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Abstract: Bed topography and roughness play important roles in numerous ice-sheet analyses. Al-
though the coverage of ice-penetrating radar measurements has vastly increased over recent decades,
significant data gaps remain in certain areas of subglacial topography and need interpolation. How-
ever, the bed topography generated by interpolation such as kriging and mass conservation is
generally smooth at small scales, lacking topographic features important for sub-kilometer rough-
ness. DeepBedMap, a deep learning method combined with multiple surface observation inputs,
can generate high-resolution (250 m) bed topography with realistic bed roughness but produces
some unrealistic artifacts and higher bed elevation values in certain regions, which could bias ice-sheet
models. To address these issues, we present MB_DeepBedMap, a multi-branch deep learning method
to generate more realistic bed topography. The model improves upon DeepBedMap by separating in-
puts into two groups using a multi-branch network structure according to their characteristics, rather
than fusing all inputs at an early stage, to reduce artifacts in the generated topography caused by
earlier fusion of inputs. A direct upsampling branch preserves large-scale subglacial landforms while
generating high-resolution bed topography. We use MB_DeepBedMap to generate a high-resolution
(250 m) bed elevation grid product of Antarctica, MB_DeepBedMap_DEM, which can be used in
high-resolution ice-sheet modeling studies. Moreover, we test the performance of MB_DeepBedMap
model in Thwaites Glacier, Gamburtsev Subglacial Mountains, and several other regions, by compar-
ing the qualitative topographic features and quantitative errors of MB_DeepBedMap, BEDMAP2,
BedMachine Antarctica, and DeepBedMap. The results show that MB_DeepBedMap can provide
more realistic small-scale topographic features and roughness compared to BEDMAP2, BedMachine
Antarctica, and DeepBedMap.

Keywords: subglacial topography; super resolution; generative adversarial network; deep learning

1. Introduction

The bed topography beneath the Antarctic ice sheets is one of the essential controls for
most ice-sheet analyses and models, including ice volume estimation [1,2] and sea level rise
prediction [3]. The loss of ice mass from the Antarctic ice sheet has been increasing through
the fast flow of ice streams over the last several decades [4], which leads to sea-level rise.
The bed elevation and roughness are particularly important for the most vulnerable glaciers
grounded below sea level, which could accelerate ice loss [4] and destabilize ice sheets [5].

Subglacial bed elevation is primarily measured by airborne ice-penetrating radars,
and the density and coverage of bed elevation measurements in the Antarctic continent
have increased greatly over the last several decades [1,6,7]. However, the measurements
remain limited in their geographic coverage and are not invariant with respect to direction.
That is, although they have very high spatial sampling in the along-track direction, flight
tracks in certain regions are spaced at up to 100 km, and interpolation is needed to fill
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the data gaps [8]. Several Antarctic continental digital elevation models (DEMs) have
been constructed using spline or kriging interpolation, such as BEDMAP [6], with a 5-km
grid, and BEDMAP2 [1], with 1-km resolution. The DEMs compiled by interpolation
have uncertainties exceeding 1 km in poorly sampled regions, which adversely affect the
numerical simulation of ice-sheet dynamics [9].

Several indirect methods have been proposed to generate a high-resolution Antarctic
DEM with realistic topography, including spatial statistical and inverse methods. Spatial
statistical methods are intended to generate a higher-resolution bed that reproduces known
detailed topographical features in similar areas. For example, the conditional simulation
method proposed by Goff et al. adds stochastic synthetic small-scale details to the interpo-
lated bed topography, avoiding the inconsistencies introduced by kriging interpolation [10].
Graham et al. generated a high-resolution synthetic bed topography by combining terrain
coming from low-pass filtered BEDMAP2 with a non-conditional rough terrain simulated
using high-resolution radar data [11]. Although the statistical simulation method can
generate multiple realizations that reproduce the spatial statistics of observations, the gen-
erated topography is too rough and there are some steep peaks [12]. Inverse methods use
high-resolution ice surface information combined with glaciological-process knowledge
to reconstruct the bed topography [13]. Farinotti et al. tested various models with surface
observation inputs to infer ice thickness in the Ice Thickness Models Intercomparison
eXperiment (ITMIX) [14]. Morlighem et al. used the mass conservation method to con-
struct a bed topography in Greenland (BedMachine) [15] and the Antarctic (BedMachine
Antarctica) [2], which is constrained by ice surface velocity and radar measurements [16].
In the recent past, inspired by image super-resolution methods, a deep learning method,
DeepBedMap, was proposed to resolve the bed topography of Antarctica, with features
from both indirect inverse modeling and spatial statistical methodologies [17]. This method
takes a low-resolution bed DEM and high-resolution surface information as inputs to
generate a high-resolution bed DEM with realistic topography. The DeepBedMap model
can reproduce the small-scale roughness observed in training data. However, its product
has unrealistic topography in certain regions and suffers from significant bed elevation
deviations of up to 1000 m in regions where it is above sea level, which could bias ice-sheet
model simulations and estimation of ice thickness.

