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Abstract: Evapotranspiration (ET) estimations at high spatiotemporal resolutions in urban areas
are crucial for extreme weather forecasting and water management. However, urban ET estimation
remains a major challenge in current urban hydrology and regional climate research due to highly
heterogeneous environments, human interference, and a lack of observations. In this study, an
urban ET model, called the PT-Urban model, was proposed for half-hourly ET estimations at a
10 m resolution. The PT-Urban model was validated using observations from the Hotel Torni urban
flux site during the 2018 growing season. The results showed that the PT-Urban model performed
satisfactorily, with an R2 and root-mean-square error of 0.59 and 14.67 W m−2, respectively. Further
analysis demonstrated that urban canopy heat storage and shading effects are essential for the half-
hourly urban energy balance. Ignoring the shading effects led to a 38.7% urban ET overestimation.
Modeling experiments further proved that flux footprint variations were critical for the accurate
estimation of urban ET. The setting source areas either as an invariant 70% historical footprint or
as a circle with a 1 km radius both resulted in poor performances. This study presents a practical
method for the accurate estimation of urban ET with high spatiotemporal resolution and highlights
the importance of real-time footprints in urban ET estimations.

Keywords: diurnal urban evapotranspiration; canopy heat storage; shading effect; dynamic footprint

1. Introduction

By 2050, 70% of the world’s population will live in urban areas [1]. Globally, such
urbanization profoundly alters the energy balance and water cycle processes [2–4]. Evapo-
transpiration (ET) is known to link the water and energy exchanges between the Earth’s
surface and the atmosphere and is sensitive to urbanization [5–7]. Almost all extreme
hydrometeorological events, such as floods and urban heat islands (UHIs), are inseparable
from ET [8,9]. Therefore, urban ET research can advance our understanding of urban
climate extremes and water resource management [10–12]. Although analyses of urban ET
are critical for understanding human living environments, studies on ET in urban areas are
relatively rare compared with those in natural or agricultural regions [13,14].

The studies on urban ET are mainly limited by the highly heterogeneous underlying
land surfaces and anthropogenic activities [15]. Specifically, the spatiotemporal heterogene-
ity of urban environments (i.e., land cover, microclimate, and energy components) hinders
the application of ET models in urban areas [16]. Remote sensing-based ET estimation
methods provide promising potential in urban areas. Some of the widely applied methods
include the surface energy balance (SEB) model, the Penman–Monteith (PM) model, and
potential ET (or reference crop ET) methods. SEB models estimate ET as the residual of
the surface energy balance from satellite remote sensing images [17]. Zhang and Chen [18]
compared the performances of three variants of SEB models in urban areas and found that
special urban conditions limited the performance of manually selected extreme grids for
calculating temperature gradients. The PM model comprehensively considers the prin-
ciples of aerodynamic processes and surface energy balance, as well as concepts such as
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the stomatal resistance of vegetation, to estimate ET from moisture-limited surfaces [19].
Boegh et al. [20] compared the performance of the PM model in crop, forest, and urban
regions and found that the model’s performance was poor in urban regions. PM models
are challenging to implement because numerous parameters (e.g., aerodynamic resistance)
are difficult to estimate in urban regions [20]. Potential ET methods consist of a series of ET
models (e.g., the crop coefficient model [21], the Priestly-Taylor Jet Propulsion Laboratory
(PT-JPL) model [22], and the Global Land Evaporation Amsterdam Model (GLEAM) [23])
that estimate the actual ET by imposing conversion coefficients on the potential ET. The
conversion coefficients account for the effects of different variables on the actual ET. Studies
have shown that potential ET methods perform well on various underlying surfaces [24–26],
implying that these methods have great flexibility in complex and heterogeneous urban
areas. However, the calculations of conversion coefficients in urban areas have rarely
been investigated.

