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Abstract: Habitat mapping is essential for the management and monitoring of Natura 2000 sites.
Time-consuming field surveys are still the most frequently used solution for the implementation of the
European Habitats Directive, but the use of remote sensing tools for this is becoming more common.
The high temporal resolution of Sentinel-2 data, registering the visible, near, and shortwave infrared
ranges of the electromagnetic spectrum, makes them valuable material in this context. In this study,
we aimed to use multitemporal Sentinel-2 data for mapping three grassland Natura 2000 habitats
in Poland. We performed the classification based on spectro-temporal features extracted from data
collected from eight different terms within the year 2017 using Convolutional Neural Networks
(CNNs), and we also tested other widely used machine learning algorithms for comparison, such
as Random Forests (RFs) and Support Vector Machines (SVMs). Based on ground truth data, we
randomly selected training and validation polygons and then performed the evaluation iteratively
(100 times). The best resulting median F1 accuracies that we obtained for habitats were as follows:
6210, 0.85; 6410, 0.80; and 6510, 0.84 (with SVM). Finally, we concluded that the accuracy of the results
was comparable, but we obtained the best results using SVM (median OA = 88%, with 86% for RF
and 84% for CNNs). In this work, we confirmed the usefulness of the spectral dimension of Sentinel-2
time series data for mapping grassland habitats, and researchers of future work can further develop
the use of CNNs for this purpose.

Keywords: grassland habitat; mapping; time series; meadows; phenology; CNNs; SVMs; RFs

1. Introduction

The European Habitat Directive [1] states that Natura 2000 sites should be monitored,
e.g., via habitat mapping, and that they must be updated every six years. Alongside ground
truth data collection, this is of high importance; however, relying only on this source of data
can lead to ineffectiveness, especially when dealing with large areas. Earth Observation
(EO) programs are opening up newer and newer possibilities, raising the need to use newer
and newer solutions via data, tools, algorithms, etc. Regarding the aforementioned six-year
reporting aspect, the most optimal solutions should be of high quality but should also be
time- and cost-efficient.

Within the Natura 2000 network, 233 habitats listed in Annex 1 of the Council Directive
are protected throughout Europe. Terrestrial and aquatic ecosystems are protected. Among
them, grasslands have a special role because they are the most diverse land ecosystems in
Europe [2]. In remote sensing, grassland habitats are one of the most challenging objects
for mapping due to their complexity, land use changes, and different physiognomy during
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phenological seasons [3,4]. Grassland species that contribute to particular habitats also ap-
pear in other habitats or non-habitat plant communities, leading to class mixing and errors
in accuracy [5]. Attention should also be paid to their locations in different biogeographical
regions—the same species-forming habitats may have different physiognomy in different
areas (e.g., Mediterranean vs. continental).

Due to the diversity of grassland Natura 2000 habitats, much research has been
conducted using airborne data [6–10]. Results have often been satisfactory; however,
these solutions do not ensure the free repeatability of the conducted analyses relevant
to monitoring. The spectral properties of vegetation change over the year due to the
phenological development of species. This phenomenon was used to map grassland
Natura 2000 habitats [3,11] on RapidEye scenes. However, RapidEye data, which provide
a spectral range from visible to near infrared (NIR), are indicated as a limitation for the
analysis of vegetation because of their lack of the moisture-sensitive shortwave infrared
(SWIR) range [12,13]. Hence, the combination of the two possibilities, i.e., the possibility of
capturing seasonal differences (due to high temporal resolution) and the possibility of fully
registering the properties of vegetation (due to spectral resolution) seems to be the most
efficient solution for accurate vegetation mapping. A short revisit time is provided by the
MODIS instrument, and for large-scale (e.g., all of Germany) habitats, mapping with 8-day
composites can be performed. However, the authors of this work did not focus in detail
on grasslands, but on all dominant habitats, using a pixel size of 500 m [14]. On a smaller
scale, this pixel size may not be sufficient. In this case, the Sentinel-2 mission offers a 5-day
revisit time with a pixel size of 10–20 m, which can be considered promising. This has been
widely explored for forest [15–19] and non-forest vegetation mapping [20–23], including
grassland Natura 2000 habitats in the Mediterranean area [24,25].