To address these issues, we propose a multi-branch network structure to better render
realistic texture details. In addition to the various ice-sheet information inputs used by
DeepBedMap, we add gradients of low-resolution bed topography as inputs, with the aim
of better preserving terrain shape. Our inputs include a low-resolution bed DEM, high-
resolution surface DEM, surface ice flow velocity, snow accumulation rate, and gradients of
the bed. To avoid mutual interference between inputs, we separate them into two groups,
depending on the characteristic of the input data, and input them to different branches
of the network. One group, including the bed elevation and surface bed elevation, is
used to extract elevation topographic features; the other includes the gradient, ice flow
velocity, and snow accumulation rate, which are used to extract local area features. We use
a global connection to upsample the low-resolution bed topography input directly with
bilinear interpolation to retain the input large-scale topographic features. We combine the
small- and large-scale topographic features to generate a four-times upsampled Antarctic
bed DEM with a resolution of 250 m. Our main contributions are as follows: (1) We
present a high-resolution (250 m) bed elevation map of Antarctica with more realistic
topography than DeepBedMap, which also preserves more detail in bed roughness than
BEDMAP2 and BedMachine Antarctica. (2) We design a multi-branch network structure
that groups various input data in the network according to their characteristics, making full
use of the input information to enhance bed topography resolution and generate realistic
topographic features with adequate roughness. (3) To preserve large-scale topographic
features, a global connection is created to combine the bilinear upsampling results of the
low-resolution topography input with the network output. We name the multi-branch
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network MB_DeepBedMap, and the resulting digital elevation model (DEM) product is
MB_DeepBedMap_DEM.

2. Related Work

The resolution of the bed digital elevation model in Antarctica is constrained by the
density and coverage of radar measurements. In order to meet the demand as a high-
resolution bed DEM for ice-sheet investigations, interpolation methods are generally used
to improve DEM resolution, such as bilinear and inverse distance weighting methods.
However, because the interpolation methods only consider the influence of neighborhood
around the point to be interpolated and cannot provide enough valuable spatial infor-
mation, the topographies generated by these methods have smooth topographic surfaces
and lack high-frequency detail information. When the elevation values are regarded as
grayscale values, one DEM can be considered as one grayscale image. Therefore, the
methods of image super-resolution can be considered to generate a high-resolution DEM
with the help of low-resolution DEM. Image super-resolution refers to the process of gener-
ating a related high-resolution image for a low-resolution image [18], which is an ill-posed
problem because one low-resolution image corresponds to multiple high-resolution images.
In the last few decades, significant progress has been made in the field of super-resolution,
especially methods based on deep learning [19]. The deep learning-based methods intend
to build a convolutional neural network (CNN) to learn the mapping relationship between
low-resolution images and high-resolution images. SRCNN proposed by Dong et al. is
the first work to solve a super-resolution problem using a CNN [20]. Since then, various
deep learning-based methods have been proposed [21]. One way is to improve the super-
resolved results by modifying the network architecture, such as a deeper network with
gradient clipping [22], residual and dense block [23], and channel attention [24]. Specifi-
cally, Lim et al. [23] build a very deep network EDSR by removing unnecessary network
components in the residual block and adding residual connections, which achieves better
performance than older models. However, the super-resolution results of these methods
appear overly smooth due to the mean square error loss [25]. Another way is to improve
the visual quality of super-resolution results by adding more effective components in the
loss function, such as perceptual loss [26] and adversarial loss [27]. By adopting adversarial
training with generative adversarial network (GAN) [27], the Super-Resolution Generative
Adversarial Network (SRGAN) [28] is able to produce super-resolution images with more
realistic texture details. Wang et al. [29] propose an enhanced super-resolution generative
adversarial network (ESRGAN) by introducing dense connections in the multi-level resid-
ual network, which achieves visually pleasing results and the state-of-the-art performance.

Considering the good performance of image super-resolution methods, Xu et al.
proposed a learning-based method to generate high-resolution details from similar regions
in a single DEM [30]. Chen et al. used SRCNN to learn the mapping relationship between
low- and high-resolution DEM [31]. Since the elevation range of the DEM is greater than
the gray value range of the image, Xu et al. proposed a deep gradient prior network
based on transfer learning to improve the resolution of gradients with lower intensity
ranges [32]. In contrast to the above work applied to the earth surface DEM, a nonlinear
relationship exists between the subglacial bed elevation and surface observations [33].
Therefore, Leong et al. developed a deep learning method, DeepBedMap, in which the low-
resolution bed topography and ice surface information inputs are fed into their modified
ESRGAN [17]. DeepBedMap can generate high-resolution bed topography with terrain
details by integrating multiple ice surface information inputs. Inspired by DeepBedMap
and related DEM super-resolution methods, we propose a multi-branch network that can
better integrate additional information to resolve the bed topography of Antarctica.
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3. Materials and Methods
3.1. Data

The proposed MB_DeepBedMap model uses a BEDMAP2 grid product as input data
to generate high-resolution DEM. In addition, gradient of bed and associated ice surface
data (i.e., ice surface elevation [34], ice velocity [35], and snow accumulation [36]) are
obtained as well to assist the generation of high-resolution DEM. We use the same training
dataset as DeepBedMap [17] in order to make a fair comparison with it. The training
dataset is collected from the area with dense radar measurements (the interval of radar
data are less than 250 m), and most of them are distributed in coastal areas below sea
level. The bed elevation data picked from ice-penetrating-radar surveys (see Table 1)
are used as the reference to train the proposed model and evaluate the output results.
Following DeepBedMap, we grid the elevation data onto a 250 m resolution regular grid
using Generic Mapping Tools v6.0 (GMT6) [37], computing the median elevations within
each grid cell. Then, we use an adjustable-tension continuous-curvature spline function to
generate high-resolution bed grid products from the preprocessed elevation data. For the
production of training dataset, the ground-truth bed elevation grids are cropped into image
patches using a sliding window, each of which is completely filled with data. Moreover,
other inputs are also cropped into image patches corresponding to the same spatial area.
To reduce boundary artifact in prediction, the no padding operation is used in the input
convolutional layer of the proposed model, meaning that the model input grids need to
have a larger spatial area than the ground-truth grids. Specifically, the coverage area of the
model input grids is 11 km × 11 km (11 pixels × 11 pixels for the low-resolution input),
while the coverage of the ground-truth grids is 9 km × 9 km (36 pixels × 36 pixels for the
model output).