The energy balance of urban surfaces is more complex than that of homogeneous
underlying surfaces, owing to fragmented land use types and building morphologies [27].
Currently, the eddy covariance (EC) system is the most advanced latent heat observation
method in urban areas [28,29]. However, unavoidable systematic errors in EC data occur
because of measurement instrument errors [30] and energy non-closure problems due to
footprint mismatches [31]. In urban areas, the reliability of flux data is further exacerbated
by urban morphology [32]. Usually, inaccuracies in EC data can be reduced using the Bowen
ratio energy balance (BREB) method-based energy non-closure correction [33] and the same
source areas for each component in the energy balance [34]. The energy non-closure
correction method has been applied to flux data processing for urban ET estimations using
SEB [35] and crop coefficient estimations and has achieved limited success. Grimmond and
Oke [36] demonstrated that footprint-weighted flux data could improve the performance
of the Penman equation in urban areas. Similarly, Vulova et al. [37] proved that the
footprint-weighted normalized difference vegetation index (NDVI) could significantly
improve the capability of an AI-based ET model for urban ET estimations. However, these
applications ignored the mismatching source areas of different energy balance components
and did not consider the footprints in the urban ET model development and parameter
calibration. Furthermore, urban canopy (i.e., buildings and impervious surfaces) heat
storage cannot be ignored, and it can be an important source of urban latent heat during the
day [38]. The shade from buildings has a direct and large impact on the air temperatures
and net radiation within shaded areas [39], resulting in a more heterogeneous urban
energy balance and microclimate. Fortunately, high-frequency on-site observation and
remote sensing technologies provide multi-scale observations over heterogeneous urban
underlying surfaces [40,41]. This enables us to develop and validate methods for high
spatiotemporal resolution urban ET estimations [9].

Therefore, the primary objective of this study was to propose a half-hourly urban
ET model based on potential ET methods (i.e., the PT-Urban model) and consider the
footprint and urban morphology at a 10 m resolution. In this study, data from the Hotel
Torni and Fire Station urban flux sites in Helsinki, Finland, were used to demonstrate
the model’s capabilities. For the PT-Urban model, the latent heat (LE) flux was corrected
by the urban surface energy balance, considering the shading effect and urban canopy
heat storage within the footprints. The major parameters in the PT-Urban model were
calibrated using the footprint-weighted values of the simulation against the observations.
The effects of shading and footprints on the ET estimation were investigated using different
modeling scenarios. The specific objectives of this study were as follows: (1) to investigate
the importance of urban canopy heat storage for ET estimations; (2) to establish a new
method for estimating urban evapotranspiration by considering the effects of shading and
footprints; (3) to quantify the effects of shading and footprints on urban evapotranspiration.
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2. Data and Methods
2.1. Development of the PT-Urban Model

The schematic diagram in Figure 1 shows the data pathways and the main modeling
modules used in this study. The proposed PT-Urban model is based on the PT-JPL model
and integrates urban canopy heat, shading effects, and flux footprint modules to estimate
the ET in urban environments. Building height data were used to calculate the dynamic
shading of the PT-Urban model and the zero-plane displacement height of the footprint
model. The net radiation and other components of the half-hourly urban energy balance
were calculated according to shading maps and meteorological data. The flux data were
corrected using the BREB method. All input data for the LE estimation are footprint-
weighted values calculated using the footprint model. The PT-Urban model can estimate
the urban ET with a spatiotemporal resolution of 10 m per half hour using remote sensing
and meteorological data.
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2.2. PT-JPL ET Model

Fisher et al. [22] proposed the PT-JPL model to estimate evapotranspiration by limiting
potential evapotranspiration (PET) using a series of factors. In the PT-JPL model, the
total LE was estimated as the sum of the following three components: vegetation canopy
transpiration (LEc), soil evaporation (LEs), and vegetation canopy interception evaporation
(LEi). Each component of PET was calculated using available energy and then constrained
to real LE by physiological plant features and soil moisture conditions. The model was
driven by the following five input variables: Rn (net radiation), NDVI, EVI, Ta, and relative
humidity (RH). The following equations were used to calculate the total LE:

LE = LEc + LEs + LEi (1)

LEc = (1− fwet)× fm × fg × ft × α× ∆
∆ + γ

× Rnc (2)

