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Abstract: Typically, storing a two-dimensional wave spectrum could occupy more than one thousand
storage units, making saving and reading boundary spectra computationally burdensome in nested
wave simulations. This paper proposes a new approach for preservation of a wave spectrum that can
reduce the required number of storage units to dozens. Using a corresponding reconstruction ap-
proach, the spectrum can then be rebuilt with intact spectral characteristics. Experimental application
confirmed that the reconstructed spectra could be adopted as boundary conditions in nested wave
modeling. The newly proposed approach for preservation and reconstruction of spectra allows long-
term spectral information covering the entire simulated domain to be saved with more acceptable
storage consumption, and such information can then be adopted as nesting conditions for nested-
child simulations without the limitations of predefined boundaries. The above-mentioned properties
of the new method could help support engineering projects concerning wave environments, research
focused on wave climatology, and studies associated with wave energy assessment.

Keywords: wave spectra; spectral partitioning; wave modeling; nesting; boundary conditions

1. Introduction

Ocean surface waves, including wind waves and swell, can reach heights of tens of
meters, travel thousands of miles, and cause serious threats to various marine activities, e.g.,
sea voyages [1–3], ocean fishing [4,5], and oil exploitation [6–8]. Ocean waves can also be
intimately involved in the energy and material exchange between the atmosphere and the
ocean, playing a crucial role in global and regional climate systems [9,10]. Moreover, wave
energy, which is one of the most concentrated [11] and highly available sources of marine
renewable energy, can be considered a potential alternative in response to the gradual
depletion of fossil energy resources.

Research and applications associated with the safety of offshore engineering structures,
prevention of global warming, and harnessing of wave energy are highly dependent on
the statistics of various wave characteristics, such as wave height, period, propagation
direction, and spectral width. In particular, wave power density (WPD) is a crucial factor
of importance to the wave energy industry. A series of wave datasets have been proposed
to support such research and applications, e.g., the earlier ERA-Interim dataset [12] that
provides basic bulk wave parameters, such as significant wave height, mean wave period,
and mean wave direction. The more recent ERA5 dataset [13–15] and the EMC/NCEP
wave hindcast dataset [16] further exhibit the above-mentioned wave parameters in the
form of wave systems, i.e., wind waves and swell. Furthermore, the long-term variation
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of the wave parameters with continuous spatiotemporal coverage can be generated via
simulation using numerical wave models such as WAM [17,18] and WaveWatch III [19,20].

Most of the datasets mentioned above might have global coverage but with relatively
low spatial resolution (typically, 0.5◦ × 0.5◦), which is unsuitable for supporting research
and applications concerning wave characteristics in nearshore and island sea areas. Other
than adopting finer resolution, specific modeling strategies that might also be considered
for such wave environments include unstructured computational grids, algorithms to
simulate shoaling and refraction, and the adoption of source terms that present shallow
water effects on waves; sometimes, even a specific wave model should be selected, e.g.,
SWAN [21,22].

Nested wave modeling can be introduced to solve the above problems, i.e., the parent
model with lower resolution provides the wave features in the outside ocean beforehand,
and the corresponding child model later employs the information relating to the outside
waves to simulate the conditions of the inner domain with specific resolution and strategies.
In current third-generation wave models, the information exchanged across the bound-
aries between the parent and child domains comprises simulated two-dimensional (2D)
frequency–directional wave spectra. However, saving and reading 2D spectra, each of
which typically occupies a space of 35 (in frequency) × 36 (in direction) storage units
on the boundary grid points, is burdensome, particularly in relation to long-term nested
simulations. Therefore, both the size and the resolution of the boundaries must be designed
carefully before initializing a simulation in case the storage of boundary spectra becomes
computationally unaffordable. Moreover, such a large volume of stored boundary spectra
cannot be reused in most cases if the child domain is changed.

Various solutions might be useful in alleviating the problem of spectrum storage.
One such approach would be to run the parent and child simulations synchronously, e.g.,
the multigrid [23] and mosaic approach [24] introduced in WaveWatch III. By conducting the
two simulations simultaneously, spectral information on the boundaries can be exchanged
and abandoned immediately in the memory; thus, no spectra need to be saved. However,
in such simulations, the adoption of specific individual modeling strategies or wave models
for the parent and child simulations might become inconvenient.

Another way to avoid preserving boundary spectra in nested wave modeling is to
reconstruct the 2D spectra with a parametric spectrum (e.g., a JONSWAP spectrum [25]
or a Pierson–Moskowitz spectrum [26]) and a certain imposed directional distribution
(e.g., a Mitsuyasu-type distribution [27]). In such a reconstruction, only several wave
parameters are needed, e.g., significant wave height, peak wave period, and main wave
direction. Furthermore, such wave boundary information is acceptable in the SWAN model.
However, parametric spectrum models have difficulty representing the characteristics
of various wave spectra completely, and unpredictable errors might occur during the
simulations, resulting in reduced accuracy in further analyses. Moreover, the properties
of wave systems, i.e., wind waves and swell, can be totally ignored in such unimodal
spectrum models.

Finally, the directional distribution can be estimated using Fourier coefficients. For ex-
ample, by adopting the Maximum Entropy Method [28], the directional distribution at each
frequency of a typical 35 × 36 spectrum can be expressed by the first four Fourier coeffi-
cients; thus, the size of such a spectrum can be reduced to 35 × 4. However, having each
spectrum require a storage space of 35 × 4 units is still extravagant in terms of operational
wave simulations. Moreover, false values of the Fourier coefficients might be obtained from
frequency bins that contain very low energy, resulting in spurious directional distribution
estimations.

This paper presents a new approach for the preservation of 2D wave spectra. By intro-
ducing what are known as the Reconstruction Parameters (RPs), only dozens of storage
units are needed to preserve a certain 2D spectrum. In conjunction with a corresponding
reconstruction method, the spectra can then be rebuilt with intact spectral features. Experi-
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mental application confirmed that the reconstructed spectra could be adopted as boundary
conditions in nested wave simulations.

The remainder of this paper is organized as follows. The steps of the proposed
approach for the preservation and reconstruction of 2D wave spectra are presented in
Section 2, together with the settings used in the application experiments. Section 3 provides
comparisons between the original and reconstructed spectra and between the simulated
results taking the two types of spectra as boundary conditions. Finally, a discussion and
the derived conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Approach for Preservation and Reconstruction of 2D Wave Spectra

Figure 1 illustrates the basic steps of the proposed approach for the preservation and
reconstruction of 2D wave spectra taking a spectrum with three wave systems (partitions)
as an example.