Table 1. High-resolution ground-truth datasets from ice-penetrating-radar surveys used to train the
MB_DeepBedMap model [17].

Location Citation

Pine Island Glacier Bingham et al. [38]
Wilkes Subglacial Basin Jordan et al. [39]

Carlson Inlet King [40]
Rutford Ice Stream King et al. [41]

Various locations in Antarctica Shi et al. [42] and Holschuh et al. [43]

3.2. Model Design

Our model adopts the generative adversarial network framework [27], consisting of a
generator G for generating high-resolution (250 m) DEM and a discriminator D for judging
the quality of the generated DEM. The two networks are trained against each other to
generate high resolution DEMs with realistic terrain, where the generator tries to generate
realistic DEMs to confuse the discriminator and the discriminator learns to distinguish the
generated DEMs from the real ones. To train the generative adversarial network, we use
the content loss, perceptual loss, and adversarial loss [29] to calculate the error of elevation
and topographical features, which is designed to optimize accuracy and roughness of
generated topography. The classical image classification network VGG [44] is adopted
for the discriminator that is the same as that in DeepBedMap to judge the realism of the
generated DEMs. In order to improve the quality of reconstructed DEMs, we design a new
structure of the generator, which can more effectively extract the information of inputs to
recover terrain details and remove artifacts. Moreover, because we use the DEM to train the
proposed model, instead of the daily images used in the training of image super-resolution,
the physical constraints of DEM have an impact on the proposed model in the training
process, thus ensuring the authenticity of the detailed information. Details of the neural
network training setup can be found in Appendix A.
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The generator model, whose structure is shown in Figure 1, consists of three modules:
direct upsampling, multi-branch feature extraction, and upsampling with feature fusion.
Direct upsampling is used to generate the large-scale (>10 km) topographic features, and
the other modules capture small-scale topographic features. Unlike DeepBedMap, which
captures large- and small-scale bed topographic features through one network model,
our model is divided into two branches to capture large- and small-scale topographic
features respectively. To preserve the large-scale features of the input, bilinear interpolation
is used to upsample the topography input by four times during direct upsampling. To
avoid artifacts caused by premature input fusion, multiple inputs are divided into two
groups according to their characteristics and are fed to a double-branch network. One
group of inputs consists of the low-resolution (1000 m) bed topography BEDMAP2 [1] and
high-resolution (100 m) surface elevation REMA [34], which are used to obtain the bed
topographic features. Another group of inputs is applied to obtain local features, consisting
of the gradient of BEDMAP2 (1000 m resolution), ice surface velocity MEaSUREs (500 m
resolution) [35], and snow accumulation (1000 m resolution) [36]. Owing to its superior
performance in recovering image details, the backbone network of the double-branch
network is based on the ESRGAN structure, which consists of several stacked residuals in
residual dense blocks (RRDBs) [29]. The features extracted from the two branches are fused
to generate small-scale features of the bed topography using the fusion and upsampling
module. The small-scale features of the network and large-scale features obtained by
the direct upsampling branch are added together to generate the super-resolution bed
topography. We discuss the direct upsampling, multi-branch network, and upsampling
with fusion module below.

Figure 1. Our multi-branch generator model structure composed of three modules shown in the
dotted boxes. The model takes five inputs (BEDMAP2, REMA, gradient of BEDMAP2, MEaSUREs
Ice Velocity, and snow accumulation).

3.2.1. Direct Upsampling

Although the DeepBedMap model can generate the corresponding high-resolution
bed topography with adequate bed roughness, the generated bed topography suffers from
deviations from the actual bed elevation and generates unrealistic large-scale bed features
in certain areas, due to the loss of large-scale topographic features from the input. Therefore,
we design a global connection with an interpolation method to directly upsample the low-
resolution bed topography input, which can help to preserve the large-scale features and
ensure that the elevation values of the generated topography are within the normal range.
Since nearest-neighbor interpolation selects the nearest pixel value for each location to be
interpolated, regardless of other pixels, its results generally have blocky artifacts (Figure 2c).
Compared with nearest-neighbor interpolation, bilinear interpolation performs one linear
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interpolation on each of the two directions, considering more surrounding pixels, and
its interpolation result (Figure 2b) shows better performance. Therefore, we use bilinear
interpolation in the direct upsampling branch to preserve the large-scale topographic
features. The combination of the large- and small-scale topographic features generated by
the multi-branch network will reduce the deviation of elevation in certain areas, so as to
generate a more realistic bed topography.

Figure 2. Comparison of nearest-neighbor and bilinear interpolation applied directly on an
upsample branch.

3.2.2. Multi-Branch Feature Extraction

The main goal of the generator is to generate high-resolution (250 m) bed topography
based on the low-resolution (1000 m) input BEDMAP2 [1]. However, BEDMAP2 lacks
sufficient information for this super-resolution task, so in related studies, ice surface
information is generally added to compensate for this. For example, in DeepBedMap, ice
surface elevation, ice surface velocity, and snow accumulation are added as inputs, and
the generated results present more realistic terrain textures than those with BEDMAP2
input alone [17]. In addition to ice surface information, we consider that bed gradients can
be used to better preserve terrain contour features. Therefore, we add bed gradients of
BEDMAP2 as input, providing more information to the network model.

The outputs of DeepBedMap tend to pick up the topographic features from the ice sur-
face input in certain regions, which may not represent the true subglacial topography [17].
We think this may be because all inputs are fused before feature extraction through the
network, resulting in the features of the ice surface input affecting a part of the bed features.
Therefore, we divide the inputs into two groups according to their characteristics, and
design a double-branch network to extract features of each group before they are fused, as
shown in Figure 1.

