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Abstract: Forests offer significant climate mitigation benefits, but existing emissions reduction
assessment methodologies in forest-based mitigation activities are not scalable, which limits the
development of carbon offset markets. In this study, we propose a measurement method us-
ing optical satellite imagery and space LiDAR data fusion to assess forest emissions reduction.
Compared with the ALS-based carbon stock density estimation method, our approach presented a
strong scalability for mapping 10 m-resolution carbon stock at a large scale. It was observed that
dense canopy top height estimated by combining GEDI and Sentinel-2 could accurately predict forest
carbon stock measurements estimated by the ALS-based method (R2 = 0.72). By conducting an
on-site experiment of an ongoing forest carbon project in China, we found the consistency between
the emissions reduction assessed by the data fusion measurement method (589,169 tCO2e) and the
official ex post-monitored emissions reduction in the monitoring report (598,442 tCO2e). Our results
demonstrated that forest carton stock estimation using optical satellite imagery and space LiDAR
data fusion is efficient and economical for forest emissions reduction assessment. The acquisition
of the data was more efficient over large areas with high frequencies using space-based technology.
We further discussed the challenge of building a near-real-time monitoring system for forest-based
mitigation activities by utilizing optical satellite imagery and space LiDAR data and pointed out that
a quality control framework should be established to help us understand the sources of uncertainty
in LiDAR-based models and improve carbon stock estimation from individual trees to forest carbon
projects to meet the requirements of carbon standards better.

Keywords: GEDI; LiDAR; data fusion; forest biomass; carbon accounting

1. Introduction

Forests, which cover 31 percent of the global land area, play a key role in the
global carbon cycle. In the past two decades, global forests were a net carbon sink of
7.6 GtCO2eyr−1 [1]. Previous studies have shown that letting forests regrow naturally
has the potential to absorb up to 8.9 billion metric tons of carbon dioxide equivalent
from the atmosphere each year through 2050, which accounted for nearly one-quarter of
global fossil fuel emissions from the atmosphere every year [2]. Therefore, forests offer
significant climate mitigation benefits, and monitoring and managing forests for carbon
sequestration offer the opportunity to reduce greenhouse gas emissions and stabilize the
Earth’s temperature. Accurate information about forest cover, forest type, and carbon stock
are critical ecological indicators for actions aiming at reducing emissions from deforestation
and forest degradation (REDD+).

The carbon market is an important tool to reach global climate goals in the short and
medium term, in which market regulation incentivizes emissions reductions, carbon offsets,
and investment in technologies to reduce emissions. As forestry is the current dominant
carbon offset solution, forest carbon credits constitute a large part of the total offset–credit
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transaction volume in the global or local voluntary carbon markets [3]. The development
of forest carbon projects in the voluntary carbon market is governed by a number of major
carbon standards: Verified Carbon Standard, Plan Vivo, Gold Standard, Climate Action
Reserve, China Certified Emission Reduction, Fujian Forestry Certified Emission Reduction,
etc. Following these standards, forest carbon projects, after achieving validation, would
periodically conduct monitoring, reporting, and verification (MRV) to assess the consistency
between estimated emissions reduction before the project implementation and monitored
emissions reduction after the project implementation.

Existing emissions reduction assessment methodologies in carbon standards are costly
and laborious, which require forest inventories to obtain sampling biophysical parame-
ters, e.g., diameter at breast height (DBH) and tree height (TH) [4]. These biophysical
parameters are then used to estimate biomass from species-specific allometric equations.
Carbon stock for assessing emissions reduction are finally calculated from the estimated
forest biomass. Meanwhile, only a sample of the target forest is monitored in existing emis-
sions reduction assessment methodologies, which makes forest carbon projects completely
reliant on forestry experts’ opinion to select sample plots. Therefore, existing emissions
reduction assessment methodologies are not robust enough, and there is room for forest
carbon projects to overstate their emissions reductions. To address these problems, [4]
presented an airborne-laser-scanning (ALS)-based measurement method to assess forest
emissions reduction. They demonstrated the capability of ALS technology to quantify
forest biomass and associated emissions reduction for forest-based CO2 mitigation activ-
ities. However, this emissions reduction assessment method is not scalable, so it is still
costly for most forest carbon projects, because forest carbon project areas usually consist
of multiple discrete project area parcels scattered over large areas, which are filtered by
complex implementation applicability conditions defined in carbon standards. Hence, there
is an urgent need for a highly automated, more economical approach to monitor forest
carbon stock density and quantify forest emissions reduction for REDD+ projects.