Figure 1. Steps (from 1 to 7) for preserving and reconstructing a 2D wave spectrum.

First, a spectral partition (SP) technique is employed to separate the entire spectrum
S( f , θ) into several partitions Si( f , θ).

S( f , θ) = ∑ Si( f , θ). (1)

The SP can be traced back to a digital image processing watershed algorithm [29],
which can be applied to identify watershed lines, mountain peaks, and valleys in topo-
graphic maps. Because the 2D spectrum resembles a topological surface, applying such
an algorithm in this circumstance is logical [30]. Partitioning of wave spectra is widely
conducted in research concerning topics such as data assimilation [30–32] and the spa-
tiotemporal tracking of wave systems [33,34]. The partitioning and identification program
implemented in this work was developed based on the W3PARTMD module of the Wave-
Watch III model ver. 6.07 [35], in which an efficient FORTRAN routine was transformed
from the MATLAB code [36,37] that was used to apply the watershed algorithm [29].

Particularly, the SP procedure can ensure that only one spectral peak is comprised in
each partition. As shown in Figure 1, the frequency–directional ( f –θ) spectral domain of
the example spectrum is demonstrated in polar coordinates, and the spectral density is
indicated by the colors. Three partitions are identified and labeled 1–3, and the boundaries
are depicted by white lines.
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Then, the one-dimensional (1D) frequency spectrum Ei( f ) and the directional distri-
bution Di(θ) can be obtained by integrating each partition Si along the frequency and the
direction dimension, respectively:

Ei( f ) =
∫ 2π

0
Si( f , θ)dθ, (2)

Di(θ) =

∫ ∞
0 Si( f , θ)d f

M0,i
, (3)

where the spectral moment M0,i =
∫ ∞

0 Ei( f )d f , and it is noted that
∫ 2π

0 Di(θ)dθ = 1.
The peak frequency fp,i is determined as the frequency bin corresponding to max(Ei).

The General Unimodal Frequency Spectrum Model (GUFSM), expressed as follows:

G( f ) = c
(

f
fp

)−α

e
−λ( f

fp
)
−β

γexp

−
(

1− f
fp

)2

2σ2

, (4)

is proposed to represent the shape of Ei( f ). Using the least square method (LSM), the candi-
date RPs, such as c, α, β, λ, γ, and σ, can be adjusted to allow Equation (4) to fit the arbitrary
Ei( f ). Furthermore, to obtain better goodness of fit and to reduce the number of RPs, Ei( f )
is divided into two parts, denoted as E f r

i and Etl
i , based on the peak frequency fp,i. For the

front part E f r
i , parameters α = 5, β = 4, and λ = 1.25 are fixed, and the undetermined RPs

are γ
f r
i , σ

f r
i , and c f r

i ; however, considering the complex spectral shape at higher frequencies,
all six RPs, denoted as ctl

i , αtl
i , βtl

i , λtl
i , γtl

i , and σtl
i , are involved in the tail part Etl

i LSM

fitting processes. Therefore, the number of RPs for E f r
i and Etl

i are n f r = 3 and ntl = 6,
respectively. Further details regarding the choices of n f r and ntl are discussed in Section 4.

Once the RPs for Ei( f ) are obtained, the parameters c f r
i and ctl

i need further rescaling
as follows:

c f r
i = ĉ f r

i

∫ fp,i
0 E f r

i ( f )d f∫ fp,i
0 Ê f r

i ( f )d f
, ctl

i = ĉtl
i

∫ ∞
fp,i

Etl
i ( f )d f∫ ∞

fp,i
Êtl

i ( f )d f
, (5)

where ĉ f r
i and ĉtl

i are the immediate outcomes of the LSM fitting, and Ê f r
i and Êtl

i are

the results of the GUFSM with substitutions of
{

ĉ f r
i , γ

f r
i , σ

f r
i

}
and

{
ĉtl

i , αtl
i , βtl

i , λtl
i , γtl

i , σtl
i

}
,

respectively. Notably, the other RPs of Ei( f ) do not need any rescaling.
The RPs for Di(θ) are designed as follows:

θ0,i = tan−1
(

b
a

)
with

{
a =

∫ 2π
0 cos(θ)Di(θ)dθ

b =
∫ 2π

0 sin(θ)Di(θ)dθ
, (6)

m1,i =
∫ 2π

0
cos(θ − θ0,i)Di(θ)dθ, (7)

m2,i =
∫ 2π

0
cos{2(θ − θ0,i)}Di(θ)dθ, (8)

n2,i =
∫ 2π

0
sin{2(θ − θ0,i)}Di(θ)dθ, (9)

and θ0,i is also known as the mean direction of Di(θ), and m1,i, m2,i, and n2,i are the so-called
centered Fourier coefficients [38]. Therefore, the number of RPs for Di(θ) is ndr = 4.

On the basis of the previously mentioned 15 RPs: {M0,i, fp,i, c f r
i , γ

f r
i , σ

f r
i , ctl

i , αtl
i , βtl

i , λtl
i ,

γtl
i , σtl

i , θ0,i, m1,i, m2,i, n2,i }, each partition in the original 2D spectrum can then be recon-

structed. Apparently, by substituting
{

c f r
i , γ

f r
i , σ

f r
i

}
and

{
αtl

i , βtl
i , λtl

i , γtl
i , σtl

i

}
into



Remote Sens. 2023, 15, 1360 5 of 24

Equation (4), the reconstructed Ě f r
i
(

f ∈
[
0, fp,i

])
and Ětl

i
(

f ∈
[

fp,i, ∞
])

can be obtained
immediately. By combining the two parts mentioned above, we can obtain the first guess
of Ěi( f ∈ [0, ∞]), in which Ěi

(
fp,i
)
= max

(
Ě f r

i
(

fp,i
)
, Ětl

i
(

fp,i
))

. Finally, the reconstructed
1D frequency spectrum for each partition can be expressed as follows:

Ẽi( f ) = Ěi( f )
M0,i∫ ∞

0 Ěi( f )d f
(10)

To reconstruct directional distributions, the Maximum Entropy Method [28,38] is
employed. The first guess of the directional distribution of a certain partition is expressed
as follows:

c1 = m1,ie−jθ0,i , (11)

c2 = (m2,i − jn2,i)e−2jθ0,i , (12)

φ1 =
c1 − c∗1c2

1−m2
1,i

, (13)

φ1 =
c1 − c∗1c2

1−m2
1,i

, (14)

Ďi(θ) =
1

2π

1− φ1c∗1 − φ2c∗2∣∣1− φ1eiθ − φ2e2iθ
∣∣2 , (15)

where the asterisk denotes the complex conjugate, and we define j2 = −1. Finally, we set
the following:

D̃i(θ) =
Ďi(θ)∫ 2π

0 Ďi(θ)dθ
, (16)

to ensure that
∫ 2π

0 D̃i(θ)dθ = 1.
The 2D wave spectral partitions can then be established as follows:

S̃i( f , θ) = Ẽi( f )× D̃i(θ), (17)

and the entire reconstructed spectrum can be reconstructed:

S̃( f , θ) = ∑ S̃i( f , θ). (18)

2.2. Application of Reconstructed Spectra to Boundary Conditions in Nested Wave Modeling

The approaches established above can be applied to the boundary conditions in nested
wave modeling by preserving the RPs on the boundaries when the parent model is running
and by reconstructing the 2D spectra for boundary conditions when simulation using the
child model is being conducted.