Machine learning algorithms are commonly used for the classification of remote
sensing data. The ensemble classifier, e.g., Random Forest (RF), introduced by Breiman in
2001 [26], is one of the most popular algorithms used in vegetation mapping [20,27–29].
The result of classification is based on majority voting from multiple decision trees and the
bagging and bootstrap techniques. Bagging is a technique that helps combat overfitting by
supplying each decision tree with randomly sampled reference data, such that each tree is
trained using a slightly different training dataset. In addition, data that are not selected
with bagging are used to determine the quick accuracy of the trained model, reporting
this accuracy as an out-of-bag (OOB) error. RFs are often comparable with kernel-based
Support Vector Machines (SVMs) in terms of robustness and performance in vegetation
mapping [29–33]. SVMs were introduced in the late 1970s for binary classification, and
their application was further expanded to multiclass problems [34]. They determine a
hyperplane for separate classes, and their performance depends on the selection of an
appropriate kernel function to use in a high-dimensional feature space, of which the most
popular are linear, the radial basis function, polynomial, and sigmoid. Typically, SVMs are
controlled by the number of parameters that are dependent on the used kernel function.
Most use the cost of the penalty (C) parameter, which controls the trade-off between errors
and forces margins between classes, and the gamma parameter indicates the width of
the Gaussian function. Recent times have witnessed a resurgence in interest in the use
of advanced artificial neural network concepts, such as Convolutional Neural Networks
(CNNs). The concept CNN was introduced by LeCun et al. in 1989, but due to insufficiently
advanced computers at the time, they were not widely adapted [35]. The first work showing
the more practical application of CNNs was authored by Krizehevsky et al. in 2012, which
can be considered a watershed moment for the reintensification of the practical application
of artificial neural networks across many domains of science and industry [36]. Since
then, CNNs have been used primarily in image vision and image classification tasks with
success [37,38]. In principle, a CNN consists of two parts: a convolution and a deep neural
network. This, in practice, gives such networks the ability to first extract the most valuable
information (by using transformations such as filtering and image convolution), which is
then fed into the deep neural network, which tries to find the optimal solution to the given
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problem. The convolution part of CNNs most often employs two image transformations:
convolution via a trainable kernel and subsampling, called pooling. Convolutions aim to
create new predictors by convolving data with a trainable kernel so that the result highlights
the most unique qualities of the dataset. Kernel functions being trainable allows the network
to test which kernel is the most efficient at that task. However, polling generalizes the input,
which further enhances the information load while discarding noise. Moreover, CNN
architecture can be adapted to a variety of input data, such as one-dimensional vectors,
two-dimensional images with or without spectral bands, and multi-dimensional tensors.
In vegetation mapping (in particular, Natura 2000 habitats), compared with deep learning
algorithms, SVMs and RFs are more widely used because of their lower computational
costs and also due to their higher possibilities of interpretability.

In this study, we evaluated the potential of using Sentinel-2 multitemporal data for
the classification of three grassland Natura 2000 habitats in Poland. As mentioned above,
several studies have been conducted to classify different Natura 2000 habitats with various
sensor data; however, to the best of our knowledge, very few researchers have utilized
multitemporal Sentinel-2 images in conjunction with machine/deep learning utilizing the
same classification scheme for this purpose. Hence, we utilized CNNs with SVMs and RFs
for our investigation, and we compared the obtained results.

2. Materials and Methods
2.1. Study Site

The study area (2465 ha) is located in southern Poland. The “Ostoja Nidziańska”
Natura 2000 site (code PLH260003) covers about 1894 ha, and the rest is covered mainly by
built-up areas and agricultural land (about 571 ha; Figure 1).
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Figure 1. Study site: (a) Location in Poland and neighboring borders; basemap: © EuroGeograph-
ics for administrative boundaries; (b) Sentinel-2 data of Ostoja Nidziańska Natura 2000 site from
16 August 2017 (RGB 432 composite); vector layer: [39].

