifer
Aulucomnium palustre Non-Sphagnum bryophyte

Betula nana Woody non-conifer
Calamogrostis canadensis Graminoid
Chamaedaphne calyculata Woody non-conifer

Cladonia rangiferina Non-Sphagnum bryophyte
Comarum palustre Forb
Cornus canadensis Woody non-conifer

Drosersa Forb
Empetrum nigrum Woody non-conifer

Epilobium angustofolium Forb
Equisetum fluvatile, arvense Forb

Eriophorum spp. Graminoid
Festuca Graminoid

Feather moss spp. Non-Sphagnum bryophyte
Ledum palustre Woody non-conifer

Myrica gale Woody non-conifer
Picea mariana Conifer

Populous tremuloides Woody non-conifer
Potentilla anserina Forb

Rubus chamaemorus Forb
Salix pedicellaris Woody non-conifer
Sphagnum spp. Sphagnum
standing water Non-vegetation

Vaccinium oxycoccus Woody non-conifer
Vaccinium ugilinosum Woody non-conifer
Vaccinium vitis idaea Woody non-conifer

http://glihtdata.gsfc.nasa.gov
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2.4.2. Ordination and Partial Least Squares Regression (PLSR)

Applying coupled ordination and regression methods to hyperspectral imagery is a
well-tested methodology combining field-collected land cover data with remotely sensed
spectral data to create sub-pixel floristic gradient mapping [35–38]. The approach involves
first applying ordination to field-sampled plot composition data, to project the composition
into multi-axis space describing the plots’ vegetation similarities. The continuous variable
resulting from this community mapping describes the gradient of plots’ floristic similarity
to one another and often to some expressed or unexpressed underlying environmental
gradient such as nutrient availability [39,40]. The PFTs in the gradient can be expressed as
centroid values mapped into the multi-ordinate space and occupying a similar position for
plots having the same dominant species.

The results of the ordination can be used in PLSR, a matrix regression capable of
dealing with the inherent collinearity and redundancy of the numerous narrow bands of
hyperspectral imagery [35,36,41–43]. We use ordination-regression in this research to un-
derstand the covariance between spectra of PFTs collected with the handheld spectrometer,
and the class membership of the field plots’ PFTs [44].

2.4.3. Ordination-Isomap Dimensionality Reduction

We use the Isometric Feature Mapping Ordination (IFMO) package Isomap [43,45] to
describe community structure in ordinate space [46]. IFMO is a non-linear dimensionality
reduction technique used in analyzing floristic data at the site level [47,48]. We selected Bray
Curtis as the most appropriate method to describe the plots’ similarity, based on the count
method of our field sampling and in agreement with previously published literature [36,49].
Isomap has one free parameter (k) that must be defined and represents the number of
nearest neighbors (kNN) for a chosen point. We tune the model for the optimally smallest k
parameter with a set of algorithms in the ‘caret’ package [50].

2.4.4. PLSR Relates Spectral Profiles to Isomap Axes

We use PLSR to model the relationship between the peatland vegetation gradient
and the spectral data. PLSR is commonly used for spectroscopy applications to reduce
the collinearity of data [42,51]. We use the spectral wavelength matrix values as the X-
predictor [41,42] and the matrix of PFTs centroid values of the multidimensional community
structure ordination as Y-dependent variable. The strength of PLSR lies in its ability to
extract underlying salient structure from variables that are noisy, by transferring the
information to independent lower dimensional latent variables (LV) to predict the response
variable. PLSR has been shown to be well suited to datasets where the number of samples
is low [52].

To maximize the PLSR model’s goodness of fit we first narrowed the band selection to
the near infrared bands, then applied an iterative backward selection process to the spectral
bands using the ‘pls’ [53] and ‘autopls’ packages [37]. The result is a reduced set of spectral
bands that can be used as classifiers [44]. We validated the model using leave-one-out
(LOO) cross-validation, root mean squared error (RMSE), and the coefficient of correlation
R2 for both models.

