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Abstract: High-resolution (HR) remote sensing images have important applications in many scenarios,
and improving the resolution of remote sensing images via algorithms is one of the key research fields.
However, current super-resolution (SR) algorithms, which are trained on synthetic datasets, tend
to have poor performance in real-world low-resolution (LR) images. Moreover, due to the inherent
complexity of real-world remote sensing images, current models are prone to color distortion, blurred
edges, and unrealistic artifacts. To address these issues, real-SR datasets using the Gao Fen (GF)
satellite images at different spatial resolutions have been established to simulate real degradation
situations; moreover, a second-order attention generator adversarial attention network (SA-GAN)
model based on real-world remote sensing images is proposed to implement the SR task. In the
generator network, a second-order channel attention mechanism and a region-level non-local module
are used to fully utilize the a priori information in low-resolution (LR) images, as well as adopting
region-aware loss to suppress artifact generation. Experiments on test data demonstrate that the
model delivers good performance for quantitative metrics, and the visual quality outperforms that
of previous approaches. The Frechet inception distance score (FID) and the learned perceptual
image patch similarity (LPIPS) value using the proposed method are improved by 17.67% and
6.61%, respectively. Migration experiments in real scenarios also demonstrate the effectiveness and
robustness of the method.

Keywords: super-resolution; region aware; second-order channel attention; Gao Fen satellite;
region-level non-local

1. Introduction

High-resolution (HR) remote sensing images provide detailed texture information of
ground objects, which are essential for many applications, such as the classification of land
cover [1], object detection [2], building extraction [3], and change detection [4]. However,
the spatial resolution of remote sensing images is influenced by the sensor hardware and
environmental factors [5], and it is relatively difficult to obtain HR images at a specific time.
At the hardware level, it is possible to increase the number of satellites to provide more
HR satellites or directly improve the production technology of sensors to directly improve
the resolution. These options tend to be more costly in most instances. In comparison with
the above strategies, super-resolution (SR) image technology is more convenient and of
relatively low cost. SR is a technique for generating HR images from low-resolution (LR)
images. The approach can be categorized into the single-image super-resolution (SISR) or
multi-image super-resolution (MISR). Although the multi-image technique can provide
more a priori information, it is difficult to obtain multiple remote sensing images of the
same scene.

The traditional image SR algorithms can be grouped into two main categories, interpolation-
based algorithms, and reconstruction-based algorithms. The interpolation-based image
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SR methods reconstruct HR images by computing the pixels of the point to be sought
from the known pixel values around the point to be interpolated. The main commonly
used interpolation algorithms include the nearest neighbor interpolation [6], the bilinear
interpolation [7], and the bicubic interpolation [8] methods. Interpolation algorithms
tend to be faster and simpler than other methods. However, linear model algorithms
have limited ability to recover high-frequency detail. Reconstruction-based algorithms
use complex a priori knowledge as constraints to reconstruct the HR images, such as
iterative back projection (IBP) [9], projection onto convex sets (POCS) [10], and maximum-a-
posteriori (MAP) approach [11]. Although reconstruction-based algorithms utilize a priori
information, they do not always generate acceptable results for complex images.

In recent years, with the development of deep learning techniques, a series of deep
learning-based methods have emerged in the field of SR. Dong et al. [12] proposed a
super-resolution convolutional neural network (SRCNN), which learns the mapping re-
lationship between bicubic linear interpolation images and HR images through the use
of neural networks. Although the SRCNN can outperform traditional-based methods,
bicubic LR images are computationally slow in the network. To alleviate the problem, a
fast super-resolution convolutional neural network (FSRCNN) [13] has added transposed
convolution operations to the network to reduce the computational time of the network.
These networks are shallow, and their performance is affected by the depth of the network;
however, increasing the depth of the network can lead to gradient explosion and gradient
disappearance. To deepen the depth of the network and obtain a stronger learning ability,
very deep super-resolution (VDSR) [14] incorporates residual learning and gradient crop-
ping to mitigate the network gradient explosion-disappearance problem. Further, the use of
the deeply recursive convolutional network (DRCN) [15] increases the network depth skip
connections and recursive supervision. Additionally, the deep recursive residual network
(DRRN) [16] improves the performance of the network by proposing recursive learning of
local residual connections and residual units on the basis of the DRCN. Moreover, enhanced
deep super-resolution (EDSR) [17] and SRResNet [18], which use residual connections [19],
deepen the network depth and avoid the gradient problem. EDSR removes the batch
normalization (BN) [20] layer and uses a residual scaling module to increase the stability of
the training.

In previously reported networks, all the different channels are characterized and
treated equally, and the residual channel attention network (RCAN) [21] uses channel at-
tention to enhance the ability of the network to distinguish between the different channels.
The dual regression network (DRN) [22] proposes a dual regression scheme by introducing
an additional constraint on the LR data to reduce the space of the possible functions. The
local texture estimator (LTE) [23] proposes an LTE, a dominant-frequency estimator for
natural images, enabling an implicit function to capture fine detail while reconstructing
images in a continuous manner. To reduce the amount of computation in the SR network,
sparse mask SR (SMSR) [24] is adopted to learn sparse masks to prune redundant compu-
tation. In addition to the CNN-based models, the transformer [25] model has been used
in the field of SR due to its excellent global attention mechanism and texture transformer
network (TTSR) [26]. The TTSR uses the LR and the reference image (Ref) as a query and a
keyword. Joint feature learning is then performed between the LR and the Ref to extract the
relationship between the deep features by global attention, and thus the texture features are
displayed accurately. Although the transformer can obtain the global receptive field, the
computational effort increases rapidly with image size [27]. Liang et al. [28] used a Swin
transformer [29] for deep feature extraction to reduce the computational effort in computing
attention. To activate more input pixels for reconstruction, the hybrid attention transformer
(HAT) [30] was adopted, combining channel attention and self-attention schemes, which
exploit the respective complementary advantages.