Three grassland Natura 2000 habitats occur in this area: semi-natural dry grasslands
and scrubland facies on calcareous substrates (Festuco-Brometalia, 6210 code); Molinia
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meadows on calcareous, peaty, or clay silt-laden soils (Molinion caeruleae, 6410 code); and
lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis, 6510 code). A detailed
description of them is provided in another study [7].

2.2. Ground Truth Data

The reference data came from the Habitats Airborne Remote Sensing (HabitARS)
project, devoted to the use of the multisensor airborne platform to identify Natura 2000
habitats [28]. We collected the data for this study from three campaigns on 18 May, 30 July,
and 27 September 2017. Measurements were performed using the Global Navigation Satel-
lite System (GNSS) Spectra Precision GPS MobileMapper 120 receiver (Spectra Geospatial,
Westminster, CA, USA). It covered three habitats and a “background” class including
other non-forest vegetation communities. Detailed reference data collection for each field
campaign in this area was described by the authors of another study [7]. However, be-
cause field data were initially collected for use with 1-m airborne data pixels (circle with a
3-m radius, inside the patch of the habitat), we adjusted them to the spatial resolution of
Sentinel-2. In order to select only polygons that fit into the Sentinel-2 pixel grid, we visually
assessed all reference data in terms of the placement of pixels (to avoid the use of mixed
signals) and shadow occurrences (we excluded shadowed polygons from any date). Visual
interpretation was supported with the use of 10 cm resolution aerial imagery collected
synchronously with the collection of field data on 18 May, 30 July, and 27 September. Due
to the fact that, apart from habitats and other communities, a substantial part of the area
is covered with forests, we created an additional background class in the legend (due to
small areas covered with buildings or water, we omitted these classes in the classification,
assuming the possibility of imposing a vector layer presenting them from the national
land cover database). We created the polygons of forests based on visual interpretations of
image data. We list the number of polygons selected for each habitat and background class
in Table 1.

Table 1. Number of reference polygons and pixels used for classification.

Class No. of Polygons No. of Pixels

habitats:
6210 264 548
6410 172 290
6510 207 438

background:
forest 203 365

other non-forest 771 1757
sum 1617 3398

2.3. Sentinel-2 Images

We acquired Sentinel-2 scene tiles from the Copernicus Open Access Hub for the study
area for the year 2017. The assumption was to use all cloudless data presenting seasonal
changes for growing vegetation, which resulted in the collection of eight tiles. We present
the exact dates and specific satellites (Sentinel-2A or B) in Table 2. Some vegetation studies
have presented time series analyses for a whole year, including winter images [23–25];
however, at this latitude, the position of the sun as well as snow cover for these months
affects the reflectance. Therefore, we did not apply it, and we only took the period of
vegetation growth into account. As the researched habitats are semi-natural, they are
mown (one or two times per year, between June and September), and we treated this
feature as their specificity during the growing season. The actual mowing time of each
patch varied because the studied grasslands belong to different owners.
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Table 2. Dates and main satellite data characteristics.

Date Satellite Processing Level

18 May 2017 S2A 2A
28 May 2017 S2A 2A
27 June 2017 S2A 2A

3 August 2017 S2A 2A
16 August 2017 S2A 2A
31 August 2017 S2B 1C
02 October 2017 S2A 2A
17 October 2017 S2B 1C

Level-2A Bottom-Of-Atmosphere (BOA) reflectance products were available for most
cases, and we only processed two downloaded images into Level-1C Top-Of-Atmosphere
(TOA) products. Hence, atmospheric correction was necessary. We accomplished this using
the Sentinel Application Platform (SNAP, Brockmann Consult, Skywatch, Sensar, and C-S)
with the Sen2cor processor plugin [40]. Next, we removed three atmospheric bands (B1, B9,
and B10) from the datasets, and we resampled the remaining 20-m bands to 10 m using the
geometric operations ‘resampling’ tool in SNAP. We stacked all images into one dataset
according to band order and time. We show the spectro-temporal patterns of habitats and
backgrounds in Figure 2 (presenting data as a continuum across the temporal domain is
motivated by the desire to exploit both the temporal and spectral domains simultaneously).
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Figure 2. Mean reflectance curves extracted for each class from the spectro-temporal dataset. Curves
present spectral band data across acquisition times with single-unit spacing, representing spectro-
temporal data fed into classification algorithms. Curves offset for clarity (5 percentage points
in reflectance).