2.5. MESMA Library and Spectral Unmixing

The fractional coverage of the PFTs was calculated for the G-LiHT imagery using
MESMA [17], where the wavelength (λ) reflectance mixture M at pixel i is modeled as the
sum of the reflectance of the pixel’s reference endmembers (e), weighted by the fractional
abundance ( f k

i ) of each endmember e of class k (k = 1. . . e) at pixel i, plus a residual term
(ε) equal to the unmodeled portion of the spectrum in pixel i [17,54] .

M(λ)i = Σe
k=1 f k

i ∗ M(λ)k
i + ε(λ)i and Σe

k=1 f k
i = 1 (2)

The optimal model for each pixel i is that which minimizes the root mean square error
over all the spectral bands,
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RMSE =

[
B

∑
λ=1

(ε(λ)i)
2/B

]1/2

(3)

where B represents the spectral bands used in unmixing.

2.5.1. Building a Spectral Library

We mapped the 114 G-LiHT bands to their closest match in the 2048 bands of the
HHDS, yielding the 110-band set. We imported seventy-two taxa spectra from the HHDS
into ENVI for the base library. Endmember variability is a well-documented challenge to
building optimal spectral libraries [14]. Sphagnum and conifer endmember variability in
the G-LiHT data was greater than the variablility in our HHDS. To adequately capture
this variability, we added three profiles extracted from G-LiHT spectra for both conifers
and Sphagnum bringing the spectral library to a total of seventy-eight taxa, while forbs’
reflectance could be distinguished in the HHDS, their low presence at all sites (except BAR)
meant they could only be clearly identified in the G-LiHT imagery for the wet herbaceous
BAR site.

We use iterative endmember selection (IES; [55]) to prune our library to an optimal
subset of endmembers. IES selects endmembers iteratively; selecting the subset of spectra
that produces the best match as indicated by the highest kappa value. After an initial
endmember selection, the next spectrum that results in the best match, in combination
with all other spectra in the library, is selected. This process iterates until the match no
longer improves. To avoid sub-optimal endmember selection, each endmember in a library
is further tested by removing it from the library and determining whether removal also
improves the match by increasing the kappa. IES identifies the archetypal endmembers for
each PFT. IES has been found to generate libraries with greater unmixing accuracy potential
than similar methods like count-based selection (CoB; [56]) and endmember average root
mean square error (EAR; [55,56]).

From this IES-pruned library we drew two separate libraries for our imagery unmixing;
the full set of 110 bands (the 110-band library) and the four-band library of PLSR identified
bands (wavelengths 698 nm, 701 nm, 703 nm, 710 nm).

2.5.2. Spectral Unmixing

We use the IES-pruned libraries to perform MESMA. We first evaluate our model
performance in a computationally inexpensive manner, by unmixing small polygons (“small
swaths”) encompassing our field sampling transect plots. MESMA generates three products
for each pixel: (1) fractional coverage of each PFT in each of the G-LiHT imagery’s pixels
(2) Model RMSE for each pixel and (3) per-pixel mapping of model complexity. After this
initial computational evaluation and visual confirmation, we apply the unmixing to larger
swaths for each G-LiHT tile-site, using the same spectral library and band combinations as
used for the smaller swaths.

In addition to the two sets of spectral libraries (110-band and 4-band) we unmixed the
pixels using both unconstrained (all the PFTs) and constrained (including only those PFTs
confirmed for those pixels).

MESMA was performed with a shade constraint of 0.0 to 0.7; maximum allowable
RMSE of 0.025; and a fraction constraint between 0.0 and 1.0. We selected endmem-
ber models of shade plus 1, 2, and 3 endmembers. We used Viper Tools [18] for the
work building spectral libraries, conducting IES, and performing MESMA. Viper Tools
is an IDL-based plugin compatible with ENVI (Harris Geospatial Solutions) Tools 2.0
(https://sites.google.com/site/ucsbviperlab/viper-tools accessed on 10 October 2019).