LiDAR applications for forest aboveground biomass and associated carbon stock
quantification have been developed over a range of spatial resolutions, forest types, and
ecosystems [5–7]. In practice, airborne discrete-return small-footprint LiDAR systems
are the most widely used for biomass estimation [8], providing detailed forest structure
variables of either individual trees or areas. Although this technology has shown its strong
capability of assessing forest emissions reduction, it can only be adopted for small areas
because of data availability constraints. Recently, the development of space LiDAR has
provided a new solution for high-frequency large-scale carbon stock mapping. Key datasets
containing millions of LiDAR footprints are generated by the new generation of space
LiDAR sensors, such as the Global Ecosystem Dynamics Investigation LiDAR (GEDI) and
ICESat-2, which improve the ability to characterize important carbon cycling processes [9].
Moreover, the new novel multi-sensor Earth observation methods combining spaceborne
LiDAR data, SAR data, and optical data using machine learning techniques brings precise
measurements of forest canopy height and carbon stock monitoring towards large-scale,
more efficient, and actionable forest emissions reduction assessment [10–20]. For example,
ref. [11] produced the first wall-to-wall map of aboveground live woody vegetation carbon
density at 500 m resolution for the pan-tropics using a combination of MODIS and GLAS
remote sensing data. Reference [13] developed an aboveground biomass mapping method
using a combination of ground observations, MODIS data, forest cover/gain/loss maps
based on Landsat, GLAS forest canopy height, and climatic and terrain data. Reference [19]
used GEDI data fused with Sentinel-1 SAR, Sentinel-2 multispectral, elevation, and land
cover data to produce biomass maps of Australia and the United States. However, to the
best of our knowledge, optical satellite imagery and space LiDAR data fusion have not
been tested in REDD+ projects to quantify forest emissions reduction.

This study presents a practical framework to assess forest emissions reduction using
optical satellite imagery and space LiDAR data fusion, which provides a method using
multiple remote sensing data sources to model carbon stock from individual trees to REDD+
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projects. By conducting an on-site experiment of an ongoing forest carbon project, we eval-
uated the method’s performance compared with the official ex post-monitored emissions
reduction in the monitoring report. Our results demonstrated that forest emissions reduc-
tion assessment using optical satellite imagery and space LiDAR data fusion is efficient
and economical. We also discuss the challenge of building a near-real-time monitoring
system for forest-based mitigation activities by utilizing optical satellite imagery and space
LiDAR data.

2. Data and Methods

Detailed below is our approach to assess forest emissions reduction using multi-
ple remote sensing data sources (see Figure 1). In this work, we used four major data
sources: field measurements, ALS data, Sentinel-2 optical images, and sparse canopy top
height collected from GEDI L2A. We developed ALS-based carbon stock estimation models
to assess forest emissions reduction from individual trees to individual sampled plots.
Using optical satellite imagery and space LiDAR data fusion by a deep fully convolutional
neural network (FCN), we estimated the canopy top height for each 10 m pixel within the
project boundary. Combined with plot-level carbon stock density values, the project-level
canopy top height product was translated into carbon density by learning the ordinary
least-squares (OLS) regression models. Finally, the total project carbon stock and the corre-
sponding forest emissions reduction can be easily assessed with the help of the project-level
carbon stock density product.

Sentinel-2 repositoryGEDI L2A data

FCN

Filter products  Clouds:0%-10% 
Atmospheric correction 

Upsampling to 10m

Filter quality 
RH98

The wall-to-wall project-level
canopy height product at 10 m

resolution 

ALS data

Field-measured 
canopy height and 
diameter at breast

height values 

Individual tree crowns detection
ALS-derived feature parameters extraction

OLS models

OLS models

ALS-based carbon stock estimation
Rasterizing ALS-based carbon stock density 

The wall-to-wall plot-level carbon
stock density at 10 m resolution 

Matching carbon stock density pixels to
canopy height values 

Data filtering 

The wall-to-wall project-level
carbon stock density product at

10 m resolution 

Forest emissions reduction
assessment

Figure 1. Forest emissions reduction assessment workflow.