LEs = ( fwet + (1− fwet)× fsm)× α× ∆
∆ + γ

× (Rns − G) (3)



Remote Sens. 2023, 15, 1327 4 of 22

LEi = fwet × α× ∆
∆ + γ

× Rnc (4)

where fwet is the relative surface wetness, ft is the plant temperature constraint, fm is the
plant moisture constraint, fsm is the soil moisture constraint, α is the PT coefficient set at
1.26, ∆ is the slope of the saturation vapor pressure to the temperature curve (KP ◦C−1), γ
is the psychrometric constant (0.066 kPa ◦C−1), Rnc is the net radiation from the vegetation
canopy interception (Rnc = Rn − Rns; W m−2), and Rns is the net radiation received at the
soil surface (W m−2). Rn and G were calculated using Equations (16) and (25). According
to Beer [42] and Denmead and Millar [43], Rns can be estimated as follows:

Rns = Rn × exp(−kRn × LAI) (5)

where kRn is the extinction coefficient of radiation [44] and LAI is the leaf area index. The
LAI was calculated as follows:

LAI =
ln(1− f IPAR)

kPAR
(6)

where kPAR = 0.5 and f IPAR is the ratio of photosynthetically active radiation of the
vegetation canopy [45]. Various eco-physiological limiting factors in the model were
obtained from the following equations:

fwet = RH4 (7)

fg =
fAPAR
f IPAR

(8)

ft = exp

[
−
(

Ta − Topt

Topt

)2
]

(9)

fm =
fAPAR

fAPARmax

(10)

fsm = RH
VPD

β (11)

where Topt is the optimum growth temperature of the vegetation, VPD is the vapor pressure
deficit, β is the sensitivity index of fsm to VPD, and fAPAR is the ratio of photosynthetic
radiation absorbed by the vegetation canopy. The values of fAPAR and f IPAR are calculated
as follows:

fAPAR = m1EVI + b1 (12)

f IPAR = m2NDVI + b2 (13)

where m1, m2, b1, and b2 are semi-empirical parameters.
A more detailed description of the PT-JPL model can be found in Fisher et al. [22]. The

recommended parameters are presented in Table S1.

2.3. Identification of Flux Footprint

A flux footprint is the zone of the surface upwind from an instrument that contributes
to a measured vertical flux (e.g., of water vapor or carbon dioxide) between the ground and
the atmosphere. The flux observed by EC systems is not from a fixed region but a footprint
that varies with wind direction, wind speed, and subsurface characteristics around each
site [46]. The variation of the source areas (or footprints) is often ignored for homogeneous
surfaces but is not negligible for highly heterogeneous urban regions. In this study, the
source areas of the vapor flux (i.e., LE) of each period were generated using the footprint
model proposed by Kormann and Meixner [46].
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The sizes and forms of the source areas, φ(x, y, 0), can be calculated as follows:

φ(x, y, 0) = f
(
z′, V, WD, u∗, L

)
(14)

where z′ is the effective measurement height, V is the standard deviation of the cross-stream
wind component, WD is the wind direction, u∗ is the friction velocity, and L is the Obukhov
length. The half-hourly values of V, WD, u∗, and L were obtained from observations at the
Hotel Torni site.

The value of z′ was calculated as follows:

z′ = zm − zd (15)

where zm is the measurement height and zd is the zero-plane displacement height (i.e., the
height at which the wind speed would become zero).

The spatial heterogeneity of the aerodynamic parameter zd cannot be ignored in urban
areas; therefore, it cannot be an invariant value when calculating the real-time urban flux
footprint. The Quantum Geographic Information System (QGIS) [47], a plugin in the Urban
Multi-Scale Environmental Predictor (UMEP), was implemented to calculate gridded and
windward zd from a digital surface model (DSM), which was calculated using the digital
elevation model (DEM) and building height data from the European Environment Agency
(https://land.copernicus.eu/local/urban-atlas, accessed on 22 September 2021). The zd
for each 50 m grid area (zd_g, as shown in Figure 2a) was calculated following the method
proposed by Kanda et al. [48]. For each degree, the zd values (zd_w, as shown in Figure 2b)
were computed using the QGIS with a 1000 m radius and a 1◦ wind direction search
interval, producing databases of zd for 360 wind directions.
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Figure 2. (a) The 50 m× 50 m zero-plane displacement (zd) of the study area was calculated to (b) the
zd in different wind directions for each degree by UMEP.

