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Abstract: Mangroves are an important source of blue carbon that grow in coastal areas. The study of
mangrove species distribution is the basis of carbon storage research. In this study, we explored the
potential of combining optical (Gaofen-1, Sentinel-2, and Landsat-9) and fully polarized synthetic
aperture radar data from different periods (Gaofen-3) to distinguish mangrove species in the Fucheng
town of Leizhou, Guangdong Province. The Gaofen-1 data were fused with Sentinel-2 and Landsat-9
satellite data, respectively. The new data after fusion had both high spatial and spectral resolution.
The backscattering coefficient and polarization decomposition parameters of the fully polarized
SAR data which could characterize the canopy structure of mangroves were extracted. Ten different
feature combinations were designed by combining the two types of data. The extremely randomized
trees algorithm (ERT) was used to classify the species, and the optimal feature subset was selected
by the feature selection algorithm on the basis of the ERT, and the importance of the features was
sorted. Studies show the following: (1) When controlling a single variable, the higher the spatial
resolution of the multi-spectral data, the higher the interspecific classification accuracy. (2) The
coupled Sentinel-2 and Landsat-9 data with a 2 m resolution will have higher classification accuracy
than a single data source. (3) The selected feature subset contains all types of features in the optical
data and the polarization decomposition features of the SAR data from different periods: multi-
spectral band > texture feature > polarization decomposition parameter > vegetation index. Among
the optimized feature combinations, the classification accuracy of mangrove species was the highest,
the overall classification accuracy was 90.13%, and Kappa was 0.84, indicating that multi-source and
SAR data from different periods coupling could improve the discrimination of mangrove species.
(4) The ERT classification algorithm is suitable for the study of mangrove species classification, and
the classification accuracy of extremely random trees in this paper is higher than that of random forest
(RF), K-nearest neighbor (KNN), and Bayesian (Bayes). The results can provide technical guidance
and data support for mangrove species monitoring based on multi-source satellite data.

Keywords: mangrove community; integrated learning algorithm; full polarimetric SAR; polarimetric
decomposition; multispectral

1. Introduction

Mangroves are a kind of salt-tolerant woody plant distributed along the tropical and
subtropical coastlines. Mangrove wetland and surrounding organisms constitute an im-
portant mangrove wet-land ecosystem, which has great ecological value and economic
benefits [1]. Mangroves play an important ecological role in protecting embankments,
purifying water quality, carbon fixation and emission reduction, and maintaining biodiver-
sity. At the same time, mangroves can also provide living materials and tourism resources.
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However, in the past decades, due to the impact of reclamation, urbanization, ecological
environment change, and other factors, the global mangroves have a trend of degrada-
tion [2]. The study of mangrove species range is crucial to the calculation of mangrove
biomass carbon storage, which lays a research foundation for the conservation of mangrove
ecosystem and vegetation community composition.

The habitat of mangroves is complex, and the changes of tidal ebb and flow in the
intertidal area cause adverse effects on large-scale field surveys. Remote sensing technology
can achieve the monitoring of mangrove forests in a large area. The data sources for inter-
specific classification of mangroves using remote sensing data include two main categories:
optical data, including multispectral and hyperspectral, and SAR data. The earliest low
and medium resolution Landsat [3–6] were used for mangrove species identification. With
the development of satellite technology, high spatial resolution IKONOS, Worldview-2,
Worldview-3, Quick bird, Pléiades-1, and other satellite data were used for interspecific
mangrove classification [7–10]. Because of the subtle differences in reflectance of different
species of mangrove with different leaf structures, different mangrove species can be distin-
guished from each other using the specific band reflectance of optical data and its derived
indices [11–13] and the distinct textural features of high-resolution satellites are beneficial
to improve the interspecific classification accuracy of mangroves [8]. Hati et al. evaluated
the potential of aerial hyperspectral AVIRIS-NG data in distinguishing mangrove species
in Sundarbans Lothian, India [14]. The penetration ability of SAR data varies with different
bands. The high frequency band has weak penetration ability, which only responds to the
surface characteristics of mangrove canopy, while the low frequency band can penetrate
the canopy to detect the trunk and ground, and respond to the features below the canopy.
Therefore, SAR data are often used to monitor mangrove biomass [15], and a recent study
by Ferrentinod et al. showed that the combination of SAR data at different frequencies can
improve mangrove species identification performance.

SAR data can provide mangrove structure information complementary to optical data.
Recently, some recent studies have used the combination of optical and SAR data to identify
different mangrove species. Zhang et al. combined Worldview-3 and Radarsat-2 data to
map the distribution of mangrove species in Mai Po Marshes Nature Reserve, Hong Kong,
using a rotating forest classifier [16]. Kripa et al. monitored the current distribution of
mangrove species in India using optical and SAR data [17]. Wong and Fung also found
that the combination of hyperspectral data and SAR data could improve the interspecific
classification accuracy of mangrove species [18]. A single optical satellite data source has
the problem of low resolution or insufficient band information. In this study, Sentinel-2
and Landsat 9 satellite images are fused with GaoFen-1, respectively, to improve their
spatial resolution for the first time, and the fused data and GaoFen-3 SAR data are used for
mangrove classification research. The research on the application of the extreme random
tree algorithm to mangrove species classification has not been reported, Therefore, the
purpose of this paper is to study the use of the extreme random tree algorithm on the
basis of multi-source data to evaluate the differentiation potential of different features
on mangrove species(Avicennia marina (AM), Kandelia obovate (KO) and Sonneratia
apetala (SA)) and further use the recursive feature elimination algorithm to screen the
optimal feature combination so as to remove some redundant features. In order to verify
the effectiveness of the extreme random tree algorithm, random forest, KNN, and Bayes
algorithms are selected on the basis of the filtered features for comparison. The data fusion
method and classification algorithm in this paper can provide new ideas and technical
references for mangrove species monitoring.