2.6. Model Fit and Accuracy Assessment

We use three quantitative metrics and a qualitative visual assessment to assess the
accuracy of unmixing: We assess the relationship between the arithmetic means of field-
sampled plots’ PFTs (reference), and the spectrally unmixed modeled (predicted) plots

https://sites.google.com/site/ucsbviperlab/viper-tools
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using Welch’s unequal variance two sample t-tests. To assess the strength of the library, we
use Cohen’s kappa coefficients, the MESMA models’ RMSE and their standard deviations
which measure fit between the endmember library and the image spectra. We visually
assess accuracy of the large swath classification from field data and compare our unmixed
wetland classifications to existing wetland maps.

Our t-test statistics include the strength of the correlations (p-value) and the mean
difference between the fractional coverages of predicted and sampled plots (µ value). We
expect that the true difference between the reference and fractional coverage means is
equal to zero. A positive regression would be consistent with a finding that the modeled
population is a good predictor of the field-measured assemblage.

3. Results
3.1. Spectral Separability

Significant separability was observed between all PFTs based on the M-statistic,
with the most difficult separability observed between Sphagnum and conifer (Table 3 and
Figure 4). The highest M-statistic occurs in the NIR most often.

Table 3. Separability for the visible (400–550 nm), red edge (680–720 nm) and near infrared (NIR)
(720–800 nm) regions, between taxa. The highest (most significant) M-statistics occur most frequently
in the 680–720 nm range.

PFT Comparison
M-Statistic Spectral
Range (nm) Visible

[400–550]

M-Statistic Spectral
Range (nm) NIR
Edge [680–720]

M-Statistic Spectral
Range (nm) NIR 2

[721–800]

Sphagnum to Conifer 2.35 1.72 1.22
Sphagnum to
Graminoid 0.57 3.36 0.75

Sphagnum to Forb 1.31 5.78 2.74
Conifer to Graminoid 5.46 8.49 4.32

Conifer to Forb 0.13 3.48 2.22
Conifer to Woody

Non-conifer 1.21 3.99 3.55

Graminoid to Forb 1.03 3.93 2.47
Graminoid to Woody

Non-conifer 0.06 8.21 3.71

3.2. Ordination, Isomap Dimensionality Reduction

The vegetation composition of the 144 sampling plots is shown in multi-dimensional
ordinate space in (Figure 5A). Plots with identical compositions are only shown once on
Figure 4A. At k value of 7 the ordination model retained 30% of the floristic variation.
To explore the model sensitivity, we parameterized the model with a range of k values.
With the k set to 25, the model retained 81% of the variation. Although using a higher k
value has precedent in mapping vegetation distances ([43,57]) the higher k value did not
significantly impact our PLSR results, and we chose to model using the optimal k = 7, while
the 1st Dimension axis explained the greatest amount of floristic variance (47%), using the
first four axes provided significantly more information (94%). In Figure 5B, PFT names
represent the average position of that PFT as the dominant taxa in plots, in multi-ordinate
space. The full list of 6 dimensions are given in the Appendix A (Table A3).

3.3. Feature Selection: Partial Least Squares Regression Results

Results from PLSR indicate how well the handheld spectral profiles predict the PFTs
(Figure 6). The regression identifies four significant latent variable bands (p-value < 0.05); all
in the red edge NIR range (Table 3). The PLSR results in a validated R2 of 0.91 (Table 4) and
RMSE of 0.01 for R2 calibrated set and 0.03 for the R2 validated set. Only the first ordination
dimensions resulted in a significant R2. We report only the first axis in our results.



Remote Sens. 2023, 15, 1440 10 of 19

Figure 5. Matrix Results for Dimensions 1 and 2 from Multi-Dimensional Ordination. Both (A,B)
show Isomap Distances for k = 7, Plots = 144, PFT = 8. (A) Numbered-rectangles represent composition
of plots sampled in the field. More similar plot compositions are indicated by closer rectangles and
more similar line coloring. For plots with the same or highly similar composition, only one rectangle
is visible. (B) for the same sampled plots as (A), rectangles show the dominant PFT as centroids in
multi-ordinate space.