2.1. Research Area

Our analysis focused on the Fujian Carbon Neutrality Forest Project in Shunchang
Country, Fujian, China (117◦29′–118◦14′E, 26◦38′–27◦12′N), which is developed under the
Fujian Forestry Certified Emission Reduction standard. Shunchang Country’s climate is
characterized as humid subtropical, and the main tree species in the project area is Cunning-
hamia lanceolata. The project covers a total area of 3395.51 ha, and 909 discrete project area
parcels scattered over mountainous Shunchang Country make up the whole project, which
makes an ALS-based measurement method hardly suitable for assessing forest emissions
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reduction in this case, because of the high implementation costs. When the project was
first monitored in 2022, the estimated total carbon stock from field measurements was
1,121,855 tCO2e. In 2021, the Paulson prize for sustainability was awarded to the local
authority of Shunchang Country for the development of the Forest Eco Bank and Carbon
Sink Project.

2.2. Field Data and Biomass Allometry

Field measurement data collection was conducted by the Shunchang state-owned
forestry farm on 1 July 2022. Eight field sample plots were randomly selected within eight
sampled LiDAR-covered areas (see Figure 2).

ALS
Data
Extent
Forest
Inventory

Plot
Forest
Carbon
Project
Area
GEDI
Track
Shunchang
Country

Legend
(b)

Plot
1,2

(a)

Plot
3,4,5

Plot
6,7,8

Figure 2. Map of the study area within (a) China. The main map (b) depicts two tracks of GEDI
footprints (blue) used for dense canopy top height mapping and 909 discrete project area parcels
scattered over Shunchang Country. The airborne LiDAR data extent is highlighted in red, in which
each red circle represents one field plot.

In each sample plot, we selected a 20 m × 20 m square. Information on the diameter at
breast height (DBH), tree height (TH), and GPS coordinates for each tree in the square was
collected. A total number of 290 trees were selected to develop our ALS-based individual
tree biomass estimation models. Note that individual tree biomass includes aboveground
and belowground biomass. For individual trees, the biomass bi of species i is estimated
by using an allometric equation that combines key tree features [21], including TH, DBH,
wood density (WD), the biomass expansion factor (BEF), and the ratio of belowground and
aboveground biomass (R) [22,23]. These allometric equations take the form:

bi = f (TH, DBH, WDi, BEFi, Ri), (1)

in which species-specific tree features WD, BEF, and R are provided by the carbon standards.
The allometric equation we used is defined by the Fujian Forestry Administration. For
Cunninghamia lanceolata (CL), we have

bCL = 0.00005806× DBH1.955335 × H0.894033 × 307× 1.634× (1 + 0.246), (2)

in which WDCL is 307 kg ·m−3, BEFCL is 1.634, and RCL is 0.246.
After the total biomass was obtained by summing individual biomass values for all

trees within the plot, the forest carbon at the plot level was then translated from total
biomass using the carbon fraction of Cunninghamia lanceolata (0.52).
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2.3. ALS Data

We collected ALS data using an unmanned aerial vehicle (UAV) equipped with a
long-range laser scanner (Zenmuse L1) LiDAR system throughout 8 sampled plots in
Shunchang in July 2022. These eight areas encompass 30 ha in total. With a nominal flying
height of 100 m and a pulse frequency of 240 kHz, the resulting point cloud featured an
average pulse density of 482.9 pulses/m2. The horizontal and vertical accuracies of the
point cloud were, respectively, 10 cm and 5 cm.

2.4. Optical Satellite Imagery and Space LiDAR Data

Twelve bands (including B02, B03, B04, B05, B06, B07, B08A, B09, B01, B10, B11,
B12) of the atmospherically corrected Sentinel-2 L2A product were used in our study.
We collected the Sentinel-2 L2A images (4 Sentinel-2 tiles) of our study area with the
lowest overall cloud coverage in July 2022. Ten-meter-resolution bands for all the ex-
isting spectral bands with 20 m and 60 m were created using bilinear upsampling [16].
After upsampling, these twelve bands were merged into a single tiff file. The Sentinel-2 L2A
scene classification results were used to get rid of non-vegetated areas, so we could guaran-
tee that the model merely estimates canopy top height for vegetated areas. Note that we did
not generate any vegetation indices from Sentinel-2 imagery for canopy top height mapping.
Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), are merely
used by the Sentinel-2 Level-2A algorithms to generate a scene classification map, which
includes six different classifications for shadows, cloud shadows, vegetation, soils/deserts,
water, and snow.