2. Materials and Methods
2.1. Study Area

The research area is located in the coastal area of Fucheng Town on the east coast of
Leizhou Peninsula, Guangdong Province, China, with a geographic location of 110◦9′37.62′′E~
110◦10′10.61′ ′E, 20◦54′46.12′ ′N~20◦57′46.41′ ′N. The detailed geographic location is shown
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in Figure 1. The total area of mangroves in Guangdong Province is about 12,039.80 ha,
which is mainly distributed in western Guangdong and Leizhou Peninsula. The area of
mangroves in Leizhou Peninsula is 7905.56 ha [18]. The area of mangroves in Leizhou
Peninsula has increased in recent years. The region has a subtropical monsoon climate, with
an average annual temperature of about 22.3 ◦C [19] and an average annual precipitation
of about 1500 mm. The tide on the east coast of Leizhou Peninsula is irregular semidiurnal
tide with an average tidal range of 3.12 m [20]. The main mangrove species in the region are
Avicennia marina (AM), Kandelia obovata (KO) and Sonneratia apetala (SA). In 1995, the species
of SA was artificially introduced into the town. Up to now, the diameter at breast height of
the plantation is 13–20 cm, and the plant height is about 12 cm. The natural regeneration
pattern of the SA community in the town is clustered and distributed. The average height
of SA is significantly higher than that of KO and AM. The mixed degree of mangroves in
the town is at a moderate level, and the community structure is simple. The artificial forest
of SA is mainly distributed in the high tide zone and the middle tide zone, while AM is
mainly distributed in the low tide zone, and KO is more suitable for the environment of the
middle high tide zone. At the same time, due to the sparse and scattered distribution and
small number of Rhodophora stylosa and Bruguiera gymnorrhiza [21], remote sensing does not
image them, and the impact on the ecological environment can be ignored, which is of no
research value for this paper as the classification objective of this paper is to identify the
three dominant species of AM, KO and SA.
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Figure 1. Location of the study area: (a) location of the mangrove forest in Fuchengtown of Leizhou
City, Zhanjiang City, Guangdong Province (map taken from the standard map service website
http://bzdt.ch.mnr.gov.cn (accessed on 15 December 2022), review number GS (2019)1822); (b) false
color composite map of 8, 4, and 3 bands of Sentinel-2 satellite data in the study area.

2.2. Field Data

This study went to the study area for field investigation in the middle of May 2022. A
total of 15 sample points including the three species of SA, KO, and AM were collected.
These field samples were randomly sampled by handheld GPS along the inner and outer
edges of mangroves and the tidal gullies, with a quadrate size of 10 m2. The species name
and sample point location were recorded. Then the hue and texture characteristics of each
species will be analyzed in combination with the high-resolution remote sensing images.
The interpretation marks of different mangrove species are shown in Table 1.According to
the field investigation and literature research, the samples will be expanded to 150 points
through visual interpretation.

http://bzdt.ch.mnr.gov.cn


Remote Sens. 2023, 15, 1386 4 of 21

Table 1. Interpretation marks of different mangrove species.

Species Name Field Pictures Remote Sensing Image Interpretation Features

Avicennia marina
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2.3. Remote Sensing Data and Pre-Processing
2.3.1. Optical Data and Pre-Processing

The optical data used in this paper include the images of Gaofen-1, Sentinel-2, and
Landsat-9 satellites. Gaofen-1 is the first high-resolution earth observation satellite launched
by China on 26 April 2013, which has a spatial resolution of 8 m in the multispectral band
and 2 m in the panchromatic band. The multispectral band can provide four bands
of blue, green, red, and near infrared. ESA’s Sentinel-2 data, launched in March 2017,
can cover 13 spectral bands with varying spatial resolution from the visible and near-
infrared to the short-wave infrared. Among the optical data, Sentinel-2 data is the only
one that contains three bands in the red-edge range. Sentinel-2 data is available from
https://scihub.copernicus.eu/dhus/#/home, accessed on 11 May 2022, website for free
download. This paper uses Landsat-9 satellite data in 2022. The bands used in the study in-
clude 7 multispectral bands and 1 panchromatic band. The Landsat data is available on the
website of the United States Geological Survey https://earthexplorer.usgs.gov/Download,
accessed on 14 May 2022. This paper only preprocessed the panchromatic band of Gaofen-1,
including radiometric calibration and orthorectification correction. All the above opera-
tions are completed in ENVI5.3 software. Sentinel-2 has already performed radiometric
calibration and atmospheric correction before downloading data, so it only needs to use
SNAP software to resample to 10 m and then fuse the processed high Gaofen-1 data with
Sentinel-2 data. The fusion algorithm is Gram Schmidt Pan Sharpening. The resolution
of Sentinel 2 data after fusion was 2 m. The pre-processing steps of the Landsat-9 data
include radiation calibration, atmospheric correction, and fusion. The resolution of the
fused data was 15 m. The Landsat-9 data were also fused with the processed Gaofen-1 data.
The fusion algorithm was the same as above, and the resolution after fusion was also 2 m.

2.3.2. SAR Data Pre-Processing

Gaofen-3 satellite is the first Chinese C-band multi-polarization SAR satellite launched
by the National Space Administration of China in August 2016.Two views of Gaofen-3

https://scihub.copernicus.eu/dhus/#/home
https://earthexplorer.usgs.gov/Download
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full polarization data were selected for this study: one view was collected on 5 February
2021 and the other on 13 May 2022. Since there was basically no change in this region from
2021 to 2022, the impact of date on interspecific classification can be ignored, including
four polarization modes (HH, HV, VH, VV). The detailed parameters of the data were
shown in Table 2. The Gaofen-3 data used in the study were obtained from the China
Ocean Satellite Data Service (http://osdds.nsoas.org.cn/, accessed on 10 June 2022). The
Gaofen-3 data were preprocessed using the SARscape 5.6 software embedded in ENVI 5.6.
The preprocessing steps included multi-view processing (obtaining intensity data from
complex intensity data), single-channel intensity data filtering (to remove speckle noise),
geocoding and radiometric calibration (to obtain the backscatter coefficients of the data).
After registration with optical data, the resolution of the radar image was 8 m. In order to
match the resolution of the optical data, resampling to 2 m was also required.