2.4. Classification and Accuracy Assessment

We classified the multitemporal spectral data into five classes (three habitats and two
background classes) using three classification methods: Convolutional Neural Networks
(CNNs), Random Forest (RF), and Support Vector Machine (SVM) (see next subsections)
using the R environment [41] and a pixel-based approach. Moreover, the interactions
between vector and raster data used the raster [42], rgdal [43], caret [44], and foreach [45]
libraries. The hardware environment for the classifications was as follows: AMD Ryzen
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2700x processor, NVIDIA GeForce GTX 1080 Ti graphics card, 16 GB of DDR 4 RAM@2933
mHz frequency, and we performed the calculations on the Samsung SSD 870QVO disc.

In order to objectively compare the tested algorithms, we used the iterative accuracy
assessment technique [46]. The whole procedure repeats the algorithm training and valida-
tion process multiple times in order to reduce the influence of the training and validation
datasets on the results. Typically, reference data are split into training and validation
datasets either arbitrarily or randomly. Most often, this process happens only once; thus,
the usefulness of randomized sampling is diminished. The iterative accuracy assessment
technique splits reference data into training and validation sets 100 times using stratified
random sampling. The training dataset contains 63.2% of the samples for each class, and
the remaining samples are moved to the validation dataset (Table 3). Upon each iteration,
each algorithm is trained using the same training dataset and is then validated using the
validation dataset to assess accuracy [47]. To assess the accuracy of the obtained results,
we determined the F1 accuracy for each class [48], as well as the overall accuracy (OA) for
whole classified datasets [49]. We generated the final maps for each classifier using the
trained model that achieved the highest mean F1 accuracy for all classes obtained from
each classification.

Table 3. Number of pixel samples in each class.

Class Training Dataset Validation Dataset

habitats:
6210 347 201
6410 184 106
6510 277 161

background:
forest 231 134

other non-forest 1111 646
sum 2150 1248

2.4.1. CNNs

In order to simulate artificial neural networks, we used the tensorflow [50] and
keras [51] libraries. We adapted the artificial neural network to use one-dimensional
vectors symbolizing a time series, with the following shape: [number of samples; number
of bands, 1]. We developed the CNN architecture by performing a series of experiments,
and each used the same data but different architecture. We selected the most promising
architecture for further work. Regarding the applied CNN architecture, the first input
data was fed into three consecutive convolution layers with 96 filters each (Figure 3). The
resulting data were fed into three feature extraction blocks, and each was followed by
a pooling and spatial dropout layer. Lastly, the transformed data was fed into a deep
neural network with three layers, each consisting of 1024 neurons, 1 normalization layer,
and dropout layers. The feature extraction block is heavily inspired by Inception archi-
tecture [52], which, in principle, tries to extract both high-resolution and low-resolution
patterns from the input.

2.4.2. RF

We selected the main RF parameters such as mtry, indicating the number of features
selected for the best data split, and ntree, indicating the number of decision trees, based on
tuning with the use of the tuneRF tool from the randomForest library, which we also used
to perform the whole procedure [53]. The TuneRF procedure was controlled by parameter
stepFactor equal to 1.2, starting mtry of 30 and minimum improvement over previous
models was set to 0.001.
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2.4.3. SVM

We performed classification with SVM using the e1071 package [54]. We performed the
selection of the kernel function and training using the ‘tune.svm’ function. The following
combinations of parameter C (cost) and gamma were tested: C from 10 to 1000 by 10; and
gamma from 0.1 to 1 with a step of 0.1. Additionally linear, radial, polynomial, and sigmoid
kernel functions were tested.
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3. Results
3.1. Selected Parameters for Classifiers

For CNNs, the developed model was from the 126th epoch. The training loss function
value was 0.27, and the validation loss function value was 0.32 (Figure 4).
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The selected parameter values for the RF method were as follows: ntree, 500; and
mtry, 36. The literature confirms that having the number of trees equal to 500 stabilizes the
errors before this number is achieved [55].