Figure 6. Regression lines from PLSR show how spectra from handheld measurements (Observed)
predict PFT class membership (Predicted) with high accuracy (0.911). R2 = R2.

Table 4. Results from the PLSR for the handheld spectrometer. PLSR results are shown for the 1st
axis which describes the greatest amount of the variation.

Parameter Handheld Dataset Characteristics

% Floristic variation retained in ordination 1 30%
Minimum k parameter (ordination) 2

Optimal k parameter 7
R2 PLSR calibrated 0.99
R2 validated (LOO) 0.91

Number of predictor bands for PLSR 19
Number of latent vectors for PLSR 4

RMSE for PLSR, calibrated & validated (LOO) 0.01, 0.03
Critical wavelength bands for PLSR (p < 0.05) 698, 701, 703, 710

Number of Plots 144
PLSR RMSE with optimal k 0.015 (cal), 0.050 (val)

Number of PFT 5
1 Setting k to 25 results in floristic variation retained of 81%.
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3.4. Calculation of Imagery Endmember Fractional Coverage Using MESMA

The 4-band endmember library (Table 4) and the full 110-band library were used
to unmix each of the three small swaths. Unmixing with either library results in 100%
unmixed pixels, except BAR where the 110-band model resulted in 98% unmixing (Table 5).

The model fit indicated by lowest RMSE is better for the 4-band library relative to the
110-band library (Table 6). The RMSE indicates how well the library profiles fit the imagery
profiles but does not indicate the strength of the classification or provide misclassification
information. With the exception of BAR unconstrained unmixing, we find lower processing
times using 4 versus 110 bands. The LL computation times were higher than BC and BAR.
BAR has low computation times for both the 4-band and 110-band libraries.

Table 5. IES results show library endmember reduction and Cohen kappa coefficients for the 4-band
and 110-band spectral libraries.

Bands 1 Initial Library Endmembers Final Endmembers Cohen’s Kappa

1–110 76 37 0.97
64–67 76 24 0.90

1 Bands 64–67 range from 697 to 711 nm. Bands 1–110 range from 418 to 901 nm.

Table 6. Comparison of the statistical results for PFT constrained and unconstrained MESMA for
the small, predicted swaths of the three wetland sites using both the 4-band and 110-band IES-
pruned libraries.

Site Bands Constrained
Cells

Unmixed
(%)

Mean
RMSE

(%)

Computation
Time (minutes)

Number
of Pixels

Computation TIME Normalized for
480 Pixels (minutes)

Lily Lake

64–67 No 100 0.6 0.64

1820

0.17
1–110 100 0.6 1.91 0.50
64–67 Yes 100 0.1 0.31 0.08
1–110 100 0.7 0.45 0.12

Beaver Creek

64 - 67 No 100 0.1 0.33

414

0.38
1–110 100 0.1 1.09 1.26
64–67 Yes 100 0.1 0.39 0.45
1–110 100 0.9 1.18 1.37

Bridge Access Road

64–67 No 100 0.1 0.47

480

0.47
1–110 100 1.0 0.23 0.23
64–67 Yes 100 0.1 0.31 0.31
1–110 98 1.1 0.43 0.43

3.5. Accuracy Assessment

We compare the average fractional PFTs’ coverage results of the constrained and
unconstrained unmixing (predicted fractional coverage), for the 110-bands and the PLSR
4-band sets to the field-sampled fractional coverage (reference fractional coverage), us-
ing Welch’s t-tests and boxplots (Figure 7). The boxplots provide a visualization of the
results for the difference in means of the reference (sampled) versus predicted coverage.
The means cluster more tightly for the 4-band PLSR band unmixing (Figure 7A), while
the comparison between the reference and the 110-band unmixing means show greater
divergence (Figure 7B). Likewise the constrained versus the unconstrained means are much
closer in the PLSR 4-band unmixing than in the 110-band unmixing. Tables 6 and 7 provide
the numerical data supporting the boxplots.