Table 2. Remote sensing data parameters.

Satellite Date Bands Spatial Resolution (m)

GaoFen-1 15 May 2021 4 2
GaoFen-3 2 February 2021 4 8
GaoFen-3 13 May 2022 4 8
Sentinel-2 28 November 2021 12 10
Landsat-9 4 May 2022 7 15

2.4. Optical and SAR Data Conversion

In order to improve the degree of differentiation of the spectral features of mangrove
species, seven vegetation index features derived from the fused Sentinel-2 data and two
new band combination features are used as inputs in addition to the original reflectance of
the spectral data. In this paper, texture features of mangroves are extracted from optical
images based on the grayscale co-occurrence matrix, and the higher the resolution of the
images, the richer the spatial detail information provided by the texture features; thus, the
texture information of mangroves is extracted using the panchromatic images of Gaofen-1.
The specific spectral index features and texture features are shown in Table 3. Because this
paper focuses on the complementarity between the polarization features of SAR images and
optical images and the potential of SAR images to distinguish mangrove species, it does not
specifically discuss the influence of the gray level co-occurrence matrix parameters on this
study. In this paper, a 3× 3 window is used to calculate the gray level co-occurrence matrix.
A total of seven texture parameters are selected, including mean, variance, homogeneity,
contrast, dissimilarity, entropy, and angular second moment (ASM).

Microwave radiation in the C-band tends to interact most actively with the leaves and
branches of the upper canopy [22], and identification using SAR requires differences in
the structure (e.g., size, geometry) and dielectric constants of tree components between
species [23]. Different species have different heights and canopy structures. Different
characteristics may lead to different scattering mechanisms. Components of different
scattering types can be extracted through various polarization decomposition methods,
including volume scattering, surface scattering, and double-bounce scattering. It has been
shown that H/A/α decomposition and Freeman decomposition can be used for intra-
class identification of mangroves [24,25]. In this paper, PolSARpro radar data processing
software was used to extract six polarization decomposition features of fully polarized
Gaofen-3 data, which are three eigenvalues based on H/A/α decomposition, volume
scattering, surface scattering, and double-bounce scattering component based on Freeman
decomposition. The specific decomposition process is described below:

The target data obtained from fully polarized SAR images is the complex scattering
matrix S:

S =

[
Shh Shv
Svh Svr

]
(1)

http://osdds.nsoas.org.cn/
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The scattering matrix is vectorized by Pauli basis to obtain the k matrix:

k =
1√
2
[Shh + SvvShh − Svv2Shv] (2)

Most ground objects are randomly distributed targets with multiple scattering centers.
The total signal can be obtained by superposition of multiple coherent signals, which is
the coherent interference of smooth electromagnetic waves. Therefore, the polarization
covariance matrix C and the polarization coherence matrix T can be obtained by using the
spatial statistical average processing. The two can be mutually transformed through the
unitary matrix. The expression of the polarization coherence matrix is

T = 〈k · kH〉 = 1
N

N

∑
i=1

ki · kH
i (3)

It should be noted that N is the apparent number, ki is the apparent scattering vector,
the superscript H represents the conjugate transpose, and the coherence matrix T is the
3 × 3 semi-positive definite Hermite matrix. According to the matrix decomposition theory,
the matrix T can be diagonalized and has three non-negative real eigenvalues, and the
matrix T can be decomposed into the sum of three independent coherence matrices:

T = U ∑ U−1 =
3

∑
i=1

λiTi =
3

∑
i=1

λiui · uH
i (4)

Ti represents the independent coherence matrix with rank 1; λi is the real eigenvalue;
ui is the normalized eigenvector corresponding to the eigenvalue; i = 1, 2, 3 represent three
scattering mechanisms. The eigenvalue λi corresponds to the intensity of the scattering
mechanism. Freeman decomposition is to decompose the polarization covariance matrix
into three main scattering mechanisms, and the covariance matrix is expressed as

〈C3〉 = fsC3s + fdC3d + fvC3v

C3s, C3d, C3v are surface scattering, secondary surface scattering, and volume scattering
models, respectively; fv, fs, fd are the weights of volume scattering, surface scattering, and
double-bounce scattering, respectively. The scattering power of volume scattering, surface
scattering, and double-bounce scattering are Pv, Ps, Pd, and α and β are the parameters.

Pv =
8 fv

3
(5)

Ps = fs

(
1+|β|2

)
(6)

Pd = fd

(
1+|α|2

)
(7)

Table 3. Sentinel 2 data-derived features.

Variables Definition Source

DVI B8− B4 [26]

MSAVI (B8−B4)∗1.5
B8+B4+0.5

[23]

GNDVI B8−B3
B8+B3 [27]

IRECI B7−B4
B5/B6 [28]

SAVI 1.5 B8−B4
B8+2.4B4+0.5 [29]
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Table 3. Cont.

Variables Definition Source

RVI B8
B4 [30]

NDI45 B5−B4
35+B4 [31]

Mean ∑
i

∑
j

p(i, j) ∗ i

[32]

Variance ∑
i

∑
j

p(i, j) ∗ (i−Mean)2

Homogeneity ∑
i

∑
j

p(i, j) ∗ 1
1+(i−j)2

Contrast ∑
i

∑
j

p(i, j) ∗ (i− j)2

Dissimilarity ∑
i

∑
j

p(i, j) ∗ |i− j|

Entropy ∑
i

∑
j

p(i, j) ∗ ln p(i, j)

ASM ∑
i

∑
j

p(i, j)2

New band combination 1 B8 + B4

New band combination 2 5(B9 − B4)
Note: B3 = Green, B4 = Red, B5 = Vegetation Red Edge 1, B6 = Vegetation Red Edge 2, B7 = Vegetation Red Edge 3,
B8 = NIR, B9 = Narrow NIR, p(i, j) is defined as the probability of leaving a position relation from a point with
gray scale i to a gray scale j.