To demonstrate the application, wave field simulations were conducted using a pair of
nested wave models for the Wanning offshore area (Hainan Island, China), including one
parent simulation that provided the boundary conditions and two nested child simulations
that separately used the original and reconstructed boundaries. The WaveWatch III [19,39]
model ver. 6.07 [35] was employed as the parent model, covering the computational region
of 5◦S–45◦N, 100◦–150◦E with 1/16◦ × 1/16◦ horizontal resolution. The child model
adopted was the SWAN model ver. 41.41 [21,22], whose simulation domain covered the
region of 18.5◦–19.5◦N, 110◦–111◦E with 1/20◦ × 1/20◦ rectangular grids.

Figure 2 shows the child computational domain, in which the 43 black circles along
the sides denote the locations of the boundary points at which the boundary spectra
are preserved and reconstructed. The intervals between the boundary points are 1/20◦,
and four of them, presented as red and denoted B1–B4, are selected as check points for
comparison of the original and reconstructed spectra (see Section 3). Similarly, the yellow
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‘+’ symbols denoted O1–O3 in Figure 2 are selected to confirm whether the statistics of the
spectra simulated with reconstructed boundaries match those modeled with the original
boundaries (also presented in Section 3). The locations of the check points are listed in
Table 1.

Figure 2. Child computational domain for the Wanning offshore area, and locations of boundary
points (black circles), check points B1–B4 (red circles), and check points O1–O3 (yellow “+” symbols).

Table 1. Locations of check points.

Check Points Latitude (degr. N) Longitude (degr. E) Depth (m)

B1 18.5 110.5 88
B2 18.5 111.0 171
B3 19.0 111.0 96
B4 19.5 111.0 41
O1 19.0 110.8 71
O2 18.6 110.6 97
O3 19.0 110.6 26

The simulated spectral space in both the parent and the child models was set with
36 directions at intervals of 10◦ and at 35 frequencies spaced from 0.042 to 1.07 Hz as a
geometric progression with a ratio of 1.1. Therefore, in this study, storing a 2D spectrum at
a certain original boundary point required 35 × 36 = 1260 storage units, which is a value
typical of current wave modeling research.

In practice, it is unnecessary to involve all the original identified spectral partitions
in Equation (18) because partitions with very low wave energy can be spurious partitions
or noise that might interfere with the main features of the original spectra. In this study,
partitions with a value of 4

√
M0,i < 0.05 (the significant wave height of the partition is

smaller than 0.05 m) were ignored; and the maximum number of partitions involved in
the reconstruction was set at four, with candidate partitions ordered from large to small
based on their respective M0,i values. Further discussion on the setting of the maximum
number is presented in Section 4. Therefore, through the proposed preservation approach,
the number of storage units occupied to save the RPs of a 2D spectrum is reduced to a
maximum of 15 × 4 = 60.

The period of the simulations was the year 2018, and the spectra and RPs on the
boundary points were preserved and reconstructed hourly. Both child simulations were
conducted with the exact same model settings, including source terms representing the
effects of nonlinear quadruplet wave interactions [40,41], wind input [42,43], white cap-
ping [43], swell dissipation [44], depth-induced wave breaking [45], bottom friction [25],
and triad wave–wave interactions [46]. The wind force adopted in the simulations was
derived from ECMWF-ERA5 analysis hourly data [15], which provided the u–v wind
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field at the height of 10 m above the sea surface with 0.25◦ × 0.25◦ horizontal resolution.
Bathymetric data were obtained from the ETOPO1 model of the U.S. National Geophysical
Data Center [47].

3. Results

To validate the newly proposed approach and its application in wave modeling, three
sets of comparisons are presented in this section, including comparisons of the original
and reconstructed spectra/partitions at boundary points, of SWAN field outputs simulated
with original and reconstructed boundaries, and of spectral statistics derived from the two
field outputs mentioned above.

Table 2 lists some of the Key Parameters (KPs) that can represent the characteristics of
spectra and partitions. Moreover, we introduce Pearson’s correlation coefficient (R):

R =
∑i((REi − RE)(ORi −OR))√

∑i(REi − RE)2·∑i(ORi −OR)2
, (19)

and the mean absolute error (MAE):

MAE =
1
N ∑N

i=1 |REi −ORi|, . (20)

to indicate the quantitative errors between the comparison objects. In Equations (19) and (20),
RE and OR denote the KPs obtained based on the reconstructed and the original spec-
tra/partitions, respectively, subscript i indicates the index of each sample, N is the total
number of samples, and RE = 1

N ∑N
i=1 REi, and OR = 1

N ∑N
i=1 ORi,.

Table 2. KPs adopted to represent the characteristics of spectra and partitions.

KPs Definition and Calculation

Hm0

Significant wave height, denoted as Hm0 in meters, is calculated as follows:
Hm0 = 4

√
m0

where the spectral moment of order n is calculated as
m n =

∫ ∞
0 f n E( f ) d f

Tm01

Mean wave period based on first moment, denoted as Tm01 in seconds, is calculated
as follows:

Tm01 = m0
m1

Tm02

Mean wave period based on second moment, also known as mean zero-crossing
wave period (in seconds), is calculated as follows:

Tm02 =
√

m0
m2

Te

Mean wave period based on the moment of order −1, also known as wave energy
period (in seconds), is calculated as follows:

Te =
m−1
m0

fp
Peak frequency fp (in Hz) is determined as the frequency bin corresponding to the
maximum value of E( f ).

Tp Peak wave period (in seconds) is calculated as Tp = 1
fp

.
E
(

fp
)

Peak spectral density (in m2s), i.e., the maximum value of E( f ).