For space LiDAR, all GEDI pulses acquired over Shunchang were collected in March
2022, the closest GEDI time available to the field inventory. Shots flagged as high quality by
the GEDI L2A product were filtered to ensure the sampling data were suitable for biomass
estimation. To control for GEDI data quality, we filtered all data using a beam sensitivity
threshold greater than 0.98 [24]. A total of 9500 footprint-level canopy top heights were then
derived from the filtered GEDI waveforms. The GEDI L2A product provides relative height
(RH) metrics for each footprint, which can be used as the candidate predictor variables
for the biomass estimation models. In particular, RH98, giving the height at which 98%
of returned energy is reached relative to the ground, was used as our canopy top height
as it is a more stable height metric than RH100 [25]. After rastering the RH98 data to the
Sentinel-2 pixel grid, Sentinel-2 and RH98 image pairs of 150 m × 150 m pixels centered at
each waveform location were clipped.

2.5. LiDAR Data Pre-Processing and Individual Tree Segmentation

The advent of ALS technology makes directly estimating plot-level biomass by sum-
ming the biomass of individual trees efficient, and it also has the potential to substan-
tially reduce the uncertainties associated with tree height variations [26]. Similar to field
measurements, the ALS-based LiDAR biomass estimation approach is also tree-centric.
In the LiDAR data pre-processing pipeline, we firstly removed noise in the original point
clouds using the statistical outliers removal method, then the processed point clouds were
classified into ground and non-ground points using the progressive morphological filter
algorithm [27]. A high-resolution (0.5 m) digital terrain model and digital surface model
were then extracted and used to create a canopy height model (CHM) of the area.

After the LiDAR point clouds were normalized, individual tree segmentation can be
conducted to obtain the point clouds of each tree. We used the region-based segmentation
approach developed by [28,29] to delineate individual trees, which was implemented
by finding the local maximums in a rasterized CHM. The complete approach consisted
basically of three main steps: (1) the CHM was pre-filtered by a low-pass filter, which can
smooth the surface and reduce the number of local maximums; (2) the local maximums
of the CHM were then identified using a circular moving window; (3) the extracted local
maximums were labeled as the initial seed points, then the seeded region was grown by
adding all the neighbors to the region if their vertical distance from the local maximum was
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less than the difference threshold until no further pixels were added to the region. Note
that the number of individual trees in the area covered by the ALS data was determined
by the parameters of the segmentation algorithm. To achieve high segmentation accuracy
(95.7%), field measurements should be used to tune these parameters.

2.6. Estimating Plot-Level carbon from ALS Data

The LiDAR derivative metrics were extracted from the tree point clouds after indi-
vidual tree segmentation. In this study, we considered the following derivative metrics,
including TH, crown diameter, crown volume, mean height, and simulated relative height
(RH) metrics at the 98th, 90th, 80th, 70th, 60th, 50th, 40th, 30th, 20th, and 10th height above
ground-level percentiles (RH98, RH90, RH80, RH70, Rh60, RH50, RH40, Rh30, RH20, and
RH10, respectively).

To estimate the tree-centric carbon stock c from a specific LiDAR metric x, we used the
OLS regression model with possible transforms, which can be written as

g(c) = α ∗ f (x) + β, (3)

where α is the regression coefficient and β is the constant term. f (·) is a transformation
function (identity, square root), and g(·) is a back-transformation function (identity, second
power). We can conduct linear regression analysis or log-transformed linear regression
analysis on ground-based biomass against LiDAR-derived feature parameters.

Our models were built on a total number of 290 Cunninghamia lanceolata trees.
We split the dataset into two subsets, holding out a random set of 87 trees (30 %) for
validation. Once the OLS models have been trained, individual tree carbon stock estimation
will be easily extrapolated for use in the rest of the project area.

In order to assess the results, the following metrics were applied in the validation
dataset: (1) The coefficient of determination (R2) was used for the linear models. Assuming
we have an observed dataset of n values marked y1,...,yn, each associated with a modeled
value ŷ1,...,ŷn, the definition of R2 is:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 , (4)

in which ȳ is the mean of the observed data. (2) The pseudo− R2 was used for the machine
learning and nonlinear models:

pseudo− R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 . (5)

(3) The root-mean-squared error (RMSE) and the relative-root-mean-squared error (rMSE, %):

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (6)

rRMSE = 100× RMSE
ȳ

. (7)

(4) The mean bias error (ME) and the relative mean bias error (rME, %):

ME =
∑n

i=1(yi − ŷi)

n
, (8)

rME = 100× ME
ȳ

. (9)
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Then, we used the OLS model to compute the carbon stock for each tree for 199 ALS-
covered areas. After obtaining the sum of the carbon stock from each tree within each 10 m
pixel aligned with 200 Sentinel-2 L2 data, we further generated a map of the carbon stock
density for each plot.