CNN and transformer-based methods achieve better recovery results compared to
the traditional SR methods, but the recovered images are sometimes too smooth and lack
high-frequency detail. Compared to these methods, the generating adversarial network
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(GAN) based SR method is able to produce more detailed textures. The GAN consists of
a generator and a discriminator. The generator generates an image from the input, the
discriminator determines whether the generated image is true or false, and then alternately
is optimized to reach the Nash equilibrium [31]. The super-resolution generative adversarial
network (SRGAN) [18] uses GAN to solve the SR problem and proposes a perceptual loss
to produce more realistic textures. The enhanced super-resolution generative adversarial
network (ESRGAN) [32] improves the discriminator using the relativistic average GAN
(RaGAN) [33] and introduces the residual-in-residual dense block (RDDB) to improve the
model. The spatial feature transforms generative adversarial network (SFTGAN) [34] uses
an SFT module to effectively combine the images into the network to improve detailed
texture in the GAN networks. The Real-ESRGAN [35], a high-order degradation modeling
process, is introduced to better simulate complex real-world degradations and employs a
U-Net discriminator with spectral normalization to increase the discriminator capability
and stabilize the training dynamics.

In addition to improvements in the model itself, research on the degradation of the
HR-LR has been a hot topic in recent years. The super-resolution network for multiple
degradations (SRMD) [36] proposes a general framework featuring a dimensionality stretch-
ing strategy that enables a single convolutional SR network to take two key factors of the
SISR degradation process, that is, the blur kernel and the noise level, as the inputs. A
unified dynamic convolutional network (UDVD) [37] introduces a dynamic convolution
based on the SRMD and applies dynamic convolution to the up-sampling process. Iterative
kernel correction (IKC) [38] solves the artifacts caused by kernel mismatch by correcting
the estimated blur kernels through an iterative correction mechanism. Inspired by contrast
learning, domain adaptation super resolution (DASR) [39] is proposed as an unsupervised
degradation-aware network, which is based on representation learning, to handle different
degradation situations adaptively. The unpaired SR [40] proposes a probabilistic degen-
eracy model (PDM) that studies the degeneracy D as a random variable and learns its
distribution by modeling the mapping from a priori random variables Z to D. Blind image
super-resolution with elaborate degradation modeling (BSRDM) [41] proposes a patch-
based noise model to increase the degrees of freedom of the model for noise representation
and to facilitate novel construction of a concise yet effective kernel generator.

The SR has become a research hotspot in image processing in remote sensing due to
the huge demand for high spatial resolution in many remote sensing tasks. Jiang et al. [42]
proposed the distillation recursive network (DDRN) for video satellite image SR. Galar
et al. [43] used the EDSR with several modifications on Sentinel-2 and Planet images.
Romero et al. [44] implemented and trained a model based on ESRGAN with pairs of
WorldView-Sentinel images to generate a super-resolution multi-spectral Sentinel-2 output
with a scaling factor of 5. Zabalza et al. [45] exploited the residual network (SARNet) to
increase the spectral resolution of the Sentinel-2 images from the original 10 m to 2.5 m.
Karwowska et al. [46] improved the resolution of satellite images acquired with the World
View 2 satellite using the ESRGAN network with window functions.

Although the above-mentioned methods deliver good performance, there is still scope
for improvement in the remote sensing image SR mission. First, the real degradation of
remote sensing images is very complex, given that the process involves the diffraction
limit of the lens, disturbances by the atmosphere, the relative movement of the imaging
platforms, and the impacts of the different types of imaging noise. All these factors lead to
difficulties in producing valid results for real remote sensing images, even for models that
consider multiple degradations [47,48]. Therefore, ground truth data are very important
for SR in remote sensing images. However, there are few studies on real ground truth data
with high spatial resolution, especially at the meter scale. Second, the GAN network can
produce more high-frequency information. Nonetheless, adversarial training is unstable
and often produces unpleasant visual artifacts, which is a problem exacerbated by the
complexity of the remote sensing image distribution. Third, the remote sensing images are
complex and contain detailed and rich information. This both generates difficulties in the
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SR of remote sensing images and provides more a priori information. The existing GAN
networks do not focus on the similarities and differences in this information.

To solve these problems, an SR dataset of real remote sensing images was built using
different spatial resolutions for the Gao Fen (GF) satellite data, whereby a GAN model
based on second-order channel attention and a region-level non-local module is proposed to
utilize the rich a priori information of remote sensing images, and finally, use a region-aware
strategy to inhibit the generation of artifacts.

The main contributions of this study are as follows:

1. A real SR dataset based on GF6/1 and GF2/7 satellite data is produced to simulate
the degradation process of real remote sensing images.

2. A region-aware strategy is added to the training process to reduce the artifacts gener-
ated in GAN and improve the visual quality of the results.

3. An adversarial generative network for SR reconstruction of real remote sensing images
was designed, whereby a second-order channel attention mechanism was used to
treat channel features differently. A region-level non-local module was added to the
generative network to capture long-range dependencies between features, which
achieved an accurate restoration of feature structure information.

The paper is organized as follows: The proposed SR method is introduced in detail in
Section 2. The evaluation experiments for the different methods are described in Section 3.
A further discussion of the proposed method is given in Section 4. Finally, future research
directions are specified in the conclusions in Section 5.

2. Materials and Methods

In this section, we describe the overall architecture and specific details of the method,
including the region-aware strategy, the network design, and the loss functions. The overall
framework of our approach is outlined in Figure 1.
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Figure 1. Framework of the method. For the LR input, the reconstruction is performed by a GAN
network containing second-order channel attention and region-level non-local blocks; region-aware
loss is used to constrain the generation of artifacts.

2.1. Region-Aware Strategy

The GAN generates richer and more detailed information by employing adversarial
loss, but learning the mapping from LR to HR images is typically an ill-defined problem
given that there exist many HR images that can be downscaled to obtain the same LR
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image [49]; this makes GAN generate in perpetuity undesirable artifacts in addition to
the details. For smoothed areas, the LR images retain much-structured information of the
HR images, and the network can reproduce them with better visual quality; however, for
regions rich in high-frequency detail, the large inter-pixel variation makes the SR results
produce irregular artifacts. As shown in Figure 2, the farmland in the first row and the
dense housing in the second row represent the smooth region and the complex region,
respectively. The use of spatial information can reduce the generation of artifacts in GAN
networks [50], which is also applicable in remote sensing images. In order to reduce
the artifacts generated during the training process, a region-aware strategy is adopted in
this study.
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For a remote-sensing image ISR, the goal is to produce a pixel-wise map M ∈ RH×W×1,
where M(i, j) ∈ [0, 1] indicates the probability of ISR being an artifact pixel. Considering
that both artifacts and details are high-frequency image components and there is a better
recovery of the network with the smoothed region, the residual between the HR image
IHR and the SISR result ISR is first calculated to extract the high-frequency component
as follows:

R = IHR − ISR (1)

As shown in the 3rd column of Figure 2, the residuals are relatively small in the smooth
region, while the residuals are large in the high-frequency detail-rich region. However, the
region with larger residuals does not necessarily represent artifacts, given that artifacts
exist that are not well represented by residuals alone. Under normal circumstances, for
regions with large residuals, if there is no drastic change in the residuals, it means that
there is only an overall shift in pixel values, which is expressed in the image as a difference
in color rather than in structural information; thus it is assumed that the probability is
greater that the region is not an artifact. Therefore, the probability of artifacts can be further
expressed by calculating the local variance S of the residuals R:

S(i, j) =
1

(n + 1)2 ∑i+ n
2

x=i− n
2
∑i+ n

2
y=i− n

2
(R(x, y)− µ) (2)

Among them,

µ =
1

(n + 1) ∑i+ n
2

x=i− n
2
∑i+ n

2
y=i− n

2
R(x, y) (3)



Remote Sens. 2023, 15, 1391 6 of 26

where n represents the size of the local region. We can test the effect of different n values
on the local variance, where the artifacts are mostly concentrated in the interior of the
building in the SR images. Equation (2) calculates the variance of the n × n domain at each
location in the R. As n increases, the range of the calculated area becomes larger. As shown
in Figure 3, when n is small, the area with a larger response cannot completely cover the
artifacts. When n is larger, the area with a larger response is larger than the actual area
of the artifacts. It can be seen from the figure that when n = 6, the artifacts can be better
represented in most regions. Therefore, in this study, n is set to 6.
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As shown in the 4th column of Figure 2, S can indicate artifacts better, but S only
considers local information and does not incorporate global information. Therefore, the
global variance is calculated as follows:

δ = (var(R))
1
α (4)

in order to adjust the local variance according to the global variance, where α is a weighting
factor and α is larger, the greater the influence of the global method. We fixed α to be 1/4
through the experiments.

As shown in the 5th column of Figure 2, it can be seen that the probability of artifacts
occurring is already almost zero for smooth areas such as farmland. Finally, to address the
instability of the GAN network training, the exponential moving average (EMA) approach
is used to generate a stable model Wk

EMA as follows:

Wk
EMA = α ·Wk−1

EMA + (1− α) ·Wk (5)

where Wk is the Kth model, and Wk
EMA is the exponential moving average of the model

based on calculating the previous K rounds. As in a priori research on EMA [51], we
set α = 0.999. Compared to Wk, Wk

EMA is an integral of multiple models and, therefore,
is more stable and generates fewer artifacts, thus Wk

EMA is used to highlight the correct
direction of the gradient descent of the weight for the Wk through SR results. That is,
ISREMA = Wk

EMA(ILR) and ISR = Wk(ILR), and the residual map R1 = IHR − ISR and
R2 = IHR − ISREMA of the two model results are calculated. If the model can be updated in
the correct direction, the generated R1 of the current model should always be less than R2,
however, the instability of the model leads to the possibility of the model being updated in
the wrong direction at locations where the residuals of R1 are larger than R2, and, therefore,
should not be penalized. Thus, we take the part of R1 that is larger than R2 as the artifact
to obtain the refined artifact map M:

M(i, j) =
{

0, i f |R1(i, j)| < |R2(i, j)|;
δ · S(i, j), i f |R1(i, j)| ≥ |R2(i, j)|. (6)

As shown in the 6th column of Figure 3, the improved M retains the realistic details while
more accurately representing the artifacts.
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2.2. Generative Network

The generative network architecture is shown in Figure 4. The generator network part
consists of four main parts: shallow feature extraction, the self-attentive module based on
the non-local module, the residual in the residual dense channel attention block (RRDCB),
which is based on the deep feature extraction and the reconstruction part. The network
details are introduced in the next section.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 28 
 

 

𝐹 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝐶𝑂𝑁𝑉 (𝐶𝑜𝑛𝑐𝑎𝑡(𝐹 , 𝐹 , … 𝐹 ))) (11)𝐹 = 𝑆𝑂𝐶𝐴(𝐹 ) ∗ 𝐹  (12)𝐹 = 𝐹 ∗ 𝛽 + 𝐹  (13)

where 𝐶𝑜𝑛𝑐𝑎𝑡  represents the concatenate operation, 𝐶𝑂𝑁𝑉  represents the n convolutional layer used for feature extraction of size 3 × 3, the output channel is 32, 
and the step size is 1, 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 represents the activation function used, SOCA repre-
sents the second-order channel attention mechanism, which is described in detail in Sec-
tion 2.4. 

The RRDCB enables the features to be fused at the multi-scale level and to perform 
depth feature extraction, and captures the long-range dependencies between the depth 
features again by the region-level non-local operation: 𝐹 = 𝑅𝑅𝐷𝐶𝐵 (𝑅𝑅𝐷𝐶𝐵 (… )) (14)𝐹 = 𝑁𝑜𝑛𝐿𝑜𝑐𝑎𝑙(𝐹 ) (15)

Finally, the fusion of the shallow features and deep features through a skip connec-
tion and bicubic linear interpolation is performed for the improvement of the resolution; 
afterward, refinement of the features is achieved by a combination of two-layer convolu-
tion and Leak-Relu and the final SR result is obtained by a convolution layer and fine-
tuning: 𝐹 = 𝐹 + 𝐹  (16)𝐹 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝐶𝑂𝑁𝑉 (𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹 ))) (17)𝐹 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝐶𝑂𝑁𝑉 (𝐹 )) (18)𝐼 = 𝐶𝑂𝑁𝑉 (𝐹 ) (19)

The 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒  represents the bicubic linear interpolation upsampling, and 𝐼 ∈𝑅 × ×  is the final SR image. 

 
(a) 

 
(b) 

Figure 4. Network structure of generative network: (a) The structure of the generator. LR represents 
low-resolution images, and SR represents the results for network reconstruction. (b) The structure 
of the residual in residual dense second-order channel attention block (RRDCB). 