Among all of the inputs, the bed elevation model BEDMAP2 and the high-resolution
ice surface elevation model REMA belong to elevation information, and as a low-resolution
input, the former can provide large-scale (>10 km) information of the topography and
is the basis for the super-resolution task, while the latter can be regarded as a reference
topography of the bed topography to provide high-frequency details to the low-resolution
input. Therefore, BEDMAP2 and REMA are combined into one group, and they are fed
into one branch of the network to produce the bed topographic features.

The gradient map reveals the sharpness of the local area in the topography, so as to
help the model better recover terrain contour features. Inspired by mass conservation
equation [16], the surface ice flow velocity and snow accumulation rate are chosen as the
input of model. These surface observation inputs have a nonlinear relationship with the
roughness of bed topography [33], which means that they can theoretically be used to
infer the shape of the bed [45]. Thus, the gradient of BEDMAP2, MEaSUREs Ice Velocity,
and snow accumulation makes up the other group of inputs, which are fed into another
branch of the network to obtain local features that can implicitly reflect the roughness of
the reconstructed area, so as to guide the high-resolution terrain generation.

In each branch, a convolution layer processes the input into tensors of the same shape
to obtain the shallow features, which are fed into the deep feature extraction network after
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channel-wise concatenation. The core network block of ESRGAN is used in the deep feature
extraction network, whose two branches are composed of 12 and 4 RRDBs, respectively.
The shallow features are added to the deep features through a skip connection to obtain
the deep features of each branch.

3.2.3. Upsampling with Feature Fusion

After feature extraction, the bed topographic features and local features are concate-
nated channel-wise. A feature fusion module (Fusion in Figure 3), consisting of an RRDB
block and a convolution layer, fuses the concatenated features.

Figure 3. Fusion module and upsample module structure.

The fused features are upsampled to the output resolution by the upsampling module
(upsample in Figure 3), which includes two upsampling processes, each of which is com-
posed of nearest-neighbor upsampling, a convolution layer, and a LeakyRelu activation
function, as shown in Figure 3. Following this are two convolutional layers, which are the
same as in DeepBedMap [17]; they are applied to obtain the final small-scale topographic
features, which are added to the results of the direct upsampling branch to obtain the
high-resolution terrain.

4. Results
4.1. Bed Topography

We generate a full-continent DEM of Antarctica at 250 m resolution using MB_DeepBed-
Map, which is a four-times upsampled bed topography of BEDMAP2 [1]. Specifically, we
cut Antarctica into multiple 250 km × 250 km tile areas, and load the input data within
each tile area into the MB_DeepBedMap model to generate the high-resolution (250 m)
DEM for each tile area. Then, the multiple generated DEMs are assembled to construct a
high-resolution (250 m) DEM of the whole of Antarctica, that is, MB_DeepBedMap_DEM.
In order to verify the effectiveness of the proposed model, we quote several figures
(Figures 4 and 6–10) of DeepBedMap [17] and use the same color tables for compar-
ison. The full Antarctic-wide DEM plots in Figure 4 show the bed topographies of
BEDMAP2, DeepBedMap_DEM [17], and MB_DeepBedMap_DEM. It can be observed
that both DeepBedMap and MB_DeepBedMap preserve the general topographical features
of Antarctica. For the topography of DeepBedMap_DEM, however, its bed elevation seri-
ously deviates from the input BEDMAP2 in regions where bed elevation is greater than sea
level (Figure 4 yellow box).

In order to further verify the effectiveness of the proposed model, we test the model
outside the training area. We compare bed topographies produced by different methods
beneath Thwaites Glacier where the high-resolution (250 m) ground-truth [43] is available,
as shown in Figure 5. For the grids that have no data point, we use the NaN (Not a Number)
values to fill them which are not considered in the calculation. Both DeepBedMap_DEM
and MB_DeepBedMap_DEM show a realistic topography that is rougher than that of
BEDMAP2; however, the small-scale topographic details in DeepBedMap_DEM are incon-
sistent with ground-truth, while MB_DeepBedMap_DEM show finer-scale (<10 km) bumps
and troughs, which are similar to those of ground-truth (see Figure 5 red box). Moreover,
we calculate the root mean square error (RMSE) between the generated topography and
the ground-truth. The RMSE of MB_DeepBedMap_DEM is 79.43 m, which is less than
DeepBedMap_DEM’s RMSE of 92.14 m. We also compare the generated topography of parts
of Antarctica where the high-resolution ground-truth is unavailable. Several areas with
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relatively dense radar data coverage are selected for comparison, including mountain areas
with steep and rugged topography in East Antarctica, fast-flowing ice streams, and glaciers
in the coastal area in which ice loss has been rapid. Each modeling area is 200 × 200 km2

with a 250 m grid cell resolution. Over high-elevation areas such as the Gamburtsev
Subglacial Mountains and Transantarctic Mountains, it can be observed that significant
elevation deviations exist in most areas of DeepBedMap_DEM (Figures 6b and 7b), which
results in unnatural topographic features. Although the topographies (Figures 6b and 7b)
generated by DeepBedMap are rougher than those of BEDMAP2, DeepBedMap produces
terrace features (T, Figure 6b) winding along the mountains and speckle texture features (S,
Figure 7b) over steep mountain areas, and it has different general topographical features
from those of BEDMAP2. In comparison, although the speckle features (S, Figure 7c) also
appear in the topography generated by MB_DeepBedMap, this seems to be more realistic,
while preserving large-scale topographical features (Figures 6c and 7c).