2.7. Sentinel-2 GEDI Data Fusion for Dense Canopy Top Height Mapping

Because the monitoring cost is still a major obstacle to more widespread and general
adoption of ALS, it is impractical to use ALS data merely to create a wall-to-wall carbon
stock density map for the whole project area at a higher frequency than traditional field
measurement sampling methods. In this study, we attempted to employ an FCN to estimate
the canopy top height for every 10 m × 10 m pixel of the Sentinel-2 image and then produced
a carbon stock density map.

The FCN is a classic pixel-to-pixel learning system that combines semantic information
from a deep, coarse layer with appearance information from a shallow, fine layer to produce
segmentations or translate cross-modality information from image to image [30]. Our FCN
(see Figure 3), which was trained on the Sentinel-2 L2A image and the rasterized RH98 data
pairs, contains 4 residual blocks [31] and ends with a convolutional layer with 1 × 1 filter
kernels. The convolutional layers mostly have 3 × 3 filters and 256 output channels.
This makes the model learn to extract relevant vegetation indexes from Sentinel-2 images.
We did not perform downsampling to make the output of each layer have the same height
and width as the input. Once trained, the model can process arbitrarily sized input
image patches.

15x15x256 15x15x256 15x15x256 15x15x256 15x15x256 15x15x1

convolutional + ReLU

1x1 convolutional

residual block

Input：Sentinel 2 images 

GEDI canopy top heights

Figure 3. Illustration of the FCN we employed to estimate the canopy top height for every 10 m× 10 m
pixel of the Sentinel-2 image. Note that the model was trained with sparse supervision.

The canopy top height reference data derived from GEDI were sparsely distributed,
but the estimated canopy top height by the FCN was dense. Therefore, the FCN was trained
with sparse supervision. At training time, only the pixels with a valid GEDI reference
height were used to calculate the mean-squared error (MSE) loss; therefore, only at valid
reference pixels, the model parameters were optimized. We trained on one GPU for 100k
iterations, using the ADAM optimizer [32] with a learning rate of 0.001. We split the dataset
into two subsets, holding out a random set of 30% of the data for validation.

2.8. Estimating Carbon Stock Density from Dense Canopy Top Height and ALS Data

A linear regression analysis and a log-transformed linear regression analysis of the
ALS-based carbon stock density for every 10 m × 10 m pixel against the canopy top
height were conducted to establish the relationship between the carbon stock density and
canopy top height for the forest carbon project. A project carbon stock density map was
then created.

Note that our method applies a filter between space and airborne LiDAR estimated
maximum height to guarantee robust model performance. If there was more than a 5 m dif-
ference between space and airborne LiDAR estimated maximum height, the corresponding
carbon stock samples estimated from airborne LiDAR data were excluded. We split the
dataset (around 3000 pixels) into two subsets for regression analysis, holding out a random
set of 30% of the data for validation.
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2.9. Project-Level Carbon Stock Assessment

In the traditional field measurement method, it is hardly possible to assess the carbon
stock within a sufficiently large area. Therefore, under the guidance of the carbon standards,
a project area was partitioned into forest strata that were homogeneous in their carbon
stock density. For each forest stratum s, the average carbon stock density CDs (Mg/ha)
was calculated based on the average carbon stock density of representative sample plots.
Each stratum s is usually composed of multiple sample plots J.

CDs =
1
J ∑J

1CDs,j. (10)

The total carbon stock within the project boundary is the sum of the total carbon stock
of all forest strata S.

C = ∑S
1 CDs ∗ As, (11)

in which As is the area of stratum s.
In our method, we can assess the total project carbon stock by summing all the carbon

stock of 10 m × 10 m pixels within the project boundary. The carbon dioxide equivalent for
forest emissions reduction is then translated from total project carbon stock.

3. Results
3.1. Performance of Tree-Centric ALS-Based Carbon Stock Estimation

We present summaries of the performances of different ALS feature parameters in
estimating individual tree carbon stock. The best-fit ALS metric and model were identified
based on the RMSE of the carbon stock (in kilogram). On the validation dataset, forcing
TH into models yielded the highest sensitivity to the carbon stock, while RH98 was the
second-strongest correlated metric.

The linear regression provided a reliable goodness-of-fit. More than 60% of the
variation in the field-measured carbon stock was explained by the ALS-derived tree height,
and the RMSE was 23.1241 kg (R2 = 0.6014, Figure 4).