2.3. Discriminator Network 
The result of the discriminator network is shown in Figure 5. The role of the discrim-

inator is to determine whether the input is an SR or HR image based on the differences in 

Figure 4. Network structure of generative network: (a) The structure of the generator. LR represents
low-resolution images, and SR represents the results for network reconstruction. (b) The structure of
the residual in residual dense second-order channel attention block (RRDCB).

For an LR input ILR ∈ RH×W×C, a convolutional layer is used for shallow feature extraction:

F1 = CONVk3n64s1(ILR) (7)

where CONVk3n64s1 represents a convolutional layer with a convolutional kernel size of
3, a featured channel of 64, and a step size of 1. For the initially proposed features, the
region-level non-local module is used to capture the long-distance dependencies to obtain
Fnl the process is expressed as follows:

Fnl1 = Nonlocal(F1) (8)

Nonlocal represents a self-attentive mechanism at the regional level; more details on
Nonlocal will be given in Section 2.5.

After the non-local feature Fnl1 passes through multiple RRDCB blocks, the internal
structure of the RRDCB is shown in Figure 4. Each RRDCB includes five convolutional
layers and the Leaky-Relu activation function. The output of each convolutional layer is
concatenated together with the previously passed convolutional layers, and finally, the
output passes through the SOCA module and adds the input of the RRDCB, which is
multiplied by a weight factor β between 0 and 1 to speed up the training of the model [52].
The process can be expressed as follows:

F21 = LeakyRelu
(

CONVk3n32s1
f 1 (F1)

)
(9)

F22 = LeakyRelu
(

CONVk3n32s1
f 2 (Concat(F1, F21))

)
(10)

. . . . . .
F25 = LeakyRelu

(
CONVk3n64s1

f 5 (Concat(F1, F21, . . . F24))
)

(11)

F2soca = SOCA(F25) ∗ F25 (12)
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F2 = F1 ∗ β + F2soca (13)

where Concat represents the concatenate operation, CONVk3n32s1
f n represents the nth con-

volutional layer used for feature extraction of size 3 × 3, the output channel is 32, and
the step size is 1, LeakyRelu represents the activation function used, SOCA represents the
second-order channel attention mechanism, which is described in detail in Section 2.4.

The RRDCB enables the features to be fused at the multi-scale level and to perform
depth feature extraction, and captures the long-range dependencies between the depth
features again by the region-level non-local operation:

Fn = RRDCBn−1(RRDCBn−2(. . .)) (14)

Fnl2 = NonLocal(Fn (15)

Finally, the fusion of the shallow features and deep features through a skip connection
and bicubic linear interpolation is performed for the improvement of the resolution; after-
ward, refinement of the features is achieved by a combination of two-layer convolution and
Leak-Relu and the final SR result is obtained by a convolution layer and fine-tuning:

Fcoarse = F1 + Fnl2 (16)

Fre f ine1 = LeakyRelu(CONVk3n64s1(Upsample(Fcoarse))) (17)

Fre f ine2 = LeakyRelu(CONVk3n64s1(Fre f ine1)) (18)

ISR = CONVk3n64s1(Fre f ine2) (19)

The Upsample represents the bicubic linear interpolation upsampling, and
ISR ∈ RsH×sW×C is the final SR image.

2.3. Discriminator Network

The result of the discriminator network is shown in Figure 5. The role of the discrim-
inator is to determine whether the input is an SR or HR image based on the differences
in the distribution of the input image. The input, be it an SR image or an HR image, then
passes through a basic block consisting of convolutional layers, Leaky-Relu, and BN layers,
in which the convolutional layers are divided into two different step sizes. A convolutional
layer with a step size of 1 and kernel size of 3 × 3 is used for feature extraction, which is a
smaller computation than a 5 × 5 kernel size and a larger perceptual field than a 1 × 1 size.
A convolutional layer with a step size of 2 and kernel size of 4 × 4 is used to expand the
perceptual field of the network and reduce the resolution of the feature map to 1/2 of the
original. The whole process of the discriminator may be represented as follows:
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2.4. Second-Order Channel Attention Mechanism

Prior to Se-Net [53], the CNN mostly did not consider the interdependence between the
feature channels, and the Se-Net obtained the first-order statistics of each channel by global
pooling and adaptively learned the weights of each feature map by a fully connected layer.
Although a differentiated representation of the channels is obtained, higher-order statistics
are ignored, affecting the network’s differentiation of the importance of different channels.
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Some related work [54,55] has shown that second-order statistics in CNN networks are
of assistance in learning more discriminative representations. Therefore, in this study, a
second-order channel attention module (SOCA) was added to the generative network part
to enhance the differentiation ability of the network. The process whereby the second-order
channel attention is used in this paper is illustrated in Figure 6. For a feature map of
H ×W × C F = [F1, F2, . . . . . . , Fn], F is first reshaped into a matrix X of HW × C, and the
covariance matrix COV of X is calculated:

X′ = X− X (20)

COV =
1
c

X′X′T (21)

where X is the mean value of different channels at the same position. The covariance matrix
COV can represent the similarity between channel features. A positive covariance indicates
that the two channels have a positive relationship, whereas a negative covariance shows
that they have a negative relationship. If two channels do not vary together, then they will
display a zero covariance. The properties of the covariance matrix help to distinguish the
importance of channel features. Furthermore, normalizing the covariance matrix gives a
more differentiated representation of the features [55] due to the semi-positive nature of
the COV. The following eigenvalue decomposition can be performed:

COV = UΛUT (22)

where Λ is a diagonal matrix of non-decreasing eigenvalues of COV and U is a unit vector
of mutually orthogonal eigenvalues corresponding to each column. The normalization of
COV can be expressed as:

COV′ = UΛαUT (23)

where α is a positive real number that corresponds to an unnormalized number when
α = 1 and shrinks nonlinearly for eigenvalues greater than 1, and expands nonlinearly
for eigenvalues less than 1 when α < 1. As explored by Li et al. [54], the most effective
differentiation of the eigenchannels is when α = 1/2; therefore, α was set to 1/2.
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Figure 6. The process of second-order channel attention. H ×W × C represents the feature map
with length H, width W, and number of channels C. Cvar, WD, WU, and f represent the covariance
calculation, the fully connected layer for down-sampling, the fully connected layer for up-sampling
and the sigmoid activation function, respectively.