A single zd value must be derived from the heterogeneous zd map to calculate the
footprint. Once calculated, the scale and shape of the footprint determine the zd area. To
solve this iterative problem, the initial zd

′ was set as zd_w according to the wind direction.
The zd

′ was used to estimate the initial footprint, and the footprint was used to delimit the
zd_g. The method proposed by Kljun et al. [49] was implemented to calculate the footprint-
weighted zd from the gridded zd_g within the footprint areas. The specific calculation
process is as follows (shown in Figure 3):

https://land.copernicus.eu/local/urban-atlas
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Step 1: The initial footprint was calculated according to the zd_w from the wind
direction for each period.

Step 2: The footprint-weighted zd of the iteration ith (zdi) was calculated from the zd_g
within the footprint.

Step 3: A footprint closer to the real footprint was calculated according to the mean zdi
in Step 2.

Steps 2 and 3 were repeated until the difference in the footprint-weighted zd between
two adjacent iterations was less than 1 m.

2.4. Influences of Urban Morphology on Net Radiation Estimation

An accurate estimation of the spatial heterogeneity of the net radiation is essential for
ET calculations [50,51]. The complexity of the net radiation calculation in urban areas arises
from the highly heterogeneous urban land cover and urban morphology. Building shading
can significantly influence the energy balance, especially at half-hourly time scales [52]. The
net radiation Rn0 is usually calculated using (16), which was proposed by Humes et al. [53]
and is as follows:

Rn = (1− α)Rs_in + (Rl_in − Rl_out) (16)

where Rs_in is the downward shortwave radiation (W m−2), Rl_in is the downward long-
wave radiation (W m−2), Rl_out is the upward longwave radiation, and α is the surface
albedo.

In urban areas, shortwave and longwave radiation vary spatiotemporally because of
architectural shadings. In this study, Rs_in, Rl_in, and Rl_out were calculated using (17), (18),
and (19) following Lindberg et al. [54], Jonsson et al. [55], and Lindberg [56]. The equations
are as follows:

Rs_in = I × Ssin(η) + D× S + G(1− S)α (17)

Rl_in = ψRl_clean + (1− ψ)εwσT4
s + (1− ψ)(1− εw)Rl_clean (18)

Rl_out = εgσ(Ta + S(Ts − Ta))
4 (19)

where I, D, and G are the direct, diffuse global solar radiation, S accounts for shadow as a
Boolean value (presence = 0 or absence = 1), η is the altitude angle of the sun above the
horizon, ψ is the sky value factor (SVF), which represents the ratio of the sky hemisphere
visible from the ground, Rl_clean is the incoming longwave radiation, where ψ = 1, εw
and εg are the wall and ground emissivity, respectively, Ts and Ta are the surface and
air temperatures, and σ is the Stefan–Boltzmann constant. The G, Rl_clean, and Ta were
obtained from the Fire Station sites. The εw was set as 0.15. This model allows for the
calculation of D from the G, Ta, and RH using the approach of Reindl et al. [57]. The I is
calculated as follows:

I = (G− D)/sin(η) (20)
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The Ts is calculated using (21), which was proposed by Bogren et al. [58]. The following
equation has been validated by Lindberg et al. [56] in Göteborg, Sweden, a city with a
similar latitude and similar climate to Helsinki:

(Ts − Ta) = 0.37× η − 3.41 (21)

The α and εg values for each land cover type used in this study are provided in Table S2
and are the same as those used by Gan et al. [59]. The half-hourly Boolean shadow maps,
SVF, and η were generated for the study period using the R package “shadow” [60] based
on building height and DEM data.