2.5. Mangroves and Non-Mangroves: Decision Trees

The decision tree classification was used to extract mangrove spatial distribution infor-
mation. The mangrove vegetation index (MVI) proposed by Baloloy et al. has been widely
used for mangrove information extraction [33]. In this paper, MVI and the normalized
vegetation index (NDVI) are used as thresholds of decision tree segmentation nodes. The
threshold range of decision tree nodes is debugged according to the actual measured point
mangrove samples, and the threshold value of each node is determined by debugging
(Figure 2).
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First of all, the first rule is 5 < MVI < 22. This rule divides the ground objects into
two categories: one category is pond farming, sea water, and farmland, and the other
category is artificial buildings, mixed pixels of pond boundary vegetation and water, and
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mangroves. The second rule is 0.63 < NDVI < 0.9; the ground objects meeting this rule
are mangroves, otherwise they are artificial buildings and mixed pixels. This rule can
effectively distinguish mangroves from artificial buildings and mixed pixels at the pond
boundary. After verification and calculation, the overall accuracy of mangrove extraction is
92.30%. The total area of mangrove extraction is 165.79 hectares.

2.6. Mangrove Interspecies Classification: Extremely Randomized Trees

Extremely randomized trees (ERT) is an integrated learning algorithm based on de-
cision trees proposed by Pierre Geurts et al. ERT is a variant of random forest (RF). ERT
directly uses all samples to randomly select N features. For these N features, each feature
randomly selects one split node, thus obtaining N split nodes. Then, ERT calculates the
scores of the N split nodes and selects the node with the highest score as the split node.
Therefore, there are two main differences between the ERT algorithm and the RF algorithm:
one is that for the training set of each decision tree, RF uses random sampling bootstrap to
select the sample set as the training set of each decision tree, while ERT does not use random
sampling, that is, each decision tree uses the original training set; second, after selecting
the division features, RF’s decision tree will select an optimal feature value division point
based on the Gini coefficient, mean squared deviation and other principles, which is the
same as the traditional decision tree. ERT will randomly select a feature value to divide
and obtain a result with smaller and more stable variance compared to random forest. So
far, ERT algorithms have been used for predicting surface latent heat fluxes, air quality
and lake surface water temperature simulations, and mangrove range extraction [34–37].
However, its performance in mangrove species classification has not been explored. The
specific steps of extreme random trees are as follows:

Input: training sample D; number of decision trees M; number of characteristics K.
Step 1: Each decision tree-based classifier uses all of sample D for training.
Step 2: Generate M decision trees based on CART algorithm. The process of splitting

nodes is to randomly select k features from all K features, randomly select samples with
some categories as left branches, and divide samples with other categories into split samples
and repeat this process until the decision tree stops growing.

Step 3: Repeat steps 1 and 2 M times to finally form an extreme random tree classifica-
tion model composed of M decision trees.

Step 4: Test the data set: Each decision tree of the extreme random tree will produce
a classification result. The category with the most voting results is the final classification
result.

Based on Python language, this paper uses the GDAL library to read raster data, calls
the extreme random tree classifier of the integrated learning module of sklearn Library, sets
the number of submodels to 500, keeps the default values of other parameters, and uses the
overall accuracy and Kappa coefficient to evaluate the classification accuracy. Vector format
samples are generated through the ArcGIS software, and the sample data are randomly
split into training sets and test sets using Python, with the split ratio of 3 to 7, of which 30%
is used as training samples and 70% as test samples. The classification method process of
mangrove species is shown in Figure 3.

In order to verify the applicability of the extreme random tree algorithm, this paper
selects another three commonly used machine learning algorithms for comparison, namely,
Random forest (RF), K-nearest neighbor (KNN), and Bayesian (Bayes). RF is an integrated
learning method that uses decision trees as weak learners. By building multiple decision
tree models on data, integrating the modeling results of all decision tree models, and
adopting majority voting, more appropriate results can be obtained. Therefore, the stochas-
tic forest model has strong generalization ability and is not easy to overfit. RF is a very
representative Bagging algorithm. Each decision tree uses a bootstrap method to randomly
generate independently distributed training data and randomly select some eigenvalues to
train the decision tree. Some studies have shown that 500 is a suitable value [38] when using
RF classifiers on remote sensing data. Therefore, this paper sets the number of sub-models
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to 500, and sets the maximum number of features to participate in the judgment during
node splitting as the default value, that is, the square root of the number of input features.
The core idea of the KNN algorithm is that the class of unlabeled samples is determined
by the nearest K neighbors. When mangrove species are classified by the KNN algorithm,
the K value is set to 5. The principle of Bayes classification is to statistically calculate the
prior probability of training samples and then calculate a posteriori probability according
to Bayes theorem to predict the category of the sample to be classified.
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3. Results
3.1. Species Classification Results from Different Data Sources

A total of 10 sets of experiments were designed in this paper, and the data feature
combinations and spatial resolutions of each set of experiments are shown in Table 4.
The classification results are shown in Figure 4. The data sources of the first six sets
of experiments were all optical data; the data sources of seven, eight, and nine sets of
experiments were a combination of optical and radar data; and the data source of the last
set of experiments was a subset of the preferred features, and the preferred features will
be described in detail in the next section. The effect of multiple factors on the interspecies
classification accuracy is investigated using the ERT algorithm, including factors such as the
spatial resolution of multispectral data, the combination of optical data and fully polarized
SAR data relative to a single type of data, etc. The classification accuracy table of 10 groups
of experiments is shown in Table 5. Groups 1 and 2 are a set of control experiments:
the first experimental input features are the original 12 bands of Sentinel 2 data with
10 m resolution, and the second group of experimental inputs were 12 bands of Sentinel
2 multispectral and Gaofen-1 panchromatic data fused with 2 m resolution; the species
classification accuracy of Sentinel-2 data at 10 m resolution is 66.59%, and the classification
accuracy of Sentinel-2 data at 2 m resolution after fusion is 84.91%. Groups 3 and 4 are
a set of control experiments: the third group’s experimental inputs featured the original
seven bands of Landsat-9 at 15 m resolution, and the fourth group of experimental inputs
is seven bands of Landsat-9 multispectral and 2 m resolution after the fusion of Gaofen-1
panchromatic data; the classification accuracy of Landsat-9 with 15 m resolution is 59.68%,
and the classification accuracy of Landsat-9 data with 2 m resolution after the fusion is
80.45%. The two groups of control experiments show that the multispectral data with high
spatial resolution will improve the mangrove species identification The input features of
group 5 are the combination of all the features of groups 2 and 4; the classification accuracy
is 85.49%. The input features of group 6 are the vegetation index, band combination and
texture features added to the features of group 5, and the classification accuracy is 85.10%,
which is slightly lower than that of group 5.
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Table 4. Feature combination scheme, Sentinel-2, Landsat-9, and Gaofen-3 data and derived fea-
ture parameters. The polarization decomposition parameters include λ1, λ2, λ3 eigenvalues and
the volume scattering, surface scattering and double-bounce scattering components of Freeman
decomposition (2λ3 represents the λ3 eigenvalue in February; 5 Pv represents the volume scattering
component in May).