We use Pearson correlation coefficients to further examine the relationship between the
average reference and predicted coverages resulting from the spectral unmixing analysis.
All comparisons had a strong positive correlation, a finding that supports the idea that the
predicted coverage means closely resemble the field-sampled population. We compare
the mean difference of these populations and consistently find that the smallest difference
between means is shown by the constrained 4-band library (Table 6).

The iterative endmember selection for the libraries results in a higher number of
endmembers for the 110-band library (37) and a higher kappa (0.97) than for the 4-band
library (24) endmembers and kappa (0.90) (Table 4).
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Figure 7. Boxplot results provide a visualization of the difference in means between the field sampled
plots’ fractional coverage of PFT, and that of the PFT coverage as described by the spectra of G-LiHT
in sampled pixels and the pixels of the small swaths surrounding the sampling transects; results are
shown for the two libraries: (A) 4-band and (B) 110-band.

In Figure 8, we display the unmixed buffered transect pixels (“small swaths”) for the
BC site showing the fractional PFTs as well as a true color RGB image (Figure 8A). Only
the higher density PFTs are shown. From fieldwork and the EWM we know that BC is a
Sphagnum dominated Sedge Wetland. Therefore the validity of the unmixing is evidenced
by the grey color PFT panels C (graminoid) and E (Sphagnum) being the dominant PFT
pixels in the unmixing.

In Figure 9, we show the EWM classification next to the the unmixing for the LL large
swath for water, conifer and Sphagnum. These are the dominant classes at this low shrub wetland
site. Figure 8 compares the results using the 4-band library to the 110-band library; the 4-band
and 110-band images for each class are positioned side-by-side for ease of comparison.

Figure 8. The fractional coverage results from unmixing the small swath of G-LiHT Beaver Creek
(Sedge Wetland) pixels. (A). True color image. (B). RGB stack of unmixed layers representing three
classes which are shown individually in (C–E): Graminoid (red), Conifer (blue), and Sphagnum
(green)). (C–E) are fractional PFT coverages from unmixing for each class. (C: Graminoid, D: Conifer,
and E: Sphagnum). As shown in the scale, lighter colors represent higher percentages of fractional
coverage). (F). Shows the detail of the Sedge Wetland Class, as part of a full peatland complex.
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Figure 9. Comparison of a (A). G-LiHT true color image, (B). Existing Wetlands Map ([21])
(C). G-LiHT LiDAR-derived heights, to the unmixing results for the 4-band unmixing (left) and
the 110-band unmixing (right) (D). Water, (E). Conifer, (F). Sphagnum.

4. Discussion

In this research, we integrate field-collected data to create a spectral reference set
appropriate for mapping across multiple wetland classes in a suite of subarctic wetland-
peatlands. The MESMA mapping that results from the library created from this field data
collection suggests that a relatively small investment in fieldwork can be leveraged to map
wetlands across multiple hyperspectral tiles.

We use a set of study-defined PFT library spectra, to apply PLSR as a feature extrac-
tion method to identify a parsimonious set of bands capable of discriminating between
PFTs. The four-bands identified through feature extraction can be used in spectral mixture
analysis (MESMA) to achieve predictive mapping that appears to have accuracy similar to
but with lower classification errors, than that achieved with unmixing using the full set of
110 hyperspectral bands. After unmixing the imagery using MESMA, we find closer corre-
lations between the sampled and the predicted fractional coverages using the PLSR 4-band
rather than the 110-band library. These findings agree with previous work on the use of
PLSR as a feature selection technique useful in reducing model complexity and to produce
more accurate prediction results compared to full wavelength spectrum libraries [58].