WPD

Wave power density [48] characterizes the time-averaged energy flux through an
envisioned vertical cylinder of unit diameter; its unit is usually taken as kW/m
(kilowatts per meter) or m3/s. This parameter can be estimated as follows:

WPD = ρg
∫ ∞

0 CgE( f )d f
WPDx = ρg

∫ ∞
0 Cg,xE( f )d f

WPDy = ρg
∫ ∞

0 Cg,yE( f )d f
where ρ = 1023 kg/m3 denotes the density of seawater, g = 9.81 m/s2 is the
acceleration of gravity, and

cg =
2π f

k

(
1 + 2kd

sinh(2kd)

)
is the group velocity which is associated with the water depth d and wave number k.
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Table 2. Cont.

KPs Definition and Calculation

WLEN
Mean wavelength (in meters) is defined as

WLEN = 2π

( ∫ ∞
0 kE( f )d f

m0

)−1

where k denotes wave number.

Qp

The peakedness of the wave spectrum [49] (non-dimensional), defined as follows:

Qp = 2
∫ ∞

0 f E2( f )d f
m2

0

A smaller value of Qp indicates a wider spectrum.

FSPR

The normalized frequency width of the spectrum (frequency spreading) is defined
as [50]:

FSPR =
|
∫ ∞

0 E( f )ej2π f τ d f |
m0

Where τ = Tm02 and j =
√
−1.

θ0 (θ0,x &
θ0,y)

Mean wave direction (in degr. and Nautical convention) is calculated as
θ0 = tan−1(b/a)

where a =
∫ 2π

0 cos θD(θ)dθ and b =
∫ 2π

0 sin θD(θ)dθ and the x and y components
of θ0 can be expressed as: θ0,x = cos(θ0) and θ0,y = sin(θ0).

σθ

The one-side directional width of the spectrum (directional spreading or directional
standard deviation, in degr.) is defined as [38]

σθ =

{
2
[

1−
(

a2+b2

m2
0

)1/2
]}1/2

3.1. Comparison between Original and Reconstructed Spectra/Partitions at Boundary Points

Figure 3 shows the scatter plots of the KPs derived at check point B2. In each panel,
the x (y) axis indicates the values of a specific KP obtained from the original (reconstructed)
partitions, and the name of the KP can be found in the title. The partitions from the same
spectrum have been ordered from large to small based on their Hm0 value; therefore, each
member of “Part1” exhibited in Figure 3a is the partition with the largest Hm0 value in each
sampling spectrum; similarly, Part2 to Part4 in Figure 3b–d, respectively, refer to the second
to fourth largest partitions. Figure 4 presents comparisons of the entire spectra, and the
reconstructed spectra are rebuilt with the four largest partitions; the scatter plots shown
in Figure 4 are the same as those in Figure 3. The corresponding R and MAE values for
both the partitions (Part1–6) and the entire spectra (Part0) are exhibited in Tables 3 and 4,
respectively. Notably, Part1–4 in the two tables can be referred to Figure 3a–d, and two
more sets of partitions with smaller Hm0 values are also presented. Finally, the sample
numbers of Part1–6 at B2 are 6407, 8729, 3295, 1483, 449, and 97; therefore, in most cases,
the maximum number of coexisting wave systems at B2 is fewer than four.

Table 3. Correlation coefficient (R) of the KPs derived from the original and the reconstructed
spectra/partitions at check point B2. Sample numbers of Part0 to Part6 are 8760, 6407, 8729, 3295,
1483, 449, and 97, respectively.

Partn

KPs
Hm0 fp Tm01 Tm02 Te WPD WLEN E

(
fp

)
Qp FSPR θ0,x θ0,y σθ

Part0 1.000 0.961 0.986 0.955 0.999 1.000 0.930 0.999 0.970 0.972 1.000 0.999 0.995
Part1 1.000 1.000 0.990 0.973 0.999 1.000 0.973 0.999 0.977 0.957 1.000 0.999 0.990
Part2 1.000 1.000 0.996 0.993 0.999 1.000 0.991 0.999 0.985 0.973 0.998 0.996 0.982
Part3 1.000 1.000 0.999 0.997 0.999 1.000 0.998 0.999 0.979 0.962 0.994 0.997 0.929
Part4 1.000 1.000 0.999 0.998 1.000 1.000 0.999 1.000 0.970 0.936 0.994 0.991 0.925
Part5 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999 0.961 0.926 0.994 0.986 0.904
Part6 1.000 1.000 0.999 0.999 0.999 1.000 0.999 0.996 0.961 0.923 0.997 0.996 0.857
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Figure 3. Scatter plots for KPs obtained from the original and the reconstructed partitions at check
point B2: (a) Partition 1, (b) Partition 2, (c) Partition 3, and (d) Partition 4. The partitions from the
same spectrum are ordered from large to small based on their Hm0 values.
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Figure 4. Scatter plots for KPs obtained from the original and the reconstructed spectra (with the four
largest partitions) at check point B2.

Table 4. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
spectra/partitions at check point B2. Sample numbers of Part0 to Part6 are 8760, 6407, 8729, 3295,
1483, 449, and 97, respectively.

Partn

KPs
Hm0
(m)

fp
(Hz)

Tm01
(s)

Tm02
(s)

Te
(s)

WPD
(kW/m)

WLEN
(m)

E(fp)(
m2s

) Qp FSPR θ0
(degr.)

σθ

(degr.)

Part0 0 0.0012 0.16 0.25 0.06 0.12 4.3 0.0958 0.0504 0.0167 0.8 0.6094
Part1 0 0.0002 0.17 0.27 0.06 0.09 4.8 0.0779 0.0676 0.0179 0.9 0.552
Part2 0 0.0001 0.13 0.2 0.06 0.05 4.2 0.0456 0.2108 0.028 2.2 1.1075
Part3 0 0.0001 0.11 0.15 0.07 0 3.6 0.0054 0.353 0.0355 3.6 1.5116
Part4 0 0 0.09 0.12 0.06 0 3.3 0.0027 0.5448 0.0409 3.4 1.3202
Part5 0 0 0.09 0.12 0.06 0 3.7 0.0018 0.4985 0.037 2.9 1.2933
Part6 0 0.0002 0.09 0.11 0.07 0 3.8 0.0017 0.477 0.0348 1.9 1.0665

From Figures 3 and 4 and Tables 3 and 4, the reconstructed Hm0, fp, and the related
E
(

fp
)
, can be found to be almost entirely consistent with the originals, although the

reconstructed fp in the entire spectra might sometimes deviate substantially from the
original. In fact, fp is defined directly as the frequency corresponding to the maximum
spectral density, which is meaningful in a unimodal spectrum, e.g., each partition identified
in this study because most energy might concentrate at the frequency; however, it becomes
meaningless in a spectrum where multiple wave systems (partitions) coexist.