Serial No. Data Used Bands/Indices Used Resolution (m)

1 Sentinel-2 original 12 bands 10

2 Sentinel-2, Gaofen-1 12 bands of Sentinel-2 after fusion 2

3 Landsat-9 original 7 bands 15

4 Landsat-9, Gaofen-1 7 bands of Landsat-9 after fusion 2

5 Sentinel-2, Landsat-9
Gaofen-1 12 bands of Sentinel-2 after fusion, 7 bands of Landsat-9 after fusion 2

6 Sentinel-2, Landsat-9
Gaofen-1

12 bands of Sentinel-2 after fusion, 7 bands of Landsat-9 after fusion, 9
indices, 7 texture features 2

7 Sentinel-2, Landsat-9
Gaofen-1, Gaofen-3

12 bands of Sentinel-2 after fusion, 7 bands of Landsat-9 after fusion, 9
indices, 7 texture features, backscattering coefficients HH, HV, VH, and

VV, and polarization decomposition characteristics in February
2

8 Sentinel-2, Landsat-9
Gaofen-1, Gaofen-3

12 bands of Sentinel-2 after fusion, 7 bands of Landsat-9 after fusion, 9
indices, 7 texture features, backscattering coefficients HH, HV, VH, and

VV, and polarization decomposition characteristics in May
2

9 Sentinel-2, Landsat-9
Gaofen-1, Gaofen-3

12 bands of Sentinel-2 after fusion, 7 bands of Landsat-9 after fusion, 9
indices, 7 texture features, backscattering coefficients HH, HV, VH, and
VV, and polarization decomposition characteristics in February and May

2

10 Preferred subset of
features

Sentinel-2 deep blue band, blue band, green band, DVI, 5 (b9-b4),
Landsad-9’s green, NIR, shortwave IR1, shortwave IR2 band, mean,

GNDVI, IRECI, SAVI, 2λ3, 5 Pv
2

Groups 6, 7 and 8 are a set of control experiments. The input of group 6 is all the
multi-spectral data features with classification accuracy of 85.10%. The input of group 7
is based on the input features of group 6, adding the features of the fully polarized SAR
data in February. The characteristics of fully polarized SAR data include the backscattering
coefficient HH\HV\VH\VV, the three eigenvalues λ1\λ2\λ3 of the coherence matrix T, and
the three components of Freeman decomposition. The classification accuracy of the seventh
group is 87.95%, and the eighth group is the addition of the characteristics of the fully
polarized SAR data in May on the basis of the input characteristics of the sixth group. The
classification accuracy was 88.51%. When the backscattering coefficient and polarization
decomposition feature of SAR data in February were added, the classification accuracy
was increased by 2.85% compared with only optical features, and when the backscattering
coefficient and polarization decomposition feature of SAR data in May were added, the
classification accuracy was increased by 3.41% compared with only optical data. Group 9
input comprised 55 features, including optical features and SAR features of February and
May, with a classification accuracy of 90%. Group 10 input comprised an optimal features
subset with a classification accuracy of 90.13%, which shows that the accuracy of optimal
features is slightly higher than that when all features are inputted. It shows that only using
the preferred feature as the feature subset can achieve higher classification accuracy.
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Figure 4. Mangrove species classification result maps based on ERT: (a–j) represent the classification
result maps of 10 different sets of features; the order of input feature sets is consistent with the
description in Table 3.

Table 5. Classification accuracy of mangrove species by ERT classification model.

Serial No. ERT OA Kappa

SA KO AM

1
PA 0.69 0.69 0.59

66.59% 0.45
UA 0.76 0.55 0.6

2
PA 0.84 0.86 0.85

84.91% 0.75
UA 0.89 0.78 0.84

3
PA 0.6 0.55 0.63

59.68% 0.34
UA 0.66 0.47 0.61
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Table 5. Cont.

Serial No. ERT OA Kappa

SA KO AM

4
PA 0.81 0.79 0.8

80.45% 0.68
UA 0.84 0.75 0.8

5
PA 0.85 0.86 0.86

85.49% 0.76
UA 0.88 0.8 0.86

6
PA 0.84 0.86 0.87

85.10% 0.75
UA 0.9 0.77 0.83

7
PA 0.86 0.9 0.9

87.95% 0.8
UA 0.93 0.81 0.86

8
PA 0.86 0.9 0.92

88.51% 0.81
UA 0.93 0.81 0.86

9
PA 0.88 0.92 0.93

90% 0.83
UA 0.94 0.83 0.88

10
PA 0.89 0.91 0.91

90.13% 0.84
UA 0.93 0.86 0.90

Most of the mangroves in Fucheng town are artificial forests, so the mangrove com-
munity structure is relatively simple. The extraction results showed that the area of SA
was 106.93 ha, and its species distribution was the most extensive, accounting for 64.49%
of the total mangrove area in the study area. The distribution area of AM was 35.44 ha,
accounting for 21.37% of the total mangrove area in the study area. The distribution area of
KO was 23.42 ha, accounting for only 14.12%, scattered around the mid-tide zone and near
the dike.