(a) (b)
Figure 4. The linear regression results of the ground-based carbon stock versus ALS-derived tree
height (a) and the results of ground-based carbon stock versus estimation from the ALS-derived tree
height on the validation dataset (b).

The OLS regression model with the log transformations of the predictor and re-
sponse variables had a better goodness-of-fit. Figure 5 shows a closer relationship between
the ALS-derived tree height and the field-measured carbon stock (pseudo− R2 = 0.6228,
RMSE = 20.3396 kg). This model also yielded a lower rMSE, ME, and rME. This phe-
nomenon was caused by the power-law relationship between the carbon stock and canopy
top height [33].
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Compared with the field measurement method, the ALS-based individual tree carbon
stock estimation model had a low relative mean bias error (rME = 3.22%). The mea-
surement costs of the ALS-based model were only about one-ninth the costs of the field
measurement method. Because of such data acquisition efficiency, ALS-based carbon stock
estimation can be applied in plots with more extensive area coverage.

(a) (b)
Figure 5. The application of OLS models with log transformations to account for nonlinear relationships
between the ALS-derived tree height and ground-based carbon stock (a) and the results of the ground-
based carbon stock versus estimation from ALS-derived tree height on the validation dataset (b).

3.2. Performance of Dense Canopy Top Height Mapping

We evaluated the performance of the dense canopy height mapping on the held-out
GEDI reference data. Over all unseen GEDI reference samples, although the low canopy
top height was overestimated (see Figure 6), our trained FCN yielded a high R2 value of
0.8142 and an RMSE of 3.5467 m. The project-level canopy height product derived from
the Sentinel-2 L2A images by the FCN is shown in Figure 7.

Figure 6. Relationships between the estimated canopy top height from Sentinel-2 and the GEDI
reference height.
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FCN

Figure 7. Project-level dense canopy top height mapping.

We further compared the height predictions from the FCN model with the random
forest (RF) model in [34,35], the support vector regression (SVR) in [36,37] and the convolu-
tional neural network (CNN) model in [38]. In Table 1, we can see that the FCN model had
the highest R2 and the lowest RMSE.

Table 1. Comparison of the error metrics for the different canopy height models: FCN, RF, SVR,
and CNN.

Model pseudo-R2 RMSE (m) rRMSE (%) ME (m) rME (%)

FCN 0.8142 3.5467 16.89 −1.2329 −5.87
RF 0.6279 6.1348 29.21 −0.3176 −1.51

SVR 0.7037 6.3252 30.12 1.5633 7.44
CNN 0.7856 4.6730 22.25 2.2397 10.67

3.3. Performance of Project Emissions Reduction Estimation

ALS-based carbon stock density maps for individual plots were rasterized at a 10 m
resolution, which is the same as the resolution of the dense canopy top height mapping.
The statistical results of the carbon stock density for each plot are shown in Table 2,
measured in units of megagrams (Mg) of carbon per hectare (ha). The highest levels
of carbon stock density occurred in Plot 7, while the lowest values occurred in Plot 3. The
field data in the official monitoring report showed the same tendency.
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Table 2. Mean, standard deviation (SD), minimum (Min), and maximum (Max) values of individual
plot carbon stock density maps produced using the ALS-based methods.

Plot Mean (Mg/ha) SD (Mg/ha) Max (Mg/ha) Min (Mg/ha)

1 83.16 8.47 121.35 56.31
2 93.98 6.51 117.72 70.02
3 23.62 7.18 50.82 7.49
4 49.86 6.16 68.23 20.58
5 92.45 9.82 131.79 76.63
6 73.76 11.96 109.90 57.79
7 137.42 25.15 185.90 95.88
8 118.66 18.92 178.46 92.59

By conducting a linear and a log-transformed linear regression analysis on the carbon
stock density against the canopy top height, we demonstrated that the carbon stock density
estimates using optical satellite imagery and space LiDAR fusion had R2 values over 0.72
relative to the ALS-based carbon stock density, over all validation samples (see Figure 8a,b).
We observed that the model with the log transformations of the predictor and response
variables also exhibited a lower RMSE, rRMSE, ME, and rME and a higher R2 value,
indicating that the regression model with the log transformations performed better and
the canopy top height derived using the optical satellite imagery and space LiDAR fusion
was a key indicator for project-level carbon stock density (biomass) mapping, which are
consistent with the results from previous studies [39].