With the exception of the Sphagnum category at BAR, we find that while the con-
strained spectral mixture analysis models returns slightly better results in both model fit
and accuracy (i.e., RMSE in Table 5), the unconstrained models’ results are not significantly
different. Results in Table 7 also show that the field observed values (column 4) most closely
match the Band 64–67 data for most PFT and sites. Agreement between unconstrained
and constrained analyses suggests that the predicted species composition based on the
unconstrained set of PFTs is relatively close to that predicted by the constrained set of
PFTs. Thus, extensive fieldwork in remote wetlands may not be necessary for predicting
species composition. Further, when the constrained (columns 6 and 8) and unconstrained
(columns 5 and 7) values are similar, it is less important to have extensive field measure-
ments, as it is an indication that unconstrained analysis (with the specified bands, 4 or
110, or both) is sufficient for predictive purposes. This suggests that using unconstrained
libraries could be suitable for mapping areas where field sampling is not possible due to
inaccessibility.

There is a clear computation cost benefit as a result of using feature extraction to
identify critical bands for unmixing. The number of endmembers for subsetting, or in other
words the unmixing complexity, is also a significant driver in processing time (Table 8).
Some of the matches between predicted and actual are high, an additional indication that
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the process is robust, while the processing times are small for all small swaths it is greater
when we constrained the unmixing by the PFTs known to be present at the site. The
processing time for the scaled-up imagery used here increased dramatically and appears to
be driven both the number of bands used for unmixing (higher for the higher number of
bands) and by the three versus 4-endmember unmixing complexity which is greater for the
higher complexity models (Table 8).

In each of the unmixing model results (both the 4-band and 110-band), the PFTs
dominating the unmixed swaths are what is anticipated from the wetland class identified
using the Alaska Vegetation Classification [27]. The highest fractional coverage correlations
between the reference and predicted plots are generally for the 4-band rather than the
110-band models. In other words, for the small swath sampling area of Lily Lake predicted
coverage, which is a low shrub-scrub wetland which, according to Viereck [27], would in-
clude Sphagnum and woody shrubs, has 58% Sphagnum coverage and 26% woody coverage,
with only 13% graminoids. BAR, determined by our field sampling composition to be a
Wet Herbaceous wetland, should be dominated by graminoids especially Carex, is 77%
graminoid and is close to our plot sampling which found 74% graminoid. Finally, BC which
is, according to Viereck, a sedge peatland dominated by Sphagnum and graminoid is 48%
Sphagnum and 33% graminoids. Overall, spectral unmixing results in fractional coverages
that suggest all three sites are dominated by graminoids and/or Sphagnum. This finding is
supported by our field sampling.

Table 7. Comparison of the statistical results for PFT constrained and unconstrained MESMA for the
small, predicted swaths of the three wetland sites using 4-band and 110-band IES-pruned libraries.