At this point, we obtain the covariance matrix COV′ = [y1, y2, . . . . . . , yn] of the nor-
malized feature channels, where the channel descriptor can be obtained by pooling each
line of COV′:

ZC = Hp(y(i)) =
1
C ∑C

1 y(i) (24)

where Hp(.) is the pooling operation performed in the channel dimension, compared to
the pooling operation in SE-Net, COV′ contains the dependencies between channels and
can better distinguish the feature channels. To allow the network to learn the inter-channel
weights adaptively, a fully connected layer is used to perform up-sampling and down-
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sampling operations on the channel descriptors Zc. Finally, the final channel weights w are
obtained by activating the sigmoid function, the process being as follows:

w = F(WU(δ(WD(Zc)))) (25)

where WU and WD represent the up-sampling and down-sampling processes, respectively;
δ denotes the Relu activation function; and F represents the sigmoid function.

2.5. Non-Local Module at the Regional Level

The conventional convolutional operation has a small perceptual field and can only
use the surrounding information. In order to obtain longer dependencies, it is necessary to
increase the depth of the network. However, the deepening of the network depth disrupts
low-level images while gaining a larger perceptual domain, which is important for the SR
task. The non-local module computes responses based on relationships between different
locations, which aids the reconstruction of spatial information in the SR task [56]. However,
in the SR task, the size of the feature map is too large, and the direct introduction of
the non-local module is computationally intensive, while similar features in the SR task
are usually within a certain range of domains; thus a region-level non-local module was
adopted to obtain intra-regional dependencies and reduce the original computation. The
calculation process within the non-local module is outlined in Figure 7. For an input feature
map KH × KW × C, the feature map was divided into K × K regions of equal size, where
the size of each region is H ×W × C. In each region X, the non-local module was used
to extract the dependencies, such a strategy reducing the original computational effort to
1/K2, and where K was set to 2 in this study. Within each region X, feature extraction was
first performed using three 1 × 1 convolutions, and the number of channels was changed
to c/2. We then calculated the correlation between the different positions by twice the dot
product. Finally, the number of channels was changed to C by a 1 × 1 convolution layer,
and the input of the module was added to the output through the residual connection.
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2.6. Loss Function

To reduce artifacts, a region-aware strategy was introduced to obtain the probability
distribution of the artifacts M. The artifact loss Lart is defined as:

Lart =‖ M · R1 ‖1 (26)

In previous work, it was demonstrated that the quality of the images could be measured by
the similarity between features [57–59], thus a very deep convolutional network (VGG) [60]
network was used to extract the features of the high-resolution images and super-resolution
images; we then calculated the L1 loss between the feature maps of the SR and HR images:

Lp = ∑
i

αi ‖ VGGi(IHR)−VGGi(ISR) ‖ (27)

where i represents the ith feature map of the VGG network before activation, and αi
represents the weight of this feature map. Referring to the SRGAN [18], the feature maps
of layers 3, 4, and 5 were used, and the weights were set to 1/4, 1/4, 1/2, respectively.

Unlike SRGAN, the relativistic discriminator [32] was used, and unlike the general
adversarial loss, the discriminator serves to estimate the probability that the real image is
relatively more realistic than the SR image, as calculated by the following expression:

DR(xr) = σ(D(xr)−Ex f (D(x f )))→ 1

DR(x f ) = σ(D(x f )−Exr (D(xr)))→ 0 (28)

where D represents the discriminator network, xr represents the HR image, x f represents
the SR image, E represents averaging the output of this batch, and σ represents the sigmoid
activation function. Compared with the traditional discriminator, which integrates the HR
image and SR image and maximizes the difference between them, the final adversarial loss
consists of two parts, the adversarial loss LG of the generator and the adversarial loss LD of
the discriminator:

LG = −Exr [log(1− DR(xr)]−Ex f [log(DR(x f )]

LD = −Exr [log(DR(xr)]−Ex f [log(1− DR(x f )] (29)

When optimizing the generator, given that DR(xr) is fixed, DR(x f ) is made as large as
possible. This strategy allows the generator to also use the discriminator to generate richer
texture information; when optimizing the discriminator, it will make DR(xr) as large as
possible and DR(x f ) as small as possible.

Given that using the L2 loss for the reconstruction of the LR images tends to result in
excessive smoothing [61], L1 loss is used to constrain the reconstructed image:

L1 = EI ‖ IHR − ISR ‖1 (30)

EI represents the mean value calculation.
The total losses of the network are as follows:

L = λ1 ∗ L1 + λ2 ∗ LP + λ3 ∗ LG + λ4 ∗ LD + λ5 ∗ Lart (31)

where λ is the weight coefficient of each component. In this study, λ1, λ2, λ3, λ4, λ5 were
set to 1, 1, 0.05, 1, 1, respectively.

3. Results

In this section, the commentary is given on the following topics: the proposed dataset,
comparison with other current state-of-the-art models, ablation experiments, spectral
validation, and migration experiments.
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3.1. Dataset

In previous studies, most datasets were produced by adding noise and blur to the
down-sampled HR images to realize paired LR-HR image pairs, but the trained datasets
based on this approach are often poor in terms of recovery in the real remote sensing
images. To solve this problem, this study did not use publicly available datasets but built
SR datasets based on four bands (red band, green band, blue band, and NIR band) GF
satellite data with different spatial resolutions so that the model can learn more complex
mapping relationships. The dataset consists of data from satellites GF7, GF2, GF1, and GF6,
and the spatial resolution of each satellite is shown in Table 1.

Table 1. The spatial resolution of each satellite.

Satellite PAN Spatial Resolution/m Multi-Spectral Spatial
Resolution/m

GF1 2.0 8.0
GF2 0.8 3.2
GF6 1.0 2.0
GF7 0.8 3.2

Satellite data were selected from four regions in China, that is, Beijing, Ordos, Guangzhou,
and Fuzhou. In terms of time, to minimize the influences of environmental change, LR and
HR images with similar times as possible were selected, of which the satellites used in each
region and the times are shown in Table 2.

Table 2. The shooting times and satellites in the different regions. In the following table, LR and HR
are relative.