2.5. Energy Closure Correction at Footprints Scale

In urban areas, the surface energy balance equation can be expressed by (22) and (23)
as proposed by Oke [27], which are as follows:

Rn + QF = H + LE + Q + QA (22)

Q = Qs + G (23)

where Q is the heat storage during the calculation period, Qs is the urban canopy heat
storage, G is the soil heat storage, QF is the anthropogenic heat, and QA is the heat carried
by advection. The QF and QA values can be ignored in the energy balance calculations on
the half-hourly scale in this research as QA is much smaller than other components and the
emissions of QA are lower in summer noon [61]. The value of Rn was calculated using (16).
The half-hourly urban canopy heat storage was calculated using the empirical equation
proposed by Camuffo and Bernardi [62], which is as follows:

Qs = a1Rn + a2
δRn

δt
+ a3 (24)

where δRn/δt is the time-varying slope of the net radiation and a1, a2, and a3 are the linear
fitting parameters. The parameters a1, a2, and a3 are set as 0.35, 0.28 h, and −40 W m2,
respectively, according to Oke and Cleugh [38]. The three items in Equation (24) account
for the real-time increment, time delay item, and offset amount of the urban canopy
heat storage.

The half-hourly G was calculated using the empirical equations proposed by San-
tanello and Friedl [63], which are as follows:

G
Rn

= Acos
[

2π(t + 10, 800)
B

]
(25)

A = 0.0074(∆Ts) + 0.088 (26)

B = 1729(∆Ts) + 65013 (27)

where ∆Ts represents the daily variations in the soil surface temperature. The parameters
A and B are empirical constants and are set as 0.91 and 0.56, respectively.

The source areas of H and LE are different from the components of radiation ob-
servations because of the different measurement techniques and processes that lead to
the non-closure of the energy balance [64,65]. In this study, the BREB method [33] was
implemented to address the system error of the flux data observed by the EC system. The
non-closure part, D, is determined by the following:

D = (Rn − G−Qs)−
(

LE′ + H′
)

(28)

where LE′ and H′ are the latent and sensible heat observed by the EC system between
the hours of 10:00–15:00 every half hour, respectively. The Bowen ratio is more stable
and representative during this period [33]. This residual caused by the system error is
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redistributed to latent and sensible heat according to the Bowen ratio [65]. The Rn, Qs, and
G values were mapped to the same spatial resolution as the land cover data using (16), (24),
and (25), respectively. The corrected LE and H values were calculated as follows [66]:

β =
H′

LE′
(29)

D = ∆LE + ∆H (30)

∆LE = D/(1 + β) (31)

∆H = D− ∆LE (32)

LE = LE′ +
D

1 + β
(33)

H = H′ + D× β

1 + β
(34)

where the Bowen ratio β is the average ratio of H′ to LE′. This process ensured that the
source areas of the different terms of the urban surface energy balance were consistent.
Raster maps were calculated using the footprint-weighted values for each component.

2.6. Flux Data for Model Validation

Data from two urban sites in Helsinki, the Hotel Torni flux site (60◦10′04”N, 24◦56′19”E)
and the Fire Station site (60◦12′10”N, 24◦57′40”E) [67], were collected to test and validate
the proposed PT-Urban model. These two sites are 400 m apart, located in the center of
Helsinki, and they belong to the same urban evaporation observation project. Helsinki is
on the southern coast of Finland, surrounded by the sea on three sides, and has a temperate
maritime climate (Figure 4). Latent heat (LE), sensible heat (H), wind speed, humidity, and
air temperature data were collected from the Hotel Torni site. Radiation data were collected
from the nearby Fire Station sites. The measurements taken from May to September 2018
were used in this study.