Figure 4. The whole Antarctic continent DEM comparisons of bed topography with BEDMAP2,
DeepBedMap [17], and MB_DeepBedMap. Red areas show locations of training data. Green areas
show locations of test data. Orange boxes show locations of test regions. Yellow boxes show locations
of the obvious differences between the above topographies.
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Figure 5. Comparison of bed elevation grid products over Thwaites Glacier. The ground-truth is
from gridded Operation IceBridge points. Red boxes show the locations of the obvious differences
between the above topographies.

Figure 6. Bed topography comparison over the Gamburtsev Subglacial Mountains. Features of
interest are annotated in black text against a white background: terraces T [17].

Figure 7. Bed topography comparison over steep mountains area. Features of interest are annotated
in black text against a white background: speckle patterns S [17].

Figure 8 shows the generated topographies of DeepBedMap_DEM (Figure 8a–c) and
MB_DeepBedMap_DEM (Figure 8d–f) in Whillans Ice Stream, Evans Ice Stream, and Totten
Glacier. It can be observed that both DeepBedMap and MB_DeepBedMap can generate
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a terrain with small-scale roughness. Beneath the fast-flowing ice streams and glaciers
(Figure 8a–c), DeepBedMap produces ridges (R) aligned parallel and perpendicular to the
ice flow direction. In relatively flat areas of Antarctica (Figure 8c), we can see hummocky
wave-like (W) topographical features in DeepBedMap_DEM, which can be observed to be
similar to the ice surface features at the same location through comparing DeepBedMap’s
bed topography (Figure 8a–c) with ice surface topography (Figure 8g–i). By contrast, the bed
topographies in MB_DeepBedMap_DEM (Figure 8d–f) show more realistic topographical
features, and small-scale bumps and troughs that provide adequate roughness.

Figure 8. Close-up view of different DEM around Antarctica. (a–c) show DeepBedMap_DEM [17];
(d–f) show MB_DeepBedMap_DEM; (g–i) show the ice surface elevation model. Features of interest
are annotated in black text against a white background: ridges R, wave patterns W.

4.2. Bed Roughness

To verify the performance of MB_DeepBedMap from the aspect of roughness, we
compare the roughness of DeepBedMap_DEM, MB_DeepBedMap_DEM, and BedMachine
Antarctica [2] with ground-truth grids from processed radar track data [42], using the
same measure of roughness as DeepBedMap, which calculates the standard deviation of
a 5 × 5 elevation grid as the roughness of the central grid [17]. As shown in Figure 9,
both DeepBedMap_DEM and MB_DeepBedMap_DEM show a rough bed topography
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with small-scale topographic features beneath Thwaites Glacier. However, there are hum-
mocky wave-like patterns in DeepBedMap_DEM (Figure 9b). The 2D roughness view of
DeepBedMap (Figure 9e) is denser than the ground-truth grids (Figure 9c), owing to the
dense, wave-like artifacts (especially toward the coastal region on the left), whereas BedMa-
chine Antarctica (Figure 9f) shows sparser roughness patterns, and MB_DeepBedMap_DEM
(Figure 9d) has a roughness distribution more similar to ground-truth.

We now present the 1D transect over different grid products to compare the bed
elevation and roughness along the radar track (Figure 9a, orange line) from the coastal
region toward the interior region of Thwaites Glacier which have been densely monitored.
To better show the difference in bed elevation and roughness, we resampled other grid
products into the same 250-m resolution grids as ours using bicubic interpolation to ob-
tain the bed elevation and roughness. As shown in Figure 10, all four elevation profiles
show the same trend from the coast to the inland area. Both DeepBedMap_DEM and
MB_DeepBedMap_DEM have small-scale bumps and troughs similar to ground-truth,
but the noisy elevation of DeepBedMap deviates from that of ground-truth. In contrast,
BedMachine Antarctica shows a relatively smooth elevation profile. From the roughness
comparison, it can be found that the roughness of DeepBedMap_DEM exceeds ground-truth
in the coastal region. The roughness of BedMachine is always lower than ground-truth,
rarely exceeding 20 m, whereas that of MB_DeepBedMap_DEM is in better agreement. Fur-
thermore, we calculate the mean absolute error (MAE) of roughness along the radar trace.
The MAE of MB_DeepBedMap_DEM is 14.98 m, whereas the MAE of DeepBedMap_DEM
and BedMachine is 16.54 m and 17.17 m, respectively.

Figure 9. Spatial 2D view of grids over Thwaites Glacier, West Antarctica.
(a) MB_DeepBedMap_DEM; (b) DeepBedMap_DEM [17]; (c) 2D roughness from interpo-
lated radar data grids; (d) 2D roughness from MB_DeepBedMap_DEM grid; (e) 2D roughness
from the DeepBedMap_DEM grid [17]; (f) 2D roughness from bicubically interpolated BedMachine
Antarctica grid. The orange line in (a) is the flight line.
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Figure 10. Comparison bed elevation (a) and bed roughness (b) of each grid product over a transect
(see Figure 9, orange line).

4.3. Model Generalization

The super-resolution model trained on BEDMAP2 can also be used to improve the
resolution of other bed elevation grid products, such as the 500-m resolution BedMachine
Antarctica. To further verify the effectiveness of the proposed model, we conduct an extend
experiment to test the performance of DeepBedMap and MB_DeepBedMap applied to
BedMachine Antarctica, which helps to combine the deep learning model with the mass
conservation constraints in BedMachine. Specifically because both models are trained to
learn the mapping relationship from terrain with a resolution of 1000 m to terrain with a
resolution of 250 m, we downsample BedMachine Antarctica to the same resolution (1000 m)
as BEDMAP2, and this is super-resolved into 250-m resolution grids by MB_DeepBedMap
and DeepBedMap. We compare the bed topography and data along flight lines using the
same methods as Sections 4.1 and 4.2 over several areas with relatively dense radar data
coverage, including Marie Byrd Land in the coastal areas of West Antarctica, Dome C, and
Dome F with steep and rugged topography in East Antarctica. In addition, each modeling
area is 200 × 200 km2 with a 250 m grid cell resolution.