3.2. User Accuracy and Producer Accuracy

User accuracy means that a random sample is taken from the classification results, and
the type it contains is the same as the actual type of the ground. Low user accuracy indicates
that the target ground object is easy to be divided into other categories. Cartographic
accuracy refers to the conditional probability that the classification result of the same
location on the classification map is consistent compared to any random sample in the real
data. Low cartographic accuracy indicates that some other ground objects are easy to be
classified into target ground objects. When both producer accuracy and user accuracy are
greater than 85%, the classification of such species is considered reliable [39]. In the first
and third experiments, the producer accuracy and user accuracy of the three mangrove
species were all lower than 75%, indicating that the remote sensing data of medium and low
resolution had serious unreliability for interspecific classification. In the second experiment,
the producer accuracy of the three species was all about 85%, and the User accuracy of
KO was significantly lower than that of the other two species, indicating that the spectral
band of Sentinel-2 could easily classify KO into the other two species. The user accuracy
and producer accuracy of group 4 were both lower than 80%, indicating that there were
more mixed pixels between KO and other two ground objects, and the spectral values of
KO and other two species overlap more in the Landsat-9 data. In the fifth and sixth groups
of experiments, the user accuracy of KO is significantly lower than that of the other two
species, which indicates that the use of optical data alone cannot better distinguish KO
from other species. The user accuracy and producer accuracy of the three species after
the introduction of SAR data features in the seventh and eighth groups of experiments
are higher than that of the optical data in the sixth group, indicating that SAR data can
compensate for the optical spectrum overlap of optical data and improve the classification
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accuracy of species. The producer accuracy of the three species in the ninth group was
more than 88%, but the user accuracy of KO is 83% lower than that of the other two species.
The user accuracy of the tenth group of experiments was 0.03% higher than that of the ninth
group, indicating that the discrimination of KO could be improved by using the optimal
features.

3.3. Data Feature Selection Results and Feature Importance

Feature redundancy occurs when the input feature dimension is too high. In this
paper, we use the feature importance property of the ERT algorithm to calculate the feature
importance of multispectral and fully polarized SAR features, rank the importance from
high to low, and use the recursive feature elimination idea to filter the best combination
of features, i.e., remove one feature with the lowest feature importance from the current
feature subset each time to obtain a new feature subset. The importance of each feature
in the new feature subset is calculated, and the selected features are involved in ERT
classification each time; the overall accuracy and Kappa coefficient are calculated, and the
relationship between the number of feature variables and the classification accuracy and
Kappa coefficient is plotted to find the best combination of feature parameters and the best
number of features. As can be seen from Figure 5a, when the number of features increases to
a certain value, the overall classification accuracy and Kappa coefficient remain flat, as does
the number of features. Through experiments, it is found that when the number of features
is 16, the overall accuracy and Kappa coefficient both reach the maximum, which are 90.13%
and 0.84, respectively, indicating that the optimal number of features is 16. It includes four
types of features: original features of spectral data, vegetation index, texture feature and
polarization decomposition parameter. The original features of spectral data include three
wavebands with the central wavelengths of 443 nm, 490 nm and 560 nm for Sentinel-2 data
and five wavebands with the central wavebands of 482.6 nm, 561.3 nm, 864.6 nm, 1609 nm
and 2201 nm for Landsat-9 data. The vegetation index features contain six, respectively DVI,
GNDVI, IRECI, SAVI, DVI, and 5 (b9-b4). The texture features contain only one mean value.
The polarization decomposition parameters include the third eigenvalue of the coherence
matrix of February SAR data and the volume scattering eigenvalue of May SAR data. The
set of features contains optical data and SAR data from different periods, indicating that
the interspecies classification accuracy can only be improved by combining multi-source
data.
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The importance of the variables in the feature set is shown in Figure 5b. The importance
of the features is shown as spectral band > texture feature > polarization decomposition
parameter > vegetation index. The band importance of Sentinel-2 data is R443, R490, and
R560 from high to low. Among them, R443 and R490 belong to the blue wave band, and
R560 is the green light band. Chlorophyll strongly reflects green light and strongly absorbs
the blue light band. Chlorophyll content in leaves of different mangrove species is different,
so there are differences in the intensity of reflection and absorption of green light and
blue light, which may be the reason why green light band and blue light bands become
the most important to distinguish mangrove species. For Landsat-9 data, the features are
R1609, R864.6, R561.3, R2201, and R482.6 in descending order of importance, i.e., short
infrared band 1, near infrared band, green light band, short infrared band 2, and blue
light band. Previous studies have also confirmed that the short infrared band and the
near infrared band are the more important bands for distinguishing mangrove species [40].
In short infrared and near infrared bands, Landsat-9 satellite data have narrower band
width than Sentinel-2B satellite data, so Landasat-9 spectral resolution is higher. Therefore,
short infrared and near infrared bands of Landsat-9 satellite data are more suitable for
mangrove species classification than Sentinel-2B satellite data. The mean importance of
texture characteristics was ranked fourth. The texture of AM is finer and more regular,
that of SA and KO is rougher and more irregular, and the mean value of SA texture is
significantly higher than that of the other two species. GNDVI is the most promising
indicator for distinguishing mangrove species, followed by SAVI, IRECI, and DVI. The
GNDVI is a vegetation index calculated from a combination of NIR and green light bands.
This further proves that near-infrared and green wavelengths can be important features
to distinguish mangrove species. Among SAR data characteristics, the L3 characteristic
value of coherence matrix T of GaoFen-3 data in February is the most important variable
for distinguishing mangrove species in SAR data, ranking seventh in the preferred feature
set. The radar signal incident on the mangrove canopy will have significant depolarization.
The cross-polarization receiving antenna detects a small part of the depolarization radar
energy whose polarization direction changes exactly 90 degrees, and the λ3 eigenvalue
corresponds to the square of the cross-polarization component. Therefore, the λ3 eigenvalue
increases the difference of the original cross-polarization component. The volume scattering
component of SAR data in May ranked the 12th place in the preferred feature subset. The
volume scattering model is a scattering model for forest canopy structure. However, the
volume and shape of the canopy varies greatly among species. The SA belongs to tall trees,
while the KO and AM belong to small shrubs. Therefore, the importance of the volume
scattering component is high. In general, the optical data importance is higher than that of
SAR data. However, because SAR data can reflect the scattering pattern of canopy structure,
it can effectively compensate for the phenomenon of foreign matter co-spectrum in spectral
data.