The following half-hourly LE observations were excluded from the data set: (1) values
outside the range of 0–500 W m−2 [68] (to avoid any extreme or abnormal values observed
by the EC systems); (2) measurements collected during precipitation or up to 4 h after
rain events (as the EC systems have poor performance on rainy days); (3) measurements
without available high-quality vegetation indices; (4) measurements for which the required
data for footprint estimation was missing or was insufficient to calculate the 90% footprint
likelihood; (5) observations not made between the hours of 10:00 and 15:00 (as the Bowen
ratio is stable during this period); (6) measurements collected during polar nights (from
October–April). Following filtration, 109 half-hourly data groups were used for both the
footprint estimations and the ET estimations.

2.7. High-Resolution Land Cover Data of the Study Site

The land cover classification (LCC) map used in this study was the Finer Resolution
Observation and Monitoring of Global Land Cover dataset at a 10 m resolution (FROM-
GLC10), which was developed by [69]. The FROM-GLC10 was derived from Sentinel-2
data in 2017 and processed using Google Earth Engine. The LCC data were found to
be 73% accurate when validated against the 2015 validation sample [69]. FROM-GLC10
contains ten land use types, whereas the study area has only six, which are as follows:
forest, grassland, wetland, water, impervious surface, and bare land.
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The NDVI and enhanced vegetation index (EVI) were used to represent the effect of
vegetation on the regional ET and calculate the leaf area index (LAI). High-resolution land
cover data were clipped to the research area, as shown in Figure 4. Both NDVI and EVI were
calculated from the Sentinel-2 reflected radiance (https://www.usgs.gov/centers/eros,
accessed on 22 September 2021) as follows:

NDVI =
NIR− RED
NIR + RED

(35)

EVI =
2.5× (NIR− RED)

NIR− 6× RED− 7.5BLUE + 1
(36)

where NIR, RED, and BLUE are the spectral bands at near-infrared (842 nm), red (665 nm),
and blue (490 nm) wavelengths, respectively.

Only images with less than 10% cloud cover in the region of interest that were taken
within 15 days of other available data were selected. Lastly, each pixel was linearly inter-
polated to the daily values under the assumption that the day-to-day fluctuations of the
NDVI were small within 15 days during the non-growing season. Data with high spatial
resolution can reflect the refined vegetation in fragmented urban landscapes.

2.8. Model Calibration and Evaluation

The three most sensitive parameters (m1, Topt, and β) of PT-JPL, which were identified
by Zhang et al. [70], were calibrated against the corrected LE values. About two-thirds of
the available data (66 out of 109) were randomly selected as calibrating datasets, and the
rest were used as the validation dataset.

A genetic algorithm (GA) was applied to optimize the parameters of the PT-Urban
model [71]. The following three criteria were selected to assess the model’s performance: co-
efficient of determination (R2), root-mean-square error (RMSE), and relative bias (bias). The

https://www.usgs.gov/centers/eros
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objective function (f) for the calibration consists of the Nash–Sutcliffe efficiency (NSE; [72])
and relative bias. The mathematical equations of the three criteria and objective function (f)
for the parameter optimization are as follows:

R2 =
∑
(

sim− obs
)2

∑
(

obs− obs
)2 (37)

RMSE =

√
∑(obs− sim)2

N
(38)

bias = 100%× ∑(sim− obs)
∑ obs

(39)

NSE = 1− ∑(sim− obs)2

∑
(

sim− obs
)2 (40)

f = NSE− 5.0× |ln(1 + bias)|2.5 (41)

where sim and obs are the half-hourly footprint-weighted LE and observed LE, respectively.
N represents the sample size. The variables with overbars denote the average values. The
RMSE can vary from 0 to +∞, while the R2 and bias can range from 0–1.0 (or 100%). The
model performs best when R2 approaches 1.0 and the RMSE and bias approach zero. An
R2 value of 1.0 indicates that the estimated LE shows a completely linear relationship with
the observed values. An RMSE value of zero indicates that all points lie on the regression
line. A bias value of zero implies that the volumes of the estimated and observed values
are the same and that there is no systematic error.