The KPs representing wave periods, such as Tm01, Tm02, and especially Te, are also
reconstructed well, as shown in the above-mentioned figures and tables. In comparison
with Te, both Tm01 and Tm02 are more sensitive to the spectral shape in high-frequency
bands owing to the higher order spectral moments that are involved. For developed
waves with larger Hm0 and lower fp, such as the waves in Part1 and Part2, the SP step
introduced in the newly proposed approach might influence the spectral shapes in higher
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frequencies, causing greater deviation from the “normal” patterns that can be expressed
by the GUFSM; similar spectral tails can also be observed in multimodal spectra. This is
why poorer agreement for Tm01 and Tm02 can be found in reconstructed Part1 and Part2
and in the entire spectra than in Part3–6. Similar elucidation can also be performed on
the reconstructed WLEN. Nevertheless, the quantitative errors for those KPs shown in
Tables 3 and 4 are acceptable.

Figures 3 and 4 and Tables 3 and 4 show that the mean wave direction θ0 can be
effectively rebuilt in both the entire spectra and the spectral partitions. The same goodness
of fit can also be found in the KPs of WPD, which implies that the new approach can be
adopted in research associated with wave energy assessment. As for the KPs associated
with spectral width, e.g., Qp, FSPR, and σθ , the newly proposed approach can produce
better reconstruction results for the entire spectra, but the agreements might become poorer
for partitions with smaller values of Hm0.

The comparison results for the partitions and spectra at check points B1 (Figures S1 and S2
and Tables S1 and S2), B3 (Figures S3 and S4 and Tables S3 and S4), and B4 (Figures S5 and S6
and Tables S5 and S6) are similar to those at B2, and the relevant figures and tables can be
found in the Supplementary Material. We can then conclude that a certain 2D spectrum
occupying 1260 storage units can be preserved with the RPs requiring a maximum of
60 units, and reconstructed with intact key characteristics via the reconstruction approach
proposed in this study.

3.2. Comparison of SWAN Field Outputs

The spatial distributions of the coefficients R and MAE for the modeled wave fields are
illustrated in Figures 5 and 6, respectively. The coefficients mentioned above were derived
from the SWAN BLOCK outputs covering the entire nested domain. In each panel of
Figure 5 (6), the colors indicate the values of R (MAE), the title identifies the corresponding
KP, and the x and y axes denote longitude (◦E) and latitude (◦N), respectively. Notably,
the KPs’ outputs by the SWAN model were calculated using the entire simulated spectra,
involving both wind-sea and swell contributions.

Figure 5 shows that for conventional wave parameters such as Hm0, Tm01, Tm02, Te,
WLEN, WPD (here presented as WPDx and WPDy), and θ0 (here presented as θ0,x and
θ0,y), the simulated results with the original and the reconstructed boundaries can match
strongly (R > 0.99) in most parts of the nested domain; and for the spectral width parameters,
as well as parameter Tp, the results achieving a strong level of agreement (R > 0.95) can
also cover the main part of the demonstration region. The spatial distribution of MAEs
illustrated in Figure 6 further reveals that the simulation errors due to using the original
and reconstructed boundaries can be far smaller than those occurring in the validation
of wave modeling results against the observations. Apparently, the characteristics of the
original spectra can be transferred to the nested wave fields through the reconstructed
boundaries.

3.3. Comparion of Spectral Statistics

The modeled 2D spectra at check points O1–O3 shown in Figure 2 were retained during
the simulations to further validate that the characteristics of the original partitions could
also be transferred to the nested domain through the reconstructed boundary conditions.

The Two-step Spectral Partition procedure [51] is introduced to perform statistical
analyses on these partitions. Because the peaks of the partitions, identified by the (first-
step) SP procedure, could occur at any location in the f –θ spectral space, the probability of
their occurrence then forms another 2D spectrum; by partitioning the newly formed spec-
trum (second-step partition), the identified partitions can then be grouped automatically.
The statistics of the grouped partitions over a long time series can reflect physical reality
and have climatic significance [51–53].
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Figure 5. Spatial distributions of correlation coefficient R of the KPs derived from the SWAN BLOCK
outputs. In each panel, the values of R are indicated by the colors, the title identifies the corresponding
KP, and the x and y axes denote the longitude (◦E) and latitude (◦N), respectively.

The partition groups identified at check point O1 are illustrated in Figure 7, where the
f –θ spectral space is presented in polar coordinates, as in Figure 1, but where the colors in
Figure 7 indicate the number of peak occurrences in the f –θ cells. At least seven groups are
identified for the spectrum series derived separately from the original and the reconstructed
boundary forcing simulations, and those groups are labeled 1–7 and ordered from large
to small based on the peak-occurrence numbers, and the boundaries of the groups are
depicted by the white lines.
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Figure 6. Spatial distributions of MAE of the KPs derived from the SWAN BLOCK outputs. In each
panel, the values of MAE are indicated by the colors, the title identifies the corresponding KP, and the
x and y axes denote the longitude (◦E) and latitude (◦N), respectively.

Figure 7. Groups identified at check point O1: (a) partition groups identified from the simulation
with original boundaries, and (b) partition groups identified from the simulation with reconstructed
boundaries. The f –θ spectral space is presented in polar coordinates, the number of occurrences of
partition peaks in each f –θ cell is indicated by the colors, groups labeled 1–7 are ordered from large
to small based on the peak-occurrence number, and the boundaries of the groups are depicted by the
white lines.

Figure 7a shows that the dominant wave systems simulated with the original bound-
aries at O1 are Grp-1 and Grp-2, which are concentrated in the direction ENE–E and
S, respectively. Additionally, Figure 7b confirms that the spectra simulated with the re-
constructed boundary conditions present the same prevailing wave systems at the same
check points.
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Probability distributions of the KPs derived from the partitions involved in Grp-1 and
Grp-2 at O1 are illustrated in Figures 8 and 9, respectively. The panels of the two figures are
titled according to the corresponding KPs, the KP probability densities for the partitions
simulated with the original and the reconstructed boundaries are indicated by solid lines
and circles, respectively, and the x axis in each panel denotes the value range of the KP.

Figure 8. Probability distribution of partition KPs in Grp-1 at check point O1. Probability densities
derived from spectra simulated with the original and the reconstructed boundaries are indicated by
solid lines and circles, respectively. Each panel is titled according to the corresponding KP, and the x
axis in each panel denotes the value range of the KP.