(a) (b)
Figure 8. Relationships between the carbon stock density estimates using optical satellite imagery
and space LiDAR fusion and the ALS-based carbon stock density on the validation dataset. (a) Linear
regression; (b) regression with log transformations.

It is clear from Table 3 that the plot-level statistic results produced by the log-transformed
linear regression model had an acceptable level of consistency with the ALS-based model.
We can observe that the data fusion method slightly overestimated the low carbon stock
density and underestimated the carbon stock density.

Using the dense project-level carbon stock density map, we calculated the emissions
reduction assessed by our data fusion measurement method (589,169 tCO2e), which was
highly consistent with the values calculated from field measurements in the official moni-
toring report (598,442 tCO2e).
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Table 3. Mean, standard deviation (SD), minimum (Min), and maximum (Max) values of individual
plot carbon stock density maps produced using the data fusion methods.

Plot Mean (Mg/ha) SD (Mg/ha) Max (Mg/ha) Min (Mg/ha)

1 85.47 9.74 105.46 55.63
2 91.70 10.98 105.18 67.52
3 29.12 7.85 47.53 9.40
4 56.92 10.59 71.75 12.92
5 98.17 12.57 126.40 77.71
6 77.90 9.70 101.78 57.67
7 129.40 22.24 173.13 99.34
8 107.63 15.34 161.74 86.17

4. Discussion
4.1. Benefits of Optical Satellite Imagery and Space LiDAR Data Fusion

Compared with the ALS-based assessment method proposed by [4], using optical
satellite imagery and space LiDAR fusion does not add any cost, because Sentinel-2 and
GEDI data are free for everyone. Moreover, without the use of fixed-wing aircraft, it is
difficult to apply the ALS-based method over large areas of complicated landforms, such
as mountainous regions, which are considered to provide the special mixture for optimum
forest carbon storage [40]. This is because the flight time of a UAV LiDAR system is limited
due to the battery capacity. The Global Navigation Satellite System real-time kinematic
(GNSS RTK) receiver also influences the uncertainty of laser measurements markedly if
the flight duration is long [41]. The typical industry rate for aerial mapping using UAV-
mounted LiDAR is currently around USD 2500 per day. The rate for a fixed-wing aircraft
LiDAR system is around USD 30,000 per day. The cost for using a fixed-wing aircraft LIDAR
system is higher than the labor cost for the measurement and monitoring using traditional
field measurements. Current machine learning techniques provide the opportunity to
utilize optical satellite imagery and space LiDAR to extrapolate regional measurements.
Therefore, the use of optical satellite imagery and space LiDAR fusion goes a step further
to reduce the cost of assessing forest emissions reduction. It makes mapping near-real-time
carbon stock for large areas possible.

On the other hand, the method of optical satellite imagery and space LiDAR fusion
takes full advantage of the data collected by the ALS from a wider sample coverage. In our
study case, the airborne LiDAR covered eight plots, with a total area of 30 ha, while the
field measurements only covered a total area of 3 ha. This may reduce the statistical error
of sampling and improve the performance of carbon stock assessment.

4.2. Comparison with Other Canopy Height and Biomass Carbon Stock Estimation Models

For most evaluation metrics, the FCN model showed the best canopy height mapping
performance for the subtropical Cunninghamia lanceolate forest in China. The other
deep-learning-based model (CNN) also showed its advantage for canopy height mapping,
which suggests the high potential of deep learning in spatially continuous canopy height
estimation. However, some problems still remain when deep learning models are applied
to map canopy height. For example, low canopies are overestimated and tall canopies are
underestimated by the FCN [42]. More precise deep-learning-based canopy height models
should be explored to reduce this effect.

Compared with other biomass carbon stock estimation models [19,43,44], the method-
ology developed in this study did not combine GEDI data with Sentinel-1 SAR, elevation,
land cover data, or ICESat-2 data, because it was demonstrated that using only Sentinel-
2 bands for canopy height estimation can lead to relatively good error metrics [16,42].
For REDD+ projects in highly cloudy regions, the proposed methodology should consider
Sentinel-1 data, when cloud-free Sentinel-2 data are not available.
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4.3. Major Challenges from Field Data Collection to Satellite-Based Project-Level Carbon
Stock Mapping

In the stage of field plot biomass estimation from airborne LiDAR data, CHM-based
individual tree segmentation methods show reduced performance for multiple layered,
mixed species stands of mixed forests [45,46]. Not all of the trees can be recognized by
the algorithm. This is because model parameters such as the size of the moving window,
the small tree cut-off height, and the percentage and absolute height difference thresholds
are difficult to determine for multiple tree species with heterogeneous properties [47]. In our
case, even though the dominant tree was Cunninghamia lanceolata, the model parameters
varied among plots. To overcome the issues associated with the mismatch between field
measurements and individual tree segmentation results, we suggest that the parameters
adopted in segmentation models should be carefully tuned, using the geographical and
planting information presented in forest inventory reports as a reference. Moreover, the fu-
sion of LiDAR and spectral information, providing a better tree extraction [29,48], should
be considered in future work.