Site Wetland Class PFT
Fractional

Coverage Field
Sampled Plots 1

Fractional
Coverage
MESMA

Unconstrained
Bands 64–67

Fractional
Coverage
MESMA

Constrained
Bands 64–67

Fractional
Coverage
MESMA

Unconstrained
Bands 1–110

Fractional
Coverage
MESMA

Constrained
Bands 1–110

Lily
Lake

Low
Shrub

Woody 0.30 0.26 0.26 0.02 0.14
Sphagnum 0.41 0.58 0.58 0.17 0.79

NPV2 0.03 0.00 0.00 0.73 0.00
Graminoid 0.25 0.13 0.15 0.07 0.70

Forb 0.00 0.03 0.00 0.00 0.00

Beaver
Creek Sedge

Woody 0.33 0.19 0.19 0.02 0.05
Sphagnum 0.40 0.47 0.48 0.76 0.84

NPV 0.00 0.03 0.00 0.00 0.00
Graminoid 0.28 0.31 0.33 0.05 0.09

Forb 0.00 0.00 0.00 0.16 0.00

Bridge
Access
Road

Wet
Herbaceous

Woody 0.01 0.00 0.01 0.23 0.00
Sphagnum 0.00 0.26 0.00 0.32 0.00

NPV 0.09 0.00 0.05 0.00 0.02
Graminoid 0.74 0.55 0.70 0.45 0.77

Forb 0.18 0.19 0.25 0.01 0.18
Unclassified 0.00 0.00 0.00 0.00 0.02

1 Fractional coverage was determined using the point intercept method for 16 points per plot. For each plot we
divided the number of occurrences for a PFT in the entire plot, by the entire number of occurrences [24]. 2 NPV
stands for non-photosynthetic vegetation.

Based on the results of the small swath fractional coverages, we suggest it is possible
that when Sphagnum is present at a site (as at LL and BC (Table 5)), spectral mixture analysis
may over-predict the presence of Sphagnum spp., with the resulting maps displaying
a greater fractional coverage than is present. This overprediction may occur because
Sphagnum is frequently found at wetland sites as a ground covering such that even when a
graminoid or woody taxa are present, they co-occur the Sphagnum, and the woody (or other
PFTs) signal is dwarfed by a more dominant Sphagnum signal which may cover a greater
percentage of the pixel. We see a related effect when we consider the black spruce occupied
wetlands which, according to Viereck, frequently have the spruce appearing together with
Sphagnum. In these wetland-peatlands where small spruce often occurs singly and cover
only a small meter area, the Sphagnum signal may dominate.
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In terms of accuracy assessment, Figure 6 boxplots visually display the finding that
fractional coverages’ means, when calculated using a 4-band library for unmixing are closer
to field sampled results than means of fractional coverage found using the 110-band library.
We further found that constraining PFTs by field-knowledge, did not produce significantly
better results suggesting it is more helpful to have a broad locally produced spectral library
than it is to have a specific site informed library. The finding makes this feature extraction
method meaningful for mapping in areas where field sampling is logistically challenging.

Table 8. Computational costs, shown from low to high number of minutes, of unmixing the larger,
unsampled imagery swaths, for model complexity for 3 and 4 endmembers.

Computation Time (minutes) 1 Number of Models Number of Bands Number of Pixels Site

2.7 3 4 180,375 Beaver Creek
3.6 3 4 155,595 Bridge Access Road
6.3 3 110 186,915 Lily Lake
6.5 4 4 180,375 Beaver Creek
8.5 3 4 186,915 Lily Lake
9.4 4 4 155,595 Bridge Access Road

19.1 3 110 180,375 Beaver Creek
21.7 3 110 155,595 Bridge Access Road
33.4 4 110 155,595 Bridge Access Road
36.1 4 110 186,915 Lily Lake
61.6 4 4 186,915 Lily Lake
231.0 4 110 180,375 Beaver Creek

1 Listed in increasing order.

We illustrate scaling up the spectral mixture analysis using a large cropped area from
the LL site (Figures 8 and 9). Figure 9A shows the 4-band library successfully unmixing
water while the 110-band library does not recognize the full extent of the water and, because
the image is close to 100% unmixed, we know the 110-band library is misclassifying water
into another class. In Panel B., the 110-band is overclassifying conifers. We see this over-
classification by comparing the true-color image with the wetland class overlay, by doing
so we see the 110-band library does not follow the wetland class map as closely as does
the 4-band library. In Panel C., the 110-band underestimates Sphagnum coverage since we
know both from our sampling plots and field-based knowledge, that entire site is underlain
by Sphagnum even when conifers are present.

By identifying the small set of bands best able to discriminate between wetland PFTs,
this research contributes toward the ability to scale from the high (spatial and spectral)
hyperspectral resolution to the lower resolution of multi-spectral imagery. The advantages
of scaling from airborne collected hyperspectral imagery to lower spectral resolution of
satellite imagery include both the high temporal repeat of satellite imagery and its wall-to-
wall, rather than narrow swath, coverage of an area, and the ability to leverage broadly
available data.