City LR Satellite HR Satellite LR Shooting Time HR Shooting Time

Beijing GF1B GF2 1 December 2021 1 December 2021
Guangzhou GF7 GF1 11 October 2020 11 October 2020

Fuzhou GF1C GF2 18 March 2022 18 March 2022
Ordos GF6 GF7 6 July 2022 6 July 2022

We first performed a radiometric correction based on the calibration coefficients of the
GF satellites. An improved OptVM [62] is applied for band fusion. It can produce a high-
resolution panchromatic image from a low-resolution multi-spectral image automatically.
Afterward, the SIFT feature constraint optical flow method (SIFT-OFM) [62] is used to
register images. Given that the spatial resolution of the HR image was 0.8 m, the existing
model can only super-resolve the image by an integer multiple, while the spatial resolution
of the LR image is 2 m; therefore, we down-sampled the HR image to 1 m by using a cubic
function. Opencv2 was then used to crop the HR and LR images to 200× 200 and 100 × 100,
respectively, according to the latitude and longitude. A total of 9246 image pairs were
finally generated. The images were divided randomly, with 90% serving as the training
data and 10% as the validation data. The PRISMA diagram for sample identification in the
study is shown in Figure 8a, and the final resulting dataset is shown in Figure 8b.

3.2. Training Details

The network is composed of two parts, the discriminator network and the generator
network. The discriminator network consists of five basic blocks, and each block includes a
convolutional layer responsible for feature extraction, a convolutional layer for feature map
size reduction, and a BN layer where the input feature map size is 100 × 100. The generator
part consists of 23 RRDCB blocks, and the number of input channels in each RRDCB block
is 64; the growth of each channel in the RRDCB internal layer is 32. The generator and
discriminator optimizers are based on the work of Adam [50].
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During the training process, the input LR-HR image pairs are cropped randomly into
50 × 50 and 100 × 100 and subjected to data enhancement operations such as horizontal
flip, vertical flip, and rotation. The PyTorch framework is employed to train on two Nvidia
A4000 chips with a memory size of 16 GB. Further details of the experiments are given in
Table 3.
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Table 3. Experimental details.

Parameter Value

Batch size 6
Traing Iter numbers 450,000
Optimization method Adam, β1 = 0.9, β2 = 0.99
Learing rate 1 × 10−4

3.3. Evaluation Metrics

The peak signal-to-noise ratio (PSNR) [63], the structural similarity (SSIM) [64], the
Frechet inception distance score (FID) [65], and the learned perceptual image patch similar-
ity (LPIPS) [66] were selected as the evaluation metrics. The PSNR gives a measure of the
degree of distortion by calculating the squared pixel-by-pixel difference between the LR
and HR images; a larger PSNR value indicates that the two images are more similar. The
PSNR is calculated as follows:

PSNR = 10 log10
MAX
MSE

(32)

where MAX is the maximum value of pixels in the image, and the MSE is given by:

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [ISR − IHR]
2 (33)

SSIM gives a measure of the similarity of an image by comparing the brightness,
contrast, and structure of the two images; the larger the SSIM value, the better the result for
image recovery. The formula for calculating the SSIM is given by Equation (34).

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (34)

The PSNR and SSIM are traditional metrics for the evaluation of image quality; how-
ever, there are two problems with using only PSNR and SSIM for evaluation. First, the
PSNR and SSIM do not truly reflect the quality of the images of some scenes, and higher
values do not necessarily represent better quality, as is demonstrated below in the visual-
ization of the structure. Second, the model adopted in this study is based on generative
adversarial networks, and the PSNR and SSIM do not consider the relationship between
the direct probability distribution of the generated samples and the real samples. Hence,
the FID and LPIPS have been included in the suite of metrics to evaluate the quality of
image recovery.

The FID is a metric to calculate the distance between the real image and the feature
vectors of the generated image. It was shown to correlate well with the human judgment
of visual quality and is most often used to evaluate the quality of samples of generative
adversarial networks. FID is calculated by computing the Fréchet distance between two
Gaussians fitted to feature representations of the Inception network. The higher the quality
of image generation, the FID is calculated as follows:

FID(x, y) =‖ µx − µy ‖2
2 +Trace(∑

x
+∑

y
−2(∑

x
∑
y
)

1
2 ) (35)

where ‖ . ‖2
2 represents the square of L2 parametrization; Trace(.) represents the trace of

the matrix; µx, µy are the means of the real image feature vector and the generated image,
respectively; ∑x, ∑y are the variances of the real image feature and the generated image
feature, respectively.

The LPIPS uses a VGG network to extract features from the generated image and the
real image and evaluates the similarity between the two images by measuring the square
of the L2 the parametric number between the generated image features as well as the real
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image features, systematically evaluate deep features across different architectures and
tasks. The value for the LPIPS is calculated as follows:

∑
l

1
HlWl

∑
h,w
‖ ωl � (xhw)

l −
(

yl
hw

)
‖2

2 (36)

where x, y represent the features of the lth feature layer of the generated image and the
real image, and ωl is a preset value for the lth feature layer weight. The smaller the LPIPS
value, the more similar the generated image is to the real image.

3.4. Comparison with Existing Models

In this study, the bicubic, the super-resolution residual network (SRResNet), the
enhanced deep super resolution (EDSR), the residual channel attention network (RCAN),
the super-resolution generative adversarial network (SRGAN), and the enhanced super
resolution generative adversarial network (ESRGAN) are used in comparison analyses with
the proposed model, in which 16 residual blocks are used in the SRResNet, and the number
of channels of feature maps within each residual block is 64; the EDSR uses 32 residual
blocks, and the number of channels in each residual block is 256; the RCAN uses 10 RCAB
groups consisting of RB basic blocks, and each RCAB group includes 20 RB blocks and
the number of channels in each basic block is 64; the SRGAN has the same generator
configuration as the SRResNet, the discriminator uses the VGG network where the depth
of the VGG is 5, and the number of input channels to the discriminator is 64; the generator
of the ESRGAN consists of 23 RRDB blocks, the number of feature channels within each
basic block is 64, the number for channel growth is set to 32, each block includes five
dense residual connected convolutional layers, and the discriminator is the same as for the
SRGAN. These methods are retrained on our proposed dataset to achieve a fair comparison
network, and the number of input channels for the discriminator is 64; moreover, to allow
a fair comparison, these methods are retrained on the training set of our proposed dataset
and tested on the test set.