For SVM, we chose RBF, and from parameter tuning, we determined that the best
configuration was C equal to 1000 and gamma equal to 0.1.

3.2. Habitat Maps and Accuracies

As a result of each classification, we obtained maps of the distribution of the five
classes (Figures 5a–c and 6a–c). Their qualitative assessment, in general, showed a similar
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distribution of habitats and background classes. By analyzing the algorithms’ performances,
we observed that the map produced with CNNs appeared to be more detailed than that of
RF and SVM, and some habitats were overestimated (in particular, habitat 6410 in the north
part of the area where the floodplain actually is; Figure 5a). In addition, a slight mixing of
the other non-forest background classes with habitat classes was noticeable (the habitats
themselves did not mix with each other).
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Figure 5. Maps of habitats and backgrounds produced with different algorithms: (a) CNNs, (b) RF,
(c) SVM, and (d) Sentinel-2 data from 16 August 2017 (RGB 432 composition). Squares represent
examples of the larger share of the area occupied by each habitat (colors correspond to Figure 6).

More specifically, habitat 6210, occurring on the slopes, was mainly classified along
the hill covered with forests (Figure 6a). On the resulting maps from CNNs and RF, it is
slightly overestimated, which also occurred in other parts of the image (e.g., Figure 6b,c),
where no conditions were conducive to their occurrence. Many smaller patches of habitat
6410 along the roads were also overestimated on the CNN map. Habitat 6510 was quite
similarly classified on three maps; however, most pixels classified as habitats were on the
CNN map. The SVM maps, in all cases, seemed to overestimate habitats the least; however,
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forests could sometimes be underestimated (trees along the roads; Figure 6a–c). Larger
parts of the area were covered by the class of other non-forests, which we used to determine
the greatest amount of reference data to be able to distinguish them as much as possible
from habitats.
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share of the area occupied by each habitat: (a) 6210, (b) 6410, (c) 6510.

In general, using the proposed methods, we were able to obtain high OAs (median
values from the 100-fold accuracy assessment were higher than 0.84; Figure 7). Comparing
the algorithms’ performances, the best OAs were reached for SVM (median value around
0.88), and the worst were for CNNs (0.84). As can be noticed, differences between median
values did not exceed 4 percentage points (p.p.). Moreover, the minimum and maximum
noted values were rather small (5 p.p. and 3 p.p., respectively). The values for RF and SVM
were more stable, giving a difference between the minimum and maximum values of 4 p.p.,
but for CNNs, such a difference could be considered negligible.

We obtained more diverse results for individual classes, and we focused more on F1
accuracy for each habitat and background class. Boxplots with bolded median values below
(Figures 8–10) present the accuracies obtained for each classifier separately.
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With CNNs, the median F1 accuracy for habitat 6210 was equal to 0.842, and for 6410
and 6510, the values were 0.758 and 0.768, respectively. For habitat 6410, we obtained the
widest range of accuracy values. The median F1 was equal to 0.839 for other non-forest
vegetation and 0.993 for forests.

With RF, the findings were similar; however, the median value of F1 was lower for
habitat 6210 (0.819). For both 6410 and 6510, it was around 0.78, and we found the most
varied values for 6410. Apart from the forest class (0.993), we recorded the highest median
in this case for the other non-forest background class (0.867).

The habitat 6210 class achieved the highest possible accuracy with SVM (0.853), and
a similar value was achieved by the 6510 class. For this classifier, apart from forests, the
other non-forest class was classified the second-best, and we obtained the slowest value for
the 6410 class (0.804). Compared with previously described results, forests reached a lower
median F1 value (0.962), and the value range was wider.

In general, the trend was the same for all results obtained with the three classifiers.
Among the three grassland habitats, we found the highest 100-fold F1 accuracy medians for
habitat 6210, we found the lowest for habitat 6410, and they were very similar for habitat
6510. Both background classes (forest and other non-forest) had better discrimination,
and the ranges of their values were more stable (particularly for the forest class) for
each classification.