3.4. Classification Results of Different Methods Based on the Preferred Feature Set

In order to verify the applicability of the ERT classifier for interspecific classification
of mangroves, RF, KNN, and Bayes classifier were selected as the comparison methods. For
the control variables, the experimental input features were all preferred feature subsets, and
the training and validation sample inputs were the same. Table 6 summarizes the mapping
accuracy, user accuracy, overall accuracy and Kappa of the three comparison methods. The
classification accuracy of the RF algorithm was 88.47%, Kappa was 0.81, the classification
accuracy of the KNN algorithm was 70.74% and the Kappa value was 0.52. The Bayes
algorithm had the lowest classification accuracy of 61.62% and the Kappa was 0.42. The
highest classification accuracy of the four compared methods was the ERT algorithm, and
the classification accuracy of the ERT classification algorithm in this paper was higher than
that of the RF classification algorithm, which improved by 1.66%. In order to evaluate the
importance of this minor improvement, this paper uses the training data set to perform
10-fold cross-validation on the extreme random tree and random forest algorithms, and
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uses the t-test to statistically analyze whether there is a significant difference between the
overall accuracy and Kappa coefficient of the two algorithms. The average value of the
overall accuracy of the ERT algorithm is 92.54%, the variance is 0.3183, and its Kappa mean
value is 0.88 and the variance is 0.00008239. The average value of the overall accuracy
of the RF algorithm is 91.24%, the variance is 0.3125, and its Kappa mean is 0.86 and
variance is 0.00007550. The t value of the overall accuracy is 5.1762, and the t value of
Kappa is 5.2575. According to the table, 5.1762 and 5.2575 are both greater than 1.7341, so
it is believed that there is significant difference between ERT and RF. Therefore, the ERT
algorithm in this paper was applicable to mangrove species classification and achieved
more satisfactory results. In addition, this paper also establishes a spatial transfer matrix
analysis for the classification results and sample data of the two methods of random forest
and extreme random tree. The spatial transfer matrix analysis table is shown in Tables 7
and 8. The horizontal axis represents the species area of the classification map, the vertical
axis represents the species area of the sample map, and the number on the diagonal is the
area of the overlap of the classification map and the sample map, that is, the area of the
correct classification. After calculation, the area of the extreme random tree classification is
greater than that of the random forest, so from another point of view, it is also proved that
the classification accuracy of extreme random tree algorithm is better than that of random
forest.

Table 6. Classification accuracy table of three comparison methods based on preferred features
(classification accuracy includes overall accuracy, Kappa, PA, and UA).

Classifier RF KNN Bayes

PA UA PA UA PA UA

SA 0.88 0.91 0.72 0.77 0.8 0.51
KO 0.89 0.84 0.67 0.63 0.47 0.81
AM 0.89 0.88 0.72 0.65 0.63 0.61

OA 88.47% 70.74% 61.26%
Kappa 0.81 0.52 0.42

Table 7. Space transition matrix of ERT algorithm (Area unit: ha).

Sample True
Value

Classification Result

SA AM KO Total

SA 87.01961569 6.293972504 6.029115196 99.34270339
AM 5.690461859 15.28142336 0.742151633 21.71403685
KO 9.016527601 1.381555296 23.62586764 34.02395053
total 101.7266051 22.95695116 30.39713447 155.0806908

Table 8. Spatial transfer matrix of random forest algorithm (Area unit: ha).

Sample True
Value

Classification Result

SA AM KO Total

SA 86.77964846 6.562051645 6.000983684 99.34268379
AM 5.515079054 15.48237008 0.716586494 21.71403562
KO 8.979577959 1.43338697 23.61098254 34.02394747
total 101.2743055 23.47780869 30.32855272 155.0806669

The producer and user accuracies of the RF algorithm were higher than those of KNN
and Bayes, indicating that the RF algorithm was more accurate in estimating the three
species. The KNN algorithm had higher producer and user accuracies for SA than the other
two species, thus estimating SA more accurately than KO and AM. The Bayes classification
algorithm had the lowest producer accuracy of 0.47 for KO, which shows that the other two
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species were misclassified into KO in a larger area, and the lowest user accuracy of 0.61 for
SA, which shows that SA was misclassified into the other two species in a larger area.

We have made comparative experiments with three algorithms of RF, KNN and Bayes,
and the ERT algorithm (Figure 6). The overall accuracy and Kappa of the four algorithms
are shown in Table 9. The classification accuracy of RF, KNN and Bayes algorithms based
on 10 groups of experimental features is lower than the ERT algorithm. The classification
accuracy of the ERT algorithm in the optimal feature set is also the highest.
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4. Discussion
4.1. Effect of Spatial Resolution of Spectral Data on Species Classification

For spectral data, a large number of studies have shown that the difference in spectral
characteristics of different mangrove species is the fundamental reason for interspecific
classification of mangroves, but the spatial resolution of spectral data is also the main
reason for the accuracy of feature classification [13,41,42]. The lower the spatial resolution,
the larger the range of ground objects contained in a pixel; that is, there may be more
types of ground objects in one pixel, and the morphological structure of different species
is also very different. The canopy area of SA in this paper is significantly larger than that
of AM and KO [43]. The canopy area of SA is about 7~14 m2, the canopy area of AM is
about 2~8 m2, and the canopy area of KO is about 2~5 m2. If the spatial resolution of
spectral data is significantly larger than that of mangrove species, it will lead to a decrease
in interspecific classification accuracy, and the classification accuracy of 2 m resolution
is 18.32% higher than that of Sentinel-2 data with 10 m resolution, and 2 m resolution is
20.77% higher than that of Landsat-9 data with 15 m resolution. The classification accuracy
was improved by 20.77%, but due to the high cost of acquiring high spatial resolution
data, subsequent studies can find the most suitable spatial resolution for interspecific
classification by actually measuring the canopy area of different mangrove species.