When we estimate the total project carbon stock from dense canopy top height maps,
a reliable practice is to apply a filter between airborne and space LiDAR estimated maxi-
mum height, which yields a more substantial increase in model fitting performance because
of the better spatial match between both canopy top height estimates [39]. In our case,
for each rasterized pixel, if there was more than a 5 m difference between the space and
airborne LiDAR estimated maximum height, the corresponding carbon stock sample was
excluded. This filter significantly removed the noise caused by dense canopy top height
mapping and precluded GEDI’s 10 m geolocation uncertainty for footprint locations. In
future work, we should also consider the uncertainty of deep learning models used to
retrieve canopy height from Sentinel-2 images. By integrating Bayesian deep learning
techniques [49], the per-pixel probability of uncertainty can be directly used to filter out
inaccurate canopy height predictions. These techniques will help us understand the sources
of error and pathways to improve carbon stock estimation using optical satellite imagery
and space LiDAR fusion.

As the relationships between wall-to-wall remote sensing data and carbon stock are
complex and context-dependent [50], most studies have relied on model fitting to identify
the most-predictive metrics in a specific given context [49]. To reuse pre-trained carbon
stock estimation models, open standard (ground-level) datasets that could be used to
cross-validate the carbon stock estimation results from multiple sensors deployed on dif-
ferent platforms with different acquisition parameters should be created in the future.
These datasets stratified by plant functional type and geographic region must have under-
gone rigorous, consistent, and transparent validation. Without enough reference data, it is
unlikely that a carbon estimation model can be transferable across forest types and regions
to quantify forest emissions reduction for REDD+ projects.

Uncertainty analysis is a major challenge for satellite-based project-level carbon stock
mapping. When carbon stock estimation models are first established for individual trees
and then applied to predict aggregate plot-level or regional carbon stock by developing
a machine learning model with remote sensing data, it is not clear how uncertainties
should be estimated [51]. Therefore, using remote sensing data to assess forest emissions
reduction hastily may result in sub-optimal or even detrimental policy measures for forest
management [52].

In summary, optical satellite imagery and space LiDAR fusion has shown the potential
to be an efficient monitoring approach added in the methodology for forest emissions
reduction development, because of its lower cost, satisfactory accuracy, and scalability.
Building a robust monitoring, reporting, and verification (MRV) system of carbon emissions
using these Earth observation techniques allows forest emissions reduction assessment
to have a spatial and temporal resolution never seen before. High-quality field data are
still needed for both calibration and validation at the current stage. Further work should
particularly look into how a quality control framework including improved uncertainty
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estimates can be established to guide upscale carbon stock estimates from individual
trees to forest carbon projects, before Earth observation techniques are integrated into the
methodology for forest emissions reduction development.

5. Conclusions

In this study, we proposed a measurement framework using optical satellite imagery
and space LiDAR data fusion to assess forest emissions reduction. Compared with the ALS-
based carbon stock density estimation method, our approach can be applied for mapping
carbon stocks at a 10 m resolution across large areas typically associated with REDD+
projects. By conducting an on-site experiment of an ongoing forest carbon project following
the Fujian Forestry Certified Emission Reduction standard, we found an acceptable level of
consistency between the emissions reduction assessed by the LiDAR-based measurement
method (589,169 tCO2e) and the official ex post-monitored emissions reduction in the
monitoring report (598,442 tCO2e). Our results demonstrated that forest carton stock
estimation using optical satellite imagery and space LiDAR data fusion is efficient for forest
emissions reduction assessment because of its strong data acquisition efficiency in terms of
monitoring frequency and area coverage. We further discussed the challenge of building a
near-real-time monitoring system for forest-based mitigation activities by utilizing optical
satellite imagery and space LiDAR data and pointed out that a quality control framework
should be established to help us understand the sources of uncertainty in LiDAR-based
models and improve carbon stock estimation from individual trees to forest carbon projects
to meet the requirements of carbon standards better.
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