As shown in Figure 11, DeepBedMap generates unrealistic topographic features and a
higher bed elevation than the actual elevation in Dome C (Figure 11) and Dome F (Figure 11)
areas where the bed elevation is above sea level. In comparison, the topographies generated
by MB_DeepBedMap (Figure 11f) show large-scale features such as mountains and valleys
similar to those of BedMachine Antarctica (Figure 11d), with the small-scale terrain details
that the input lacks. Focusing on Marie Byrd Land, where the bed elevation is below sea
level, both DeepBedMap (Figure 11) and MB_DeepBedMap (Figure 11) generate a rougher
bed topography than BedMachine Antarctica (Figure 11), with small-scale topographic
features. However, the small-scale topographic features generated by DeepBedMap are
similar to the hummocky wake-like patterns mentioned in Section 4.1, whereas the topog-
raphy generated by MB_DeepBedMap shows relatively realistic terrain details. In general,
with the addition of mass conservation constraints to the model inputs, the topographies
generated by MB_DeepBedMap have large-scale features similar to those of the mass
conservation topographies, but they are rougher and show more details than BedMachine.
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Then, comparing data along the radar trace in Dome C (Figure 12) and Dome F (Figure 13),
the elevation profile of MB_DeepBedMap is in better agreement with the ground-truth
than DeepBedMap whose elevation error is close to 1000 m. The roughness profile of
MB_DeepBedMap shows more comparable roughness values to ground-truth than that
of BedMachine Antarctica, where the mean absolute error (MAE) between the roughness
profile of MB_DeepBedMap and the ground-truth in Dome C and Dome F is 18.97 m and
13.79 m, respectively, while that of BedMachine Antarctica is 21.35 m and 15.33 m, respec-
tively. Moreover, in the comparison of data along the radar trace over Marie Byrd Land, a
similar general trend is shown in all four elevation profiles (Figure 14a). Although these
profiles show close roughness (Figure 14b), looking at the roughness statistic, the MAE be-
tween the roughness profile of MB_DeepBedMap and the ground-truth is 9.87 m, whereas
those of DeepBedMap and BedMachine Antarctica are 10.93 m and 10.37 m, respectively.

Figure 11. Bed topography comparison of BedMachine, DeepBedMap, and
MB_DeepBedMap grid products. (a–c) show Dome C location; (d–f) show Dome F location;
(g–i) show Marie Byrd Land (MBL) location. Orange lines in (c,f,i) correspond to the transect in
Figures 11–13, respectively.
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Figure 12. Comparison bed elevation (a) and bed roughness (b) of each grid product over a transect
in Dome C (see Figure 11c, orange line).

Figure 13. Comparison bed elevation (a) and bed roughness (b) of each grid product over a transect
in Dome F (see Figure 11f, orange line).
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Figure 14. Comparison bed elevation (a) and bed roughness (b) of each grid product over a transect
in Marie Byrd Land (see Figure 11i, orange line).

4.4. Extended Experiments

To further verify the effectiveness of the multi-branch network structure, we also test
the performance of single-branch DeepBedMap model (SB_DeepBedMap), that is, all inputs
(i.e., the low-resolution bedmap, ice surface elevation, ice velocity, snow accumulation, and
gradient of bed) are fed into the network model, without being divided into two groups.
Compared with DeepBedMap, SB_DeepBedMap has an additional gradient of bed as model
input and a direct upsampling (see Section 3.2.1) to add the upsampled bed topography to
the output of the last convolutional layer. Then, we compare bed topographies produced
by different methods beneath Thwaites Glacier where the high-resolution (250 m) ground-
truth is available, as shown in Figure 15. Although the small-scale topographical details
can be found in the generated result of the single branch model, these topographical details
are farther away from the ground-truth than those of MB_DeepBedMap. Moreover, we
calculate the RMSE between the generated topography and the ground-truth. The RMSE of
DeepBedMap, SB_DeepBedMap, and MB_DeepBedMap is 92.14 m, 85.75 m, and 79.43 m,
respectively. In general, the performance of MB_DeepBedMap is better than that of other
two models. Although the addition of bed gradient factor is conducive to the topography
reconstruction, the multi-branch network structure is the key factor to obtain a higher
precision simulation effect. It is because this network structure groups the input data to
extract deep features, which can better preserve the original features of different inputs.
Therefore, for future work, to depict more refined terrain, we should pay more attention to
the design of model structure than adding more factors related to the prediction target.
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Figure 15. Comparison of bed elevation grid products over Thwaites Glacier. The ground-truth is
from gridded Operation IceBridge points.

5. Discussion
5.1. Bed Features

The results in Section 4.1 show that MB_DeepBedMap can generate a realistic bed
topography with small-scale features similar to the training data. Over the regions where
the bed elevation is above sea level, compared with DeepBedMap, whose topographies are
unnatural and contain higher bed elevations than the BEDMAP2 input, MB_DeepBedMap
can present better large-scale topographic features because it focuses on learning the
difference between ground-truth and the results of the direct upsampling branch, so as
to generate a high-resolution terrain with large-scale topographical features of the input.
This means that MB_DeepBedMap can eliminate the influence of lack of training data
above sea level to a certain extent, which is the main reason for the poor performance of
DeepBedMap in this area. Over steep mountains, MB_DeepBedMap generates speckle
features like DeepBedMap, and the speckle features in a 1D elevation profile present a
large-amplitude elevation fluctuation. We consider that the amplitude of fluctuation is
positively related to the gradient of topography under lack of training data. Therefore,
the larger the gradient of topography, the greater the amplitude of fluctuation, leading
to the speckle features. This artifact can be eliminated by increasing the training data in
high-gradient areas.