SVM allowed us to achieve the best results for the majority of cases, i.e., all habitats
and other non-forest vegetation (F1 median values in the range of 0.844–0.962; Table 4). We
noted the highest difference between median F1 values for the 6510 class, which, for SVM,
was 8 p.p. more than that of CNNs. We found the most stable results between different
algorithms for the 6210 and forest classes (3 p.p. between RF and SVM). For habitat 6410
and the other non-forest class, the difference between the lowest (CNNs) and the highest
(SVM) was equal to 3 p.p.

Table 4. Median F1 and overall accuracies calculated for each classifier result.

Algorithm
Habitat Background

OA (%) OA 95% Conf.
Interval (%)6210 6410 6510 Forest Non-Forest

CNNs 0.84 0.76 0.77 0.99 0.84 84.0 83.7–84.2
RF 0.82 0.78 0.78 0.99 0.87 85.5 85.2–85.7

SVM 0.85 0.80 0.84 0.96 0.88 87.5 87.3–87.7
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4. Discussion

Research with Sentinel-2 data and their high temporal resolution, capable of support-
ing the retrieval of temporal features, was suggested by the authors of previous studies
regarding habitat classification [3]. In studies of wetland habitats, multitemporal Sentinel-
2 data led to obtaining higher accuracies than those for single-date collection data [22].
Moreover, Fenske et al. [13] suggested a direct comparison between hyperspectral and mul-
titemporal data for the use of the same classification approach. It was further developed for
different Natura 2000 habitats, including grasslands [10]. Our work can also be compared
with results previously obtained from the same research area [7] using multitemporal
hyperspectral data fused with topographic indices and an RF classifier (Table 5).

Table 5. F1 accuracies obtained in this work in relation to multitemporal hyperspectral data research.

Habitat

Hyperspectral [7] Multispectral
[This Study]

Single-Term Three Terms/Three Terms
with Topographic Indices Eight Terms

6210 0.74/0.80/0.78 0.84/0.85 0.85
6410 0.69/0.75/0.75 0.82/0.83 0.80
6510 0.52/0.60/0.61 0.70/0.69 0.84

The combination of different terms of data acquisition leads to obtaining better ac-
curacy than that with the use of single-date collection data [7]. Hence, in this study, we
decided to use all possible images to capture phenology variations across the whole vegeta-
tive period. In general, the potential of multitemporal Sentinel-2 data in the classification of
grassland Natura 2000 habitats, as presented in this article, is confirmed by its consistency
within a previous study (especially for habitats 6210 and 6410) and its high accuracies for
all classes (median F1 value greater than 0.70 in each case). For habitat 6510, with hyper-
spectral data, the F1 accuracies were worse than those obtained with multispectral data
(the maximum obtained median value was approximately 0.70). This may be influenced
by the co-occurrence of species forming it and species of the other non-forest vegetation
class. In the case of a 1-m pixel, more possibilities are given to notice the transition zone
between habitats and the background, and this information is generalized in a pixel of
10 m. Moreover, notably, we modified the reference data to the pixel size of Sentinel-2, so
a direct comparison of the obtained accuracies should be treated carefully. However, by
analyzing both spectral and temporal dimensions, we can conclude that, for these habitats,
the discrimination of dense time series with even only the spectral index can be better than
the use of several acquisitions with many spectral bands. In this case, the choice of bands is
the key to performing the study as accurately as possible (e.g., Jarocińska et al. [10] found
that the most useful spectral ranges for different Natura 2000 habitat discrimination are as
follows: in VNIR, 0.416–0.442 µm and 0.502–0.522 µm; and in SWIR, 1.117–1.165 µm and
1.290–1.361 µm). From an operational point of view, utilizing access to Sentinel-2 data is a
promising solution to monitoring Natura 2000 habitats.