3. Results
3.1. Urban Surface Energy Balance at Footprint Scale

Figure 5a shows the Boolean shadow map of the study area, derived by the UMEP
module at different times. The shadows moved from the northwest of the buildings to the
northeast from 10 am to 3 pm. As shown in Figure 5b, the shading area ratio first decreased
and then increased, with a mean value of 5.48% and maximum and minimum values of
6.26% and 4.82% at 10 am and 12 am, respectively. Figure 5c shows the sky view factor (SVF)
of the study area. The closer a point is to a building and the higher the building density,
the lower the SVF value at that point. The SVF varies from 0.21–1.0, with a mean value of
0.89, as shown in Figure 5c. The shaded areas and SVF values are highly heterogeneous,
which could significantly influence the urban surface energy balance in different areas and
at different times.

Figure 6 shows the half-hourly mean footprint-weighted Rn, G, Qs, LE, and H values
for the study period. The mean values of these components are 282.11, 5.29, 54.17, 40.61,
and 165.39 W m−2, respectively. The values shown in Figure 6 suggest that the footprint-
weighted average urban canopy heat storage (Qs) is a non-negligible item in the energy
balance equation, as it accounts for 29.7% of the available input energy. Figure 7 compares
the energy balances calculated with and without considering the urban canopy heat storage
(Qs). The net energy input during the study period was compared with the sum of the
latent and sensible heat. The energy balance non-closure ratio was higher when the urban
canopy heat storage was ignored. The consideration of the urban canopy heat can reduce
the urban energy balance non-closure ratio from 29.2% to 13.0%. Therefore, urban canopy
heat storage is very important for urban surface energy balance calculations, and ignoring
this term would lead to significant energy closure problems.
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storage heat).

3.2. Performance of the Proposed PT-Urban Model

The optimal m1, Topt, and β values for the Hotel Torni site are 1.405, 18.7, and 0.55,
respectively. Figure 8 compares the estimated footprint-weighted LE with the observed LE
by the EC system during the calibration and validation periods. For the calibration, the
estimated half-hourly LE values were highly correlated with the observed values, with
an R2 value of 0.59. The fitted linear correlation line between the observed and estimated
half-hourly LE values without intercept was slightly lower than 1:1, with a slope of 0.95.
The RMSE and relative bias of the estimated half-hourly LE values were 14.67 W m−2

and −4.5%, respectively. During the validation, the RMSE, relative bias, and R2 were
14.70 W m−2, −11.1, and 0.58, respectively, which were close to those of the calibration.
Generally, the PT-Urban model performed satisfactorily at the Hotel Torni site.
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Figure 9 shows the estimated and observed LE values for each half hour during the
study period. The median estimated and observed values were relatively consistent before
13:00. The inter-quantile ranges of the estimated and observed values differed at different
half-hourly intervals. The R2 values for each half-hourly period varied from 0.1–0.98. The
relative bias values varied from −13.9% to 13.2%.
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The PT-Urban model performed better from 11:30 to 12:00, 12:00 to 12:30, and 14:30
to 15:00, during which the R2 values were over 0.9. The linear regression slopes without
intercept varied from 0.83–1.18. In general, the PT-Urban model effectively captured the
dynamics of the half-hourly LE observed by the flux tower.

The histogram in Figure 10 shows the three estimated components of the LE (canopy
transpiration (LEc), canopy interception evaporation (LEi), and soil evaporation (LEs))
during the study period. The mean LEc, LEs, and LEi values are 20.63, 5.23, and 4.18 W m−2,
respectively. The pie chart in Figure 10, which depicts the proportions of each component,
shows that the LEc was the largest component of the total LE (approximately 64.9%) at the
study site. LEs and LEi accounted for 20.0% and 15.1% of the total evaporation, respectively.
Figure 10 indicates that the vegetation transpiration was the main source of LE at the Hotel
Torni site.
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3.3. Impacts of Footprints and Shadings on Urban ET Estimation