Over the areas where the bed elevation is below sea level, DeepBedMap produces
some unrealistic topography similar to ice surface topography, whereas MB_DeepBedMap
generates more realistic topographic features. For example, ridges (R, Figure 8a–c) parallel
and perpendicular to the flow direction are found along the fast-flowing glaciers and
ice flows in DeepBedMap_DEM, which are similar to the imprints of crevasses or flow
stripes observable from the ice surface [17]. Moreover, the fast-flowing ice flow is more
likely to erode these ridges, resulting in relatively smooth terrain or lineated features
aligned with the direction of the ice flow [34]. The results generated by MB_DeepBedMap
(Figure 8d–f) show morphological similarities with the topographic features mentioned
above. Hummocky wave-like (W, Figure 8c) patterns produced by DeepBedMap are found
in relatively flat areas, which are likely to be the surface megadune structures [17]. It can be
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observed that these features are very similar to the ice surface features (Figure 8g–i) at the
same locations, perhaps because the premature fusion of multiple data inputs in the input
stage makes other inputs cover some features of BEDMAP2, causing the model to overfit
to the ice surface elevation input. However, based on the grouped inputs, the proposed
multi-branch network can avoid the premature fusion of inputs, which helps to remove
artifacts and restore terrain details.

5.2. Roughness

MB_DeepBedMap_DEM shows high roughness values that better match ground-truth
than BedMachine Antarctica. The roughness values produced by MB_DeepBedMap_DEM
are generally lower than those of DeepBedMap_DEM, but they are closer to ground-
truth, especially near coastal areas. Along the transect line, the elevation profiles of
both DeepBedMap_DEM and MB_DeepBedMap_DEM show small-scale elevation fluctua-
tion well related to ground-truth, but the elevation error between MB_DeepBedMap_DEM
and ground-truth is lower than that of DeepBedMap_DEM, whose amplitude of fluctuation
is relatively large. By comparison, BedMachine Antarctica presents a relatively smooth
elevation curve over much of the transect, lacking small-scale bumps and troughs.

The BedMachine Antarctica grid product generally shows lower roughness values
along the transect line due to the regularization term in the mass conservation method.
In contrast, both MB_DeepBedMap and DeepBedMap can generate the rough bed topog-
raphy, with small-scale roughness similar to ground-truth. However, in coastal regions
where the roughness is relatively high, the spatial distribution of roughness generated
by MB_DeepBedMap is similar to ground-truth, whereas that of DeepBedMap is denser
because of the hummocky wake-like patterns. As shown in Figures 9c and 10b, the spatial
density of radar data decreases gradually from left to right, as does the accuracy of model
prediction. This is because the radar data density directly affects the accuracy of the refer-
ence bedmaps (i.e., Bedmap2 and Bedmachine) used as model inputs. This means that, as
the density of radar detection data increases, the uncertainty of the reference bedmaps will
be reduced, and the estimation accuracy of the proposed model will be further improved.
We note that MB_DeepBedMap_DEM shows relatively low roughness in certain areas
(refer Figure 10, from −1400 to −1300 km on x-scale). This may be improved by adding
roughness error between the predicted and ground-truth DEM in the loss function to
generate the desired topography.

5.3. Model Generalization

In Section 4.3, we show that MB_DeepBedMap trained on BEDMAP2 can be applied
on other bed elevation grid products to generate a realistic rough terrain with high spatial
resolution. Over the vicinity of Marie Byrd Land, whose spatial statistical information is
similar to that of the training areas, both DeepBedMap and MB_DeepBedMap can generate
bed elevation and roughness values close to ground-truth along the transect line (Figure 14).
Looking at the 2D view, the bed topography generated by DeepBedMap is rougher than
that of BedMachine Antarctica, but the small-scale topographic features are not properly
reproduced, even if the large-scale patterns are correctly generated. By comparison, the
bed topography generated by MB_DeepBedMap shows more realistic patterns, and the
generated small-scale features appear visually close to those of the training data. Over
the vicinity of Dome C and Dome F, where most bed elevation is above sea level, it can
be observed that the small-scale bumps and troughs in our grid products are similar to
the ground-truth along the transect lines (refer to Figure 12, from 1240 to 1260 km on the
x-scale, and Figure 13, from 850 to 890 km on the x-scale). In contrast, the DeepBedMap
grid products show large-scale bumps and troughs and significant elevation deviation over
much of the transect, which biases the estimation of ice thickness. Focusing on the 2D views
of bed topographies in the vicinity of Dome C and Dome F, MB_DeepBedMap shows more
realistic topographies than DeepBedMap, whose topographic features look like artifacts.
Moreover, low sampling density means less radar measurement data, which leads to lower
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facticity of the input topography that affects the quality of the topography generated
by MB_DeepBedMap in this area. However, the MB_DeepBedMap model can mine the
semantic information and relationships in multiple remote sensing input data through
deep learning, thus maintaining the facticity in the area with low sampling density to some
extent. As shown in the upper right corner of Figure 11d–f, MB_DeepBedMap is able to
generate more realistic high-resolution topography than the input bedmap in the area with
low sampling density. The topography in this region is smoother than the surrounding
topography in the reference bedmap (BedMachine) due to the lack of radar data. However,
because the deep learning model with convolutional operations is good at recognizing
spatial patterns, the MB_DeepBedMap model generates reasonable topographical features
similar to those in the surrounding area. Therefore, owing to the good generalization
performance, MB_DeepBedMap can improve the resolution of the newer bed elevation
grid products.