Figure 9. Probability distribution of partition KPs in Grp-2 at check point O1. Probability densities
derived from spectra simulated with the original and the reconstructed boundaries are indicated by
solid lines and circles, respectively. Each panel is titled according to the corresponding KP, and the x
axis in each panel denotes the value range of the KP.

Figures 8 and 9 show that the probability distributions of the KPs derived from the
reconstructed boundary forcing wave field conform well with those obtained using the
original boundary conditions in terms of both dominant wave system groups. Therefore,
using the boundary conditions reproduced by the newly proposed approach, the climato-
logical patterns of the original simulated wave fields, including both the prevailing wave
systems and the probability distribution of the associated KPs, can be well retained, i.e.,
the wave characteristics of the original partitions can be successfully transferred to the
nested wave fields through the reconstructed boundary conditions.

Comparisons of the spectral statistics at check points O2 (Figures S7, S9 and S10) and
O3 (Figures S8, S11 and S12) reveal similar results, and the relevant figures can be found
in the Supplementary Material. From the comparisons presented in Sections 3.2 and 3.3,
we can conclude that the newly proposed approach can be applied to nested wave simu-
lations. Moreover, we can also infer that the boundary conditions preserved and recon-
structed using the new approach can be adopted in research that relies on long-term wave
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statistics, e.g., safety design regarding engineering structures, wave climatology studies,
and assessment of wave energy resources.

4. Discussion

This paper presents a new approach for preservation and reconstruction of 2D wave
spectra, whereby the reconstructed spectra can be applied as boundary conditions in wave
nested modeling. Typically, preservation of a 2D spectrum at a certain boundary point
might occupy 35 × 36 = 1260 storage units; however, using the proposed approach the
storage needed could be reduced to a maximum of 60 units.

As mentioned above, a parametric wave spectrum with an imposed directional dis-
tribution can also be used to reconstruct nesting boundaries, and only several parameters
are needed in such a reconstruction. For example, 2D spectra can be reconstructed using
the functional form of the TMA spectrum [54,55] with the Mitsuyasu-type [27] directional
distribution. The TMA spectrum can be expressed as follows:

( f ) = SJ( f )φ(kh), (21)

where SJ( f ) denotes the functional form of the JONSWAP spectrum [25,56]:

SJ( f ) = β J H2
s

f−5

f−4
p

exp

[
−1.25

(
f
fp

)−4
]

γ
exp[

−( f
fp
−1)

2

2σ2 ], (22)

σ =

{
0.07 : f ≤ fp
0.09 : f > fp

, (23)

where Hs denotes the significant wave height, fp indicates the peak frequency, γ is the
peakedness parameter, and β J ≈ 0.06238

0.230 + 0.0336γ − 0.185(1.9 + γ)−1 (1.094− 0.01915 ln γ); in

Equation (21), φ(kh) [54] is a function related to the wave number k and local water depth
h as follows:

φ(kh) =
tanh2kh

1 + 2kh/sinh2kh
(24)

The Mitsuyasu-type directional distribution can be expressed as follows:

D(θ) = A cos2s
(

θ − θp

2

)
(25)

where s controls the directional spreading, θp denotes the peak wave direction, i.e., the mean
direction derived from the directional distribution at fp, and A is a scale factor to ensure
that

∫
D(θ)dθ = 1.

Figure 10 shows a comparison of the TMA–Mitsuyasu reconstructed and the original
spectra at check point B2. For each reconstructed spectrum, the parameters needed are
only h, Hs, fp, and θ0, the latter three of which are calculated from the entire spectrum at
the original boundaries, h is read from the bathymetric data at B2, and γ = 3.3 is set as a
constant owing to the lack of available information. The scatter plots and KPs in Figure 10
are similarly arranged as those in Figures 3 and 4.
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Figure 10. Scatter plots for KPs obtained from the original and the TMA–Mitsuyasu reconstructed
spectra at check point B2.

Figure 10 shows that even though only four parameters are necessary in the recon-
struction, the reconstructed spectra retain several features such as Hm0, fp, and WPD, that
have acceptable agreement with the originals. The reconstructed KPs associated with wave
period, wavelength, and peak spectral density present greater deviation from the originals
as their values increase, as well as the mean wave direction. Furthermore, the characteristics
of spectral width are limited at a fixed value because of the lack of relevant information
input. Similar results at the other check points (Figures S13–S15 for points B1, B3, and B4,
respectively) on the boundaries can be found in the Supplementary Material.

Figure 11 (12) demonstrates the similar spatial distribution of R (MAE) derived from
the SWAN field output simulated with the original and the TMA–Mitsuyasu reconstructed
boundaries. The colors, KPs, and demonstration region shown in Figures 11 and 12 are the
same as those shown in Figures 5 and 6. In comparison with the results simulated using
the boundaries reconstructed by the new approach, the quantitative errors illustrated in
Figures 11 and 12 reveal much poorer agreement with the original simulations. For example,
the R values are reduced by approximately 10% and over 50% for the best and worst
situations, respectively. The values of MAE also increase by approximately three to five
times in comparison with those of the new approach, especially for the crucial features of
wave height, period, and wave direction.

The key concept in the new approach is consideration of the spectral partitions as the
fundamental units for preservation and reconstruction, which offers the following benefits:
(i) each partition contains only one peak, making the spectral shape more convenient
for processing, and (ii) partitions with low energy, as well as spurious partitions and
noise, can be filtered, thereby making it easier to preserve and reconstruct the primary
characteristics of the original spectra.

Technically, one of the key points is the adoption of the GUFSM in the LSM fittings,
in addition to the separate fittings performed on the front and tail parts of the 1D frequency
spectra. In the fitting step, determination of the number of RPs, i.e., n f r and ntl , still
deserves further discussion. The strategies for selecting n can be enumerated as follows:

• n = 3: α = 5, β = 4, and λ = 1.25 are fixed, and the RPs to be fitted are γ, σ, and c;
• n = 4: α = 5 and β = 4 are fixed, and the RPs to be fitted are λ, γ, σ, and c;
• n = 6: the RPs to be fitted are α, β, λ, γ, σ, and c.
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Figure 11. Spatial distributions of R of the KPs derived from the SWAN BLOCK outputs simulated
with the original and the TMA–Mitsuyasu reconstructed boundaries. In each panel, the values of R
are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote the
longitude (◦E) and latitude (◦N), respectively.