In the work presented here, we did not utilize any additional data sources, e.g., Shuttle
Radar Topography Mission (SRTM) and its derivatives, which could have potentially
improved the accuracies. Such improvements can be seen in the work of Tarantino et al. [24],
who also utilized the Sentinel-2 time series for mapping habitat 6210 in Italy. In research
on hyperspectral data [7], LiDAR-based topographic indices were incorporated, which
was important for improving the results of mapping habitats 6210 and 6410; however,
the differences in accuracies obtained with and without them were negligible (Table 5).
Hence, in this study, we wanted to explore the spectral-temporal dimension, and our
assumed approach was also based on the conclusions of another study [23], which proved
that phenological variations in the Sentinel-2 time series are more important than the
topographic and lithological variables in the classification of forest habitats.
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Habitats 6410 and 6510, analyzed in different sites in Poland, were the object of
study in other research [10], where, with multispectral Sentinel-2 data, discrimination
from background classes with Linear Discriminant Analysis (LDA) was assessed as lower
than that of heaths and mires habitats (codes 4030 and 7140, respectively). However, the
authors also underlined that the results were strictly dependent on the site and background
classes. This also applies to our study because, in general, areas with high biodiversity
are characterized by the fact that they are unique, and in each place, the background and
combination of species are slightly different. Building knowledge in this case is based
on the analysis of specific case studies and then checking the possibilities of using this
knowledge in other research.

The application of iterative accuracy assessments or other alternatives allows one to
investigate not only raw accuracy measures as a single number, but it can also allow one to
see the distribution of obtained accuracy measures per class. This can greatly help with
understanding how given classes are classified and allows for straightforward comparisons
to be made between results coming from different algorithms or models built using differing
sets of parameters. This approach was also presented in work on the Ostoja Nidziańska
area [7], and the ranges of minimum and maximum values of F1 accuracies for habitat
classes were comparable to those in this article (less than 15 p.p. for each habitat class). This
is confirmed by the preparation of representative reference data for classification. When
the number of samples is insufficient, or when data are less representative of a class, value
distributions can be wide, such as above 30 p.p. for 3 out of 22 classes of the mappings of
plant communities [56].

CNNs can utilize both spectral and spatial data in order to classify images. In this
work, we refrained from using spatial data due to a low spatial resolution and the relative
congestion of reference plots, considering the spatial resolution of underlying raster data.
Utilizing the spatial domain would necessitate the inclusion of additional neighboring
pixels, covered by a window of a given size (in pixels) and centered for each reference pixel.
In summary, we are not able to provide a sufficiently large reference dataset, which would
not result in an excessive number of samples containing partially the same data (spatial
autocorrelation, [57]). If one considers utilizing both the spectral and spatial domains, more
care and planning must be used while collecting reference data, with the critical parameter
being sufficient spacing between them. Such a patch-wise approach tessellating training
data in different square patches was presented in another work [25]. One of the habitats
classified in that work in Italy was also in Poland (6210). The accuracy of F1 in the work
for this habitat ranged from 62 to 100%, and notably, the highest was obtained for the
largest patch (6 × 6), for which the smallest amount of training data was used. However,
as mentioned in other research [23], the same species-forming habitats can have different
behaviors in terms of phenology in a different geographic bioclimatic context, so we should
not compare these results directly. In the future, reference data can be collected in the
manner mentioned above, and a spatial approach can also be used in CNN classification.

In our work, we wanted to focus on the spectro-temporal dimension of Sentinel-2
data due to the comparison of different classifiers. The applied CNNs had approximately
4,200,000 trainable parameters, with about 2,500,000 used in the deep network part. There-
fore, the training process lasted much longer than that for the RF and SVM methods.
However, the results were comparable. The largest difference in the OA median was 4 p.p.
in favor of SVM vs. CNNs. However, in the literature, CNNs have shown performance
improvements over RF and SVM, e.g., utilizing the spatial dimension [58], based on UAV
hyperspectral analysis [59], or in plastic greenhouse mapping based on dual-temporal
Sentinel-2 data [60]. Considering the comparison between SVM and RF, SVM was better,
with many more features [20,32], and this can be confirmed by our results, in which we in-
corporated 80 spectro-temporal features into our classifications. Some studies have reported
that SVM performs better with imbalanced or small sample sets [29,56,61], making this
algorithm unique in situations in which creating a balanced/large data set is not possible.
In fact, due to operational issues such as speed and reliability, RF is most commonly used
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in habitat mapping [3,7,12,62]. Although we obtained a slightly lower habitat accuracy
for CNNs, a conclusion should not be made in this regard. Its big advantage is that it
extracts information during the classification itself, and with a larger number of variables
(more terms of data acquisition), it is not as vulnerable to the curse of dimensionality that
occurs sooner with a large number of variables in SVM or RF. Convolutional networks offer
opportunities for modification on an ongoing basis (e.g., the number of features and the
depth of the network), which we plan to explore more in future studies on habitats.