5.4. Limitations and Future Work

MB_DeepBedMap only uses a small part of Antarctica as the training dataset, and
most of the training data are distributed in the coastal areas (refer Figure 4a). This is an
exceedingly small amount of data for the whole Antarctic continent for the super-resolution
task. Therefore, the topographic features of high-resolution topography generated by
MB_DeepBedMap will be similar to the training data, and the model output in areas
dissimilar to the training areas (such as mountain areas) may not recover the true small-
scale terrain details. Because the convolutional neural network model works on 2D gridded
data, sparse radar point measurements cannot be used directly to train the model and
constrain its output, but they can be used to build a large-scale DEM such as BEDMAP2
as the input of model. Based on the large-scale DEM input, the MB_DeepBedMap model
focuses on generating small-scale topographical features important for sub-kilometer
roughness. Therefore, the uncertainty of larger-scale DEM input will be introduced to
generated high-resolution DEM, which directly affects the performance of the proposed
model. To address the issues, more radar measurements are necessary to improve the
input of low-resolution topography (e.g., Bedmap2 and BedMachine), resulting in more
accurate kilometer-scale bedmaps. Moreover, the spatial coverage of the data and the
methods used to construct topography differ in different areas throughout BEDMAP2 and
BedMachine products. Thus, the statistical relationships between the input topography
and other variables would differ throughout Antarctica, which could be a source of bias
in the super-resolution model. In the future work, we can train a super-resolution model
respectively for different types of regions in Antarctica.

There are two potential improvements to this model. We need to: (1) obtain more
high-resolution ground-truth training data and (2) improve our model with advances in
the field of ice-sheet modeling and deep learning. Radar detection technology can be used
to increase the coverage of bed elevation measurement, which cannot only increase the
high-resolution training data but can improve the low-resolution topography input to
provide more accurate large-scale features. In addition, other subaerial digital elevation
models with high-resolution topography can be used to increase the amount of training
data. The current model not only needs paired topography for training, but it requires the
corresponding information data of the ice surface. To use other subaerial topographies
without ice cover as training data, we can design two independent neural network models.
One would be trained on the paired topography to learn the mapping relationship from
low- to high-resolution topography. Another model, which is optional, would be used to
improve previous SR results, combined with ice surface observation information when
available. From a physical point of view, the model does not adequately account for
sliding/friction [46,47] at bed topography and the transmission [48,49] of bed shape into
surface features. In future work, our MB_DeepBedMap model can take the basal sliding
coefficient as input to further improve the performance.
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6. Conclusions

We developed a method based on a convolutional neural network to resolve the
bed topography of Antarctica, which can improve its spatial resolution as produced by
interpolation or inverse methods, such as kriging and mass conservation, and recover
realistic topographic features with small-scale roughness. Our method builds on the deep
learning method proposed by Leong et al. but adopts a more effective network structure.
Unlike the DeepBedMap model that fuses different inputs in the input stage, the proposed
multi-branch model structure can help to extract these input features more effectively and
reduce artifact problems caused by the premature fusion of multiple data inputs. With
direct upsampling results including large-scale topographic features such as valleys and
ridges, the proposed method can be applied to more types of regions than DeepBedMap.

We tested the performance of the proposed model by applying it on BEDMAP2 and
BedMachine Antarctica to generate high-resolution bed topographies. Compared with
the smooth bed topographies presented in BEDMAP2 and BedMachine Antarctica, those
generated by MB_DeepBedMap are rougher and have roughness closer to ground-truth.
In addition, the proposed model can generate more realistic topographical features than
DeepBedMap under the same training dataset. Considering its realistic topography and
small-scale roughness similar to ground-truth, we believe that the proposed method may
potentially be used where a high-resolution bed elevation model is required.
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Appendix A. Deep Neural Network Training Details

We use Chainer to implement the proposed model, and carry out all experiments
on one RTX 2080ti graphics card. For a total of 4028 image patches, 3826 image patches
are used for training with a batch size of 128, and 202 image patches are reserved for
verification. During training, in order to check overfitting, we use two evaluation metrics
on the validation dataset to evaluate the generative adversarial network model, including
an accuracy metric for the discriminator and a peak signal-to-noise ratio (PSNR) metric
for the generator. When these two metrics show little improvement, we stop the training,
roughly at 190 epochs. In addition, we compare the grid output predicted by the model
with the actual ground-truth elevation points on an independent test dataset which contains
39,640 data points. Specifically, we use the point-to-point elevation error to calculate the root
mean square error (RMSE) on this test dataset. This RMSE value is used to select candidate
models and is also the metric minimized by a hyperparameter optimization algorithm.

There are lots of hyperparameter settings that need to be determined in neural net-
works. In order to decide an appropriate hyperparameter to obtain better performance of
the model, following DeepBedMap, we use the Tree structured Parzen Estimator [50] from
the Optuna V2.0.0 library [51] to tune hyperparameters (see Table A1). We run 60 experi-
ments to scan the hyperparameter space, and then selected the top five models from these
experiments to further determine the final model by visual evaluation.
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Table A1. Optimized hyperparameter settings.

Hyperparameter Setting Tuning Range

Learning rate 1.7 × 10−4 2 × 10−4 to 1 × 10−4

Mini-batch size 128 64 or 128
Number of epochs 190 100 to 200
Residual scaling 0.2 0.1 to 0.5

Adam optimizer epsilon 0.1 Fixed
Adam optimizer beta1 0.9 Fixed
Adam optimizer beta2 0.99 Fixed
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