4.2. Influence of Spectral Bands on Species Classification in Multispectral Data

The Gaofen-1 satellite data only contain four bands and lack rich band information.
The Sentinel-2 data contain 12 bands and the Landsat-9 data contain 7 bands. Therefore,
the panchromatic band of Gaofen-1 data is fused with Sentinel-2 and Landsat-9 data,
respectively. The fused data has both high spatial and spectral resolution. The rich band
information can effectively distinguish mangrove species. The accuracy of mangrove
species differentiation using high resolution Sentinel-2 or Landsat-9 satellite data alone has
reached more than 80%. The dark blue and blue bands of Sentinel-2 are the most important
for the classification of mangrove species rather than short-wave infrared or near-infrared.
The possible reason is that there are differences in the chlorophyll content of different
species. The appearance of white bone soil is gray-green, the appearance of autumn
eggplant is bright green, and the appearance of acanthopanax is dark green. Therefore,
these differences lead to different chlorophyll content, resulting in large differences in the
reflectivity of different species in the blue light band.

4.3. Contribution of SAR Data Features

A previous study showed that the combination of optical and dual-polarized SAR
data can improve the accuracy of mangrove interspecific classification [16]. It was also
found that the combination of full-polarimetric SAR data with optical data can improve
the accuracy of probability mapping of mangrove tree species [43]. However, few studies
have investigated the importance of different features of full-polarimetric SAR data and
the impact of different SAR data features in different periods on interspecific classification.
In this paper, fully polarized Gaofen-3 data were collected for February 2021 and May
2022, and the probability of changes in species distribution during this period was not
significant enough to ignore the effect of time. Due to the special habitat of mangroves,
their scattering mechanism is also influenced by the tide. SAR data in February were taken
at high tide and SAR data in May were taken at low tide. It can also be seen from Figure 7a
that the backscattering coefficient value in February is lower than that in May because the
water content of mangrove vegetation under the bedding surface kept changing during
high tide, the dielectric constant of the bedding surface kept increasing, and the proportion
of specular scattering increased, which caused the radar echo signal. Therefore, for the
classification of vegetation growing in the intertidal zone, the influence of tide on the
backscattering coefficient must be considered.

In this paper, we selected winter and spring SAR data features for mangrove species
classification. Some studies showed that backscatter coefficients of different seasons are
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also sensitive to mangrove species identification [19]. However, the experimental data
used for classification by previous authors are unipolarized data, and this paper uses fully
polarized SAR data from different periods. This study does not contain backward scatter-
ing coefficient eigenvalues in the subset of preferred features, indicating that backward
scattering coefficient features are not always the most important features for mangrove
species classification, and different mangrove species are more sensitive to the derived
features of SAR data. However, not all polarization decomposition features are important
for mangrove species differentiation, which depends on the geometrical characteristics of
mangrove species. This paper finds that the third eigenvalue of the polarization coherence
matrix in February and the volume scattering component decomposed by Freeman in May
are very important for the classification of three species, namely, candel, acanthopanax,
and argillaceous soil. As can be seen from Figure 7b, the polarization decomposition char-
acteristic values of different species in different seasons are different. In the polarization
decomposition parameters of May, only λ3 is lower than that of February, while other
polarization decomposition parameters of May are higher than that of February. Therefore,
further study is needed on the intrinsic relationship between the polarization decomposi-
tion characteristics of different seasons and the species structure. In this paper, only two
periods of SAR data features are used to evaluate their impact on the classification accuracy
of mangrove species. Therefore, it is necessary to conduct a more robust analysis of SAR
data features of multiple periods in subsequent experiments. The main purpose of this
paper is to study the accuracy of predicting mangrove species with the combination of fully
polarized SAR data in different periods and multi-spectral characteristics. However, the
effects of optical data in different seasons on the accuracy of mangrove species classification
are unknown. Therefore, the best month for identifying mangrove species with optical data
should be sought in the future. Thus, mangrove species can be identified by combining
SAR data at the best time with optical data at the best time.
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5. Conclusions

In this paper, a mangrove forest in Fucheng town of Zhanjiang City was selected as
the research area. For the first time, fusion images of Gaofen-1 data with Sentinel-2 and
Landsat-9 data were used for the study of mangrove interspecific classification. Moreover,
it was the first attempt to verify the effectiveness of the ERT classification algorithm. A
total of 55 features were extracted from Sentinel-2, Landing-9 and GF-3 data of different
periods Through the recursive feature elimination algorithm based on the ERT, the optimal
feature subset is screened out, and the fundamental reasons why different features are
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suitable for the classification of mangrove species are analyzed. In general, the importance
of optical data features is higher than that of polarization decomposition features. The
deep blue band, blue wave segment, and green band of Sentinel-2 data and the short
infrared 1, short infrared 2, near infrared, green band, and blue wave segment of Landsat-9
are the most efficient bands to distinguish mangrove species. The study found that the
classification accuracy of Sentinel-2 data with a spatial resolution of 2 m is significantly
improved compared with the Sentinel-2 data with a resolution of 10 m. The coupled
Sentinel-2 and Landsat-9 data with 2 m resolution have higher classification accuracy than
the single data source. In the SAR data, the λ3 eigenvalue of the coherence matrix T of
GaoFen-3 data in February was the index with most potential for distinguishing mangrove
species, followed by the volume scattering component of the data in May. The results show
that the polarization decomposition feature is helpful to improve the accuracy of mangrove
interspecific classification. In the optimal feature sub-set, RF, KNN, Bayes classification
algorithms were chosen to compare with the ERT classification algorithm. The results
showed that the classification accuracy of the ERT algorithm was higher than the other
three classification algorithms, with an overall accuracy of 90.13% and Kappa of 0.84.
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