Table 5 (6) presents the values of R (MAE) of the RPs derived from the original and
the reconstructed partitions, where the latter are produced under the different strategies of
n f r and ntl . The R (MAE) values under the typical setting of n f r = 3 and ntl = 6, which
are adopted in Sections 2 and 3, are presented in the first row of Table 5 (6), and the values
obtained under the other strategies are expressed as differences relative to those values in
the first row. The R and MAE values in Tables 5 and 6 were derived from all the partitions
identified at B2, and similar tables associated with the n strategies at the points of B1
(Tables S7 and S8), B3 (Tables S9 and S10), and B4 (Tables S11 and S12) can be found in the
Supplementary Material.

Figures 5 and 6 show that with more RPs involved in the LSM fittings, better agreement
with the original KPs can be obtained, except for the KP fp. Specifically, with n f r = 4.6,
further increment (reduction) in R (MAE) can be observed for the KPs associated with
spectral bandwidth (i.e., Qp and FSPR,) than for the others; the opposite trends for the two
KPs mentioned above can be found with ntl = 4.3. However, with higher n f r involved in
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the fitting, the critical KPs of period and wavelength present improvement in terms of both
R and MAE, but the goodness of fit of those KPs is reduced much more when ntl is lower.
Nevertheless, the KP Hm0 remains unaffected by the n strategies. Considering the above
results, we recommend adoption of the strategy of n f r = 3 and ntl = 6.

Figure 12. Spatial distributions of MAE of the KPs derived from the SWAN BLOCK outputs simulated
with the original and the TMA–Mitsuyasu reconstructed boundaries. In each panel, the values of
MAE are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote
the longitude (◦E) and latitude (◦N), respectively.

Table 5. Correlation coefficient (R) of the KPs derived from the original and the reconstructed
(obtained under different strategies of n f r and ntl ) partitions at check point B2. The R values were
derived from all the partitions identified, and the values illustrated under the other n f r and ntl

combinations are relative to those obtained under the setting of n f r = 3 and ntl = 6.

nfr & ntl

KPs
Hm0 fp Tm01 Tm02 Te WPD WLEN E

(
fp

)
Qp FSPR

n f r = 3, ntl = 6 1 0.9997 0.9969 0.9935 0.9993 0.9999 0.9943 0.9992 0.9864 0.9756
n f r = 4, ntl = 6 0 −0.0005 0.0001 0.0001 0.0002 0 0.0001 0.0006 0.0068 0.0129
n f r = 6, ntl = 6 0 −0.0008 0.0001 0.0001 0.0002 0 0.0003 0.0006 0.0088 0.0150
n f r = 3 ntl = 4 0 −0.0015 −0.0141 −0.0242 −0.0041 −0.0002 −0.0187 −0.0006 −0.0205 −0.0186
n f r = 3, ntl = 3 0 0.0003 −0.0227 −0.0367 −0.0076 −0.0004 −0.0269 −0.0032 −0.0264 −0.0432
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Table 6. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
(obtained under different strategies of n f r and ntl) partitions at check point B2. The MAE values
were derived from all the partitions identified, and the values illustrated under the other n f r and ntl

combinations are relative to those obtained under the setting of n f r = 3 and ntl = 6.

nfr & ntl

KPs Hm0
(m)

fp
(Hz)

Tm01
(s)

Tm02
(s)

Te
(s)

WPD
(kW/m) WLEN E(fp) Qp FSPR

n f r = 3, ntl = 6 0 0.0001 0.1350 0.2045 0.0603 0.0504 4.1950 0.0449 0.2209 0.0272
n f r = 4, ntl = 6 0 0.0001 −0.0050 −0.0040 −0.0107 −0.0052 −0.1358 −0.0282 −0.0540 −0.0067
n f r = 6, ntl = 6 0 0.0002 −0.0060 −0.0071 −0.0088 0.0000 −0.2797 −0.0334 −0.1067 −0.0096
n f r = 3 ntl = 4 0 0.0004 0.2782 0.3811 0.1416 0.1846 9.0159 0.1148 0.2451 0.0109
n f r = 3, ntl = 3 0 −0.0001 0.3986 0.5303 0.2180 0.3040 12.4725 0.2408 0.3731 0.0284

Another technical key point deserving further discussion is the maximum number of
partitions that should be involved in Equation (18). Tables 7 and 8 illustrate the R and MAE
values of the KPs at check point B2 derived from the original and the reconstructed spectra,
where the latter were reconstructed with the three and six largest partitions. All the R and
MAE values are expressed as the differences to those obtained from the original spectra
and the reconstructed ones using the four largest partitions, as described in Section 3.

Table 7. Correlation coefficient (R) of the KPs derived from the original and the reconstructed spectra
(with the three and six largest partitions) at check point B2. The values of R are expressed as the
differences to those obtained from the original spectra and the reconstructed ones using the four
largest partitions.

Part.
KPs Hm0 fp Tm01 Tm02 Te WPD WLEN E(fp) Qp FSPR θ0,x θ0,y σθ

Largest3 0 −0.008 0.000 0.000 −0.001 0.000 0.000 0.000 −0.003 −0.004 0.000 0.000 −0.002
Largest6 0 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

Table 8. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
spectra (with the three and six largest partitions) at check point B2. The values of MAE are expressed
as the differences to those obtained from the original spectra and the reconstructed ones using the
four largest partitions.

Part.

KPs Hm0
(m)

fp
(Hz)

Tm01
(s)

Tm02
(s)

Te
(s)

WPD
(kW/m)

WLEN
(m)

E(fp)(
m2s

) Qp FSPR θ0
(degr.)

σθ

(degr.)

Largest3 0 0.000 0.010 0.000 0.010 0.010 0.100 0.003 0.003 0.001 0.100 0.063
Largest6 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 0.000 0.000 −0.006

As can be seen from Tables 7 and 8, the errors of the KPs derived from the spectra
reconstructed with the three largest partitions increase slightly in comparison with those
calculated based on the spectra rebuilt with the four largest partitions (as Part0 shown in
Tables 3 and 4), while the errors remain similar to those of the four largest partitions even
though more partitions (the six largest) are considered. Similar results can also be observed
at check points B1 (Tables S13 and S14), B3 (Tables S15 and S16), and B4 (Tables S17 and S18),
the associated tables can be found in the Supplementary Material. Such findings confirm
the fact that the number of coexisting wave systems (partitions) is fewer than four in most
cases at point B2 (see the sampling number in Tables 3 and 4). Therefore, the use of no
more than four partitions to reconstruct a spectrum in this study is appropriate. In fact,
consideration of just four significant wave systems (i.e., wind waves and the first, second,
and third primary swell) can satisfy most sea states in real oceans; however, the use of
fewer wave systems in the reconstruction might also be acceptable, e.g., wind waves with
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only one swell partition, which could further reduce the required storage space. Therefore,
we recommend that the maximum number of partitions involved in the reconstruction
should be based on the prevailing sea state of the nested domain.