5. Conclusions

Our findings suggest MESMA can be successful with or without constraining end-
members with a priori knowledge of vegetation, making a significant contribution toward
the use of MESMA for inaccessible areas where field sampling cannot be undertaken. Both
sets of spectral bands discriminate between PFT but the 4-band unmixing library results
in more accurate predictive mapping with lower computational cost. Further, that 4-band
unmixing appears to have greater success than 110-band unmixing suggests these methods
could be scaled for use with multispectral data. Arctic and subarctic wetland-peatlands are
a significant and vulnerable part of the global system. This study and the implications and
potential for multispectral analysis without extensive field campaigns demonstrate that the
work can be scaled up to a wide regional analysis of sub-arctic wetlands.
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NIR Near infrared
NPV Non photosynthetic vegetation
PFT Plant Functional Type
PLSR Partial Least Squares Regression
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Appendix A

Table A1. Comparison between the Alaskan Vegetation Classification (AVC, [27] of the sampled
wetland-peatlands and the Existing Wetland Map [21]. For full detail see [27].

AVC Level I AVC Level II AVC Level III AVC Level IV Taxa in This
AVC Level EWM Class Site (This Study)

I. Forest A. Needleleaf
(2) Open needleleaf
woodland (canopy

10-25 percent)

d. Black spruce on
wet boggy sites,

often with
Sphagnum mosses

Picea mariana; P.
glauca; Alnus crispa;

Betula glandulosa;
Pleurozium

schreberei; Rubus
camaemorus; edum

decumbens;
Vaccinium spp.

Black Spruce
Peatland

Beaver Creek,
Transect 2

II. Scrub C. Low scrub (1) Open low scrub
e. Shrub

birch-ericaceous
shrub bogs

Ledub decumbens;
Sphagnum spp.;

Emepetrian nigrum;
Kalmia polifolia;

Andromeda polifolia;
Vaccinium vitis idaea

Low Shrub Peatland Lily Lake

III. Herbaceous A. Graminoid (3) Wet graminoid
herbaceous

k. Subarctic
lowland

sedge-moss bog
meadow

Carex aquatilis,
Sphagnum spp.

Eriophorum
russeolum,

Equisetum fluvatile

Sedge Peatland Beaver Creek,
Transect 1

III. Herbaceous A. Graminoid (3) Wet graminoid
herbaceous

f. Subarctic lowland
herb wet meadow Carex spp. Wet Herbaceous

Peatland Bridge Access Road

Table A2. Number of spectral profiles for each Plant Functional Type, and from which wetland classes.

Taxa Profiles Measured Wetland-Peatland Type from Which Spectra Were Collected

Sphagnum 6 Low shrub peatland, Sedge peatland
Forbs 6 Wet herbaceous peatland

Conifer 7 Low shrub peatland, Black spruce peatland
Deciduous 6 Low shrub peatland, Sedge peatland

Carex 6 Low shrub peatland, Sedge peatland
Ericaceae 6 Sedge peatland, Black spruce peatland
Poaceae 6 Wet herbaceous peatland

Table A3. Species scores from Isomap for the first six dimensions (Vectors “V” from 1 to 6, of the
handheld dataset (HHDS).

Species V1 V2 V3 V4 V5 V6

Deciduous 0.01 −0.14 −0.04 0.05 −0.02 −0.01
Carex 0.14 0.00 −0.01 −0.01 0.02 −0.02
Forb 0.09 0.09 0.10 0.04 −0.07 −0.07

Bryophyte non-Sphagnum 0.19 0.06 −0.07 −0.11 −0.08 0.00
Poaceae −0.08 −0.01 −0.10 0.11 0.03 0.07

Ericaceae −0.23 −0.07 0.02 −0.03 −0.01 0.02
Conifer −0.32 0.23 0.03 −0.12 0.09 0.00

Sphagnum −0.07 0.00 −0.02 0.01 0.00 0.00
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