The values of the PSNR, SSIM, LPIPS, and the FID of the model in the validation
dataset after 450,000 iterations are presented in Table 4.

Table 4. Quantitative evaluation results for all methods in the dataset. The bold represents the best
value for each indicator.

Model PSNR↑ SSIM↑ FID↓ LPIPS↓
Bicubic 16.8941 0.5748 0.5454 71.6800
SRResNet 26.3265 0.6626 0.423 66.7573
EDSR 27.4176 0.7172 0.352 51.4357
RCAN 26.6851 0.6828 0.3995 54.0291
SRGAN 24.7729 0.5922 0.2892 20.0514
ESRGAN 24.8220 0.5906 0.2829 19.1266
Ours 26.7169 0.6890 0.2329 17.9571

As can be seen in Table 4, the EDSR achieves the best value for the PSNR and the SSIM
metrics, while all the CNN models significantly outperform the GAN in terms of metrics,
mainly because both the PSNR and the SSIM are computed using simple relationships
between the pixel values of the image, which is similar to the definition of the loss function
in the CNN networks; however, the proposed method achieves greater improvements in
both metrics compared to the GAN-based methods. With respect to the PSNR and the SSIM,
our model is only lower than the EDSR model by 0.7325 DB and 0.0344 DB, respectively.
Our model achieves the best results for LPIPS and FID, and contrary to the previous, the
GAN-based model outperforms the CNN-based model on these two metrics; moreover, the
proposed method is 0.05 and 1.1695 lower than the second-ranked method on the LPIPS
and FID, respectively.
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In Figure 9, it can be seen that the CNN-based approach tends to generate results that
are too smooth, while the GAN-based approach is able to generate more detail. Compared
with other GAN-based methods, the visual quality of the present method is also the
best. From the visualization results, our model has three advantages. First, we are able to
produce more detail. As shown in Figure 9a, the proposed method has a clearer and sharper
reduction in zebra lines, and in Figure 9b, there is a more accurate reduction in the container
edges. Second, the second-order attention mechanism makes the color reproduction of the
feature more accurate; as in Figure 9b, the color reproduction is closer to the original image.
Third, with the help of the region-aware strategy, our image produces fewer artifacts; as
can be seen in Figure 9c, the other two GAN-based methods display incorrect textures on
some houses, whereas in the present method, it can basically restore the real situation of the
houses correctly. Moreover, in Figure 9d, the other methods present a coarser restoration of
the blue roof (see below), while our method is smoother and conforms to the HR image. In
addition, from the visualization results, it can be concluded that the FID and LPIPS metrics
are more in keeping with the public’s perceptions compared to the PSNR and the SSIM.Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 28 
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Figure 9. Visual comparison of some representative SR methods and the proposed model, the figure
on the right is an enlargement of the area in red on the left: (a) road; (b) container; (c) residential
buildings; (d) factory.

3.5. Ablation Study

To illustrate the effectiveness of the modifications, the results of several ablation
experiments are considered. We gradually add region-aware strategies, second-order
attention mechanisms, and region-level non-local modules to the baseline model and train
them with the same configuration and test them on the validation set. The comparison data
for each metric are presented in Table 5, and the entire visualization process is shown in
Figure 10.

Table 5. The effect of gradual addition of different components on the performance of the model in
relation to that of the baseline model. RA represents the region-aware strategy, SA represents the
second-order channel attention mechanism, and NL represents the region-level non-local module.
The bold represents the best value for each indicator.

Model PSNR↑ SSIM↑ FID↓ LPIPS↓
Baseline 24.822 0.5906 0.2829 19.1266

+RA 26.2936 0.6691 0.2426 18.5648
+RA + SA 26.6243 0.6819 0.2370 17.7798

+RA + SA + NL 26.7169 0.6890 0.2329 17.9571
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the proposed method.

As can be seen from Table 5, the metrics of the model improve overall when adding
different modules, and where the model used in this study delivers the best performance
of all the metrics with the exception of the LPIPS. The three improvements are ordered in
descending order of influence as region-aware strategy, second-order channel attention
mechanism, and region-level non-local module, compared to the baseline model. The
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model used in this work delivers the best performance in terms of the PSNR, the SSIM,
the FID, and the LPIPS, the metrics being improved by 7.64%, 16.61%, 17.67%, and 6.11%,
respectively. However, the LPIPS value did not improve after adding the region-level
non-local module. It is considered that the NL is less appropriate for applying to the
LPIPS. The LPIPS values are calculated by extracting high-level features from the network,
while the non-local module is more helpful for the reconstruction of spatial information,
such as edges, textures, etc., which are low-level features. In addition, high-level features
are generally more concerned with global information, while low-level features are more
concerned with local information; thus, there is no direct correlation between them. Our
non-local module only computes in local regions of the images to reduce the computation
time. The combination of the above factors causes a small decrease in the LPIPS.

As shown in Figure 10, the baseline model has a light blue artifact for the roof. After
adding the region-aware strategy, the artifact disappears, and more detailed information is
generated at the same time. However, the color of the building roof becomes grayish, while
in the HR image, it is white. After adding the second-order channel attention mechanism,
the roof color reverts to white, as observed in the HR image. Finally, by adding the non-local
module, the outer contour of the building is more accurate, and at the same time, the roof
becomes smoother.

3.6. Spectral Validation

In addition to visual enhancement, when further applying SR images, we need to
ensure that the reflectance values are similar to those of real LR or SR satellite images. In
this section, analysis was undertaken to verify that the spectral content of the SR image
was similar to the real image under the different preprocessing scenarios.

The LR, HR, and SR histograms of an image from a test set are presented in Figure 11a.
As can be seen, the histogram of the SR image is more similar to the HR image, which
indicates that the proposed model learns the spectral information of the HR image through
training. The reflectance values of 10,000 randomly selected pixels from the test data from
HR and SR images are plotted in Figure 11b. From the scatter plot, an extremely strong
correlation between SR images and HR images can also be found.