The new approach can also be applied to observed 2D wave spectra. However, owing
to the random property of ocean waves, observed spectra may comprise more noises
or spurious peaks, making the identification of significant wave systems more difficult,
as well as the computation of RPs more burdensome. Therefore, some noise-removal or
smoothing procedures (e.g., [57]) should be performed before the spectrum preservation and
reconstruction; and consequently, certain insignificant details of the spectra might be ignored.

5. Conclusions

This paper described a new approach for the preservation and reconstruction of
2D wave spectra, and the results of application of the proposed approach to boundary
conditions in nested wave modeling are also presented.

Traditionally, each wave spectrum saved on the nesting boundaries could require
more than 1000 storage units, in accordance with the size of the spectral space. In the
newly proposed preservation approach, a certain 2D spectrum is first separated into several
partitions, each of which contains only one spectral peak. By performing LSM fitting
with the newly proposed GUFSM and by introducing the Maximum Entropy Method,
the 1D frequency spectrum and directional distribution of each identified partition can be
represented by eleven and four RPs, respectively. Consequently, given that four primary
wave systems (partitions), i.e., wind waves and the first, second, and third primary swell,
might coexist in each spectrum, the number of storage units occupied in preservation of a
spectrum could be reduced to a maximum of (11 + 4)× 4 = 60.

The corresponding proposed reconstruction approach can rebuild arbitrary 2D spectra
with the preserved RPs, and the reconstructed spectra can be used as boundary conditions
in nested wave modeling. To validate the agreement between the reconstructed and the
original spectra, and to determine the feasibility of adopting the reconstructed spectra in
nested modeling, simulations of the wave fields were conducted for the Wanning offshore
area (Hainan, China). Comparisons of the original and the reconstructed spectra at the
boundary points revealed that key features such as the wave height, wave period, propaga-
tion direction, and particularly wave energy flux of the original spectra could be retained
intact in the reconstructed spectra. The wave fields simulated using the reconstructed
boundaries conformed well with those forced by the original boundary conditions, and the
spectral statistics derived from the two sets of simulated fields also presented a high level
of agreement. The results of this study prove the feasibility of using the newly proposed
approach in nested wave simulations.

The proposed approach allows spectral information, i.e., the RPs, of the entire sim-
ulated domain to be saved in long-term wave simulations with more acceptable storage
consumption, and given that the RPs can be suitably preserved, simulations with finer
spatial resolution can then be conducted free of the limitations of predefined bound-
aries. The above-mentioned properties of the new method could help support engineering
projects concerning wave environments, research focused on wave climatology, and studies
associated with wave energy assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15051360/s1, Figure S1. Scatter plots for KPs obtained from the
original and the reconstructed partitions at check point B1. Figure S2. Scatter plots for KPs obtained
from the original and the reconstructed spectra (with the four largest partitions) at check point B1.
Figure S3. Scatter plots for KPs obtained from the original and the reconstructed partitions at check
point B3. Figure S4. Scatter plots for KPs obtained from the original and the reconstructed spectra
(with the four largest partitions) at check point B3. Figure S5. Scatter plots for KPs obtained from the
original and the reconstructed partitions at check point B4. Figure S6. Scatter plots for KPs obtained
from the original and the reconstructed spectra (with the four largest partitions) at check point B4.
Figure S7. Groups identified at check point O2. Figure S8. Groups identified at check point O3.

https://www.mdpi.com/article/10.3390/rs15051360/s1
https://www.mdpi.com/article/10.3390/rs15051360/s1
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Figure S9. Probability distribution of partition KPs in Grp-1 at check point O2. Figure S10. Probability
distribution of partition KPs in Grp-2 at check point O2. Figure S11. Probability distribution of
partition KPs in Grp-1 at check point O3. Figure S12. Probability distribution of partition KPs in
Grp-2 at check point O3. Figure S13. Scatter plots for KPs obtained from the original and the TMA–
Mitsuyasu reconstructed spectra at check point B1. Figure S14. Scatter plots for KPs obtained from
the original and the TMA–Mitsuyasu reconstructed spectra at check point B3. Figure S15. Scatter
plots for KPs obtained from the original and the TMA–Mitsuyasu reconstructed spectra at check point
B4. Table S1. Correlation coefficient (R) of the KPs derived from the original and the reconstructed
spectra/partitions at check point B1. Table S2. Mean absolute error (MAE) of the KPs derived from the
original and the reconstructed spectra/partitions at check point B1. Table S3. Correlation coefficient
(R) of the KPs derived from the original and the reconstructed spectra/partitions at check point B3.
Table S4. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
spectra/partitions at check point B3. Table S5. Correlation coefficient (R) of the KPs derived from the
original and the reconstructed spectra/partitions at check point B4. Table S6. Mean absolute error
(MAE) of the KPs derived from the original and the reconstructed spectra/partitions at check point
B4. Table S7. Correlation coefficient (R) of the KPs derived from the original and the reconstructed
(obtained under different strategies of n f r and ntl) partitions at check point B1. Table S8. Mean
absolute error (MAE) of the KPs derived from the original and the reconstructed (obtained under
different strategies of n f r and ntl) partitions at check point B1. Table S9. Correlation coefficient (R)
of the KPs derived from the original and the reconstructed (obtained under different strategies of
n f r and ntl) partitions at check point B3. Table S10. Mean absolute error (MAE) of the KPs derived
from the original and the reconstructed (obtained under different strategies of n f r and ntl) partitions
at check point B3. Table S11. Correlation coefficient (R) of the KPs derived from the original and
the reconstructed (obtained under different strategies of n f r and ntl) partitions at check point B4.
Table S12. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
(obtained under different strategies of n f r and ntl) partitions at check point B4. Table S13. Correlation
coefficient (R) of the KPs derived from the original and the reconstructed spectra (with the largest
three and six partitions) at check point B1. Table S14. Mean absolute error (MAE) of the KPs derived
from the original and the reconstructed spectra (with the largest three and six partitions) at check point
B1. Table S15. Correlation coefficient (R) of the KPs derived from the original and the reconstructed
spectra (with the largest three and six partitions) at check point B3. Table S16. Mean absolute error
(MAE) of the KPs derived from the original and the reconstructed spectra (with the largest three and
six partitions) at check point B3. Table S17. Correlation coefficient (R) of the KPs derived from the
original and the reconstructed spectra (with the largest three and six partitions) at check point B4.
Table S18. Mean absolute error (MAE) of the KPs derived from the original and the reconstructed
spectra (with the largest three and six partitions) at check point B4.
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