5. Conclusions

In this work, including the classification of Natura 2000 grassland habitats using
Sentinel-2 spectro-temporal data, we showed that the algorithms used were sufficient
for creating accurate maps of habitats. Notably, all the algorithms were able to properly
classify habitat 6210, and we obtained slightly lower accuracies for habitats 6410 and 6510,
which may have been caused by the spectral similarity of forming species with the other
non-forest vegetation class. In general, SVM appeared to be better than RF and CNNs for
mapping grassland habitats using mutitemporal Sentinel-2 datasets (OA and F1 for three
habitats were the highest with SVM); however, the differences were very small. Researchers
using CNNs should consider using a spectro-temporal dataset with a spatial domain in
order to achieve better results. CNNs incorporate the spatial domain into their solutions
in ways that are unavailable to other, more conventional algorithms, such as RF and SVM.
Nevertheless, the spectral dimension can be analyzed even more deeply, and it can be
considered for use in multiple endmember spectral mixture analysis (MESMA, [63]) to
determine the likely composition of each image in a multitemporal dataset.

Although the trained models were not useful for creating new maps on the fly, the
presented method is transferable to other areas. Another weakness is that it cannot be
generalized enough to use any combination of spectro-temporal data. However, our
presented workflow and choice of algorithms can be useful for other studies on grassland
habitats. Additionally, regardless of the algorithm used, for the purpose of monitoring the
work of grassland Natura 2000 habitats, Sentinel-2 is valuable and promising because it
provides cost reductions and the possibility of quickly acquiring new data for updating
existing maps.
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truth data acquisition, and to Dominik Żmuda for consulting on habitats classification in this area.
The authors also express their gratitude to three anonymous reviewers who contributed to the
improvement of the manuscript through their experience.

Conflicts of Interest: The authors declare no conflict of interest.

https://scihub.copernicus.eu/


Remote Sens. 2023, 15, 1388 16 of 18

References
1. European Comission Council. European Comission Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural

habitats and of wild fauna and flora (OJ L 206 22.07.1992 p. 7). Doc. Eur. Community Environ. Law 2010, 206, 568–583. [CrossRef]
2. Habel, J.C.; Dengler, J.; Janišová, M.; Török, P.; Wellstein, C.; Wiezik, M. European grassland ecosystems: Threatened hotspots of

biodiversity. Biodivers. Conserv. 2013, 22, 2131–2138. [CrossRef]
3. Buck, O.; Millán, V.E.G.; Klink, A.; Pakzad, K. Using information layers for mapping grassland habitat distribution at local to

regional scales. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 83–89. [CrossRef]
4. Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Förster, M. Grassland habitat mapping by intra-annual time series analysis

-Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 25–34. [CrossRef]
5. Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing floristic composition with multispectral

sensors-A comparison based: On monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 218–229.
[CrossRef]

6. Große-Stoltenberg, A.; Hellmann, C.; Werner, C.; Oldeland, J.; Thiele, J. Evaluation of continuous VNIR-SWIR spectra versus
narrowband hyperspectral indices to discriminate the invasive Acacia longifolia within a mediterranean dune ecosystem. Remote
Sens. 2016, 8, 334. [CrossRef]

7. Marcinkowska-Ochtyra, A.; Gryguc, K.; Ochtyra, A.; Kopeć, D.; Jarocińska, A.; Sławik, Ł. Multitemporal Hyperspectral Data
Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats. Remote Sens. 2019, 11, 2264.
[CrossRef]

8. Pérez-Carabaza, S.; Boydell, O.; O’Connell, J. Habitat classification using convolutional neural networks and multitemporal
multispectral aerial imagery. J. Appl. Remote Sens. 2021, 15, 042406. [CrossRef]
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