However, the spectral characteristics of both SR images and HR images are signif-
icantly different from those of LR images. We believe this is due to sensor differences
between satellites. Further, to verify that the model also has the ability to retain the spectral
information of the LR images. We reprocessed the images of the Guangzhou area; in
addition to the preprocessing in Section 3.1, the relative radiometric correction using the
histogram matching was performed on the HR images and LR images with Sentinel-2 im-
ages as the reference in the same period, and experiments were conducted on the respective
test sets. As shown in Figure 12, after relative radiation corrected LR, HR and SR images
have similar colors. SR images also obtained by the model can also retain the spectral
information of the LR images well as a result of the additional preprocessing. Further,
the reflectance values showed a strong correlation. The above experimental model can
maintain the LR spectral information.

3.7. Migration Experiments

In this section, the proposed model is used to enhance the spatial resolution of the
GF1 satellites from 2 m to 1 m. The datasets originate from the GF1B satellite image of
Beijing on 21 October 2021 and the GF1D satellite image of Hanzhong, Shaanxi Province,
on 6 July 2022. The migration experiments for the two-view remote sensing images verify
the robustness of the model in time as well as in area.

The left column in Figure 13 represents the original whole-view image as well as the
whole-view image after SR, where the red-rectangle regions and the zoom-in can be further
visualized in terms of the local details within each area. The SR results reveal that the
proposed method performs well in terms of visual quality. From the visualization results it
can be seen that the edges of the image after SR are enhanced, and the information detail
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is enriched, thus confirming the excellent visual performance of the model in processing
real-world data.
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4. Discussion

In this study, we constructed an SR dataset of GF satellite images at various spatial
resolutions to simulate a real degradation process. Previously reported models were
improved, and related experiments were performed. The results in Sections 3.4 and 3.5
demonstrated that the proposed model exhibited good performance on the validation
dataset. Moreover, the model outperformed all GAN-based models with respect to both
the evaluation metrics and the visual aspects. In addition, we discussed the experimental
results in combination with theoretical analysis.



Remote Sens. 2023, 15, 1391 22 of 26

(1) Impact of region-aware strategy: The region-aware strategy locates artifacts by
taking the variance of the residual map as the basis while using the EMA. Theoretically, the
variance of the artifacts on the SR and the residuals of the HR images should be larger. The
smaller variance values indicated that the SR images have an identical deviation in pixel
values compared to the HR images, and this only causes the wrong color to be displayed.
Therefore, the small variance values in certain regions should not be judged as artifacts.
The experimental results are also consistent with the aforementioned conjecture. As shown
in Table 4, the new strategy can significantly improve the performance of the model, and
the visualization results from Figure 9 illustrate that the artifacts can be reduced in both
detail-rich regions and smooth regions, thus confirming the effectiveness of the strategy.

(2) Impact of the second-order channel attention mechanism: The second-order chan-
nel attention provides more a priori information through normalization of the covariance
matrix of the feature map, allowing the network to adjust the channel weights adaptively.
Its main impact is a more accurate representation of the color. As can be seen in Table 4, the
method can effectively improve the performance indicators. The visualization results of
Figures 9 and 10 show that this mechanism has an important role in the accurate restoration
of the color of the image.

(3) Impact of the region-level non-local module: The region-level non-local module
can calculate the dependency of the features that make full use of similar features in the
neighboring region. It can be seen in Table 4 that the method improves the metrics other
than the LPIPS. From inspection of the visualization results in Figures 9 and 10, it can be
seen that this module can help in the restoration of feature contours.

(4) Comparison with other models: Compared to CNN-based approaches such as
EDSR and RCAN, our model produces richer textures through adversarial learning; com-
pared to SRGAN and ESRGAN, our method reduces the generation of artifacts while
restoring color and structural information more accurately. Furthermore, most previous
studies based on real satellite data used sentinel satellites [44–46], while we demonstrate
the feasibility of the SR task at the meter level resolution by using GF satellites.

(5) Limits of method: First, the error in the geometric correction of the training data
is basically within five pixels. If the error is too large, it will have an impact on the
performance of the model. Second, due to the difference in the solar altitude angle, some
higher buildings produce huge deviations in images of different spatial resolutions, and
this affects the model accuracy to some extent. Third, the SOCA module calculates the
covariance matrix and the eigenvalue decomposition process with high time complexity,
which leads to a slow calculation speed when the input image or the number of input
bands is too large.

5. Conclusions

A GAN network, which achieves good performance in data processing of the GF
satellite images, has been developed. Specifically, a realistic degradation-based HR dataset
using GF satellite data at different resolutions has been realized. In terms of the model,
artifact generation is constrained through a region-aware strategy and the addition of a
second-order channel attention mechanism at the end of the RRDCB, which adaptively
learns the channel features. Finally, a region-level non-local module is added at the begin-
ning and end of the network to take advantage of the similarity of intra-region features.
Comparative experiments demonstrated that the proposed method enriches the texture
details of the reconstructed images of the proposed dataset and that the results for the
reconstructed images are superior to previous methods with respect to the FID and LPIPS.
Moreover, we can keep the spectral information very well. The migration experiments for
the GF1 satellites further demonstrate the effectiveness of the proposed method in different
times and regions. Due to the improvement of spatial resolution, the proposed SR method
is designed as a preprocessing step for small object detection, fine land cover classification,
high time–frequency change detection, etc. In future work, two issues will be addressed.
First, we intend to perform 4× SR work based on real remote sensing satellites, such as
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using the GF satellite and the Quick bird satellite images. Second, there is a problem of
ground LR-HR mismatch in real scenes due to the use of different satellite shooting angles.
Correction modules will be added to the network with the aim of solving this problem.
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Abbreviations
The following abbreviations are used in this manuscript:

HR High resolution
LR Low resolution
SR Super resolution
SA-GAN Second order attention generator adversarial network
GF GaoFen
CNN Convolutional neural network
SRResNet Super-resolution residual network
EDSR Enhanced deep super resolution
RCAN Residual channel attention network
GAN Generating adversarial network
SRGAN Super resolution generative adversarial network
Esrgan Enchanced super resolution generative adversarial network
RRDCB Residual in residual dense channel attention block
VGG Very deep convolutional networks
SOCA Second order channel attention
RA Region aware
NL Non-local
PSNR Peak signal-to-noise ratio
SSIM Structural similarity
FID Frechet inception distance score
LPIPS Learned perceptual image patch similarity
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