The capabilities of the PT-Urban model to estimate the urban LE with three different
source areas and the influence of shading effects are compared in Table 1 and Figure 11.
The three chosen source areas are as follows: a circle with a radius of 1.0 km around the site,
a 70% historical footprint area, and a real-time half-hourly flux footprint (Figure 4). The LE
estimated by the PT-Urban model from the different source areas is an area-weighted value.
Figure 11a,b show the performance of the PT-Urban model with invariant source areas of
70% historical footprint and a circle with a 1 km radius around the site, respectively. The
LE values calculated from the historical footprint average of 70% (R2 = 0.07; Figure 11a)
and the 1 km radius around the site (R2 = 0.11; Figure 11b) had much lower R2 values than
those estimated from the dynamic footprints (R2=0.59; Figure 8). The historical footprint
average of 70% led to an LE with an RMSE of 16.25 W m−2. The LE estimated from the fixed
circle was overestimated by 184.3%, with an RMSE of 70.48 W m−2. The slopes of the fitted
line without intercept for the 70% historical footprint average and circle scenarios are 0.90
and 2.44, respectively. Figure 11a,b indicate that the consideration of dynamic footprints
is of critical importance for the PT-Urban model when estimating high spatiotemporal
resolution LE in urban regions, as shown in Figure 8.
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Table 1. Model performance for each scenario according to the metrics RMSE, R2, and relative bias
for the PT-Urban model.

Sample Shading Source Area RMSE (W m−2) R2 Bias (%)

total yes dynamic footprint 14.67 0.59 −4.5
calibration yes dynamic footprint 14.65 0.59 −0.7
validation yes dynamic footprint 14.70 0.58 −11.1

total yes historical footprint 16.25 0.07 3.6
total yes 1.5 km circle area 70.48 0.11 184.3
total no dynamic footprint 28.34 0.35 38.7
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Figure 11. Scatter plots of the observed LE versus the estimated LE (a) from the 70% historical
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Figure 11c shows the performance of the PT-Urban model without considering the
effects of shading. Compared with the results shown in Figure 8, ignoring the impact of
shading led to a significant (38.7%) overestimation of the LE. The ignorance of shading
effects also led to a decrease in the R2 values from 0.59 (Figure 8) to 0.35 (Figure 11c) and
an increase in the RMSE values from 14.67 (Figure 8) to 28.34 W m−2 (Figure 11c). The
consideration of shading effects is, therefore, crucial for half-hourly urban LE estimations.

4. Discussion
4.1. Key Factors on Urban Surface Energy Balance

According to the energy closure and LE estimation results, the half-hourly urban
energy balance estimation in the PT-Urban model provided reliable energy balance closure
and partition by leveraging the urban canopy heat storage and footprint (as shown in
Figure 7). The urban canopy heat storage has often been ignored in previous research on
urban evapotranspiration [73]. Here, we demonstrated that ignoring the urban canopy heat
storage has significant detrimental effects on the estimation of half-hourly ET in urban areas.
In this study, each component of the urban surface energy balance was calculated using
real-time footprints. Discrepancies in the observed areas exist when observing different
variables using different instruments [46,49]. For example, soil heat fluxes do not coincide
with the source areas of sensible and latent heat. This error can lead to severe non-closure
problems with energy balance in urban areas. Therefore, energy non-closure in urban
regions may be due to two possible reasons. First, the incompleteness of the energy balance
equation components and the absence of energy inputs or outputs were not considered.
Second, the highly heterogeneous underlying types reinforced the scale mismatch between
the observed variables [74]. In this study, all variables in the energy balance equation
were calculated using raster data and treated at the footprint source area scale, making the
variables consistent in scale. Although the energy balance closure method corrected the
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flux data of the EC systems, this method limited the available data for model training. The
short time window may limit the transferability of the PT-Urban model.

4.2. Influences of Urban Morphology on Urban LE Estimation

The consideration of architectural shading in the modeling experiments resulted in
a 38.7% reduction in the estimated LE values and an improvement in the model’s perfor-
mance in terms of R2, RMSE, and relative bias (as shown in Figures 8 and 9). Shadows
influence LE values not only via incoming radiation but also through the impact of urban
morphology on urban microclimates [75]. Building heights are distributed heterogeneously
in urban areas, leading to spatial variations in the shading of solar radiation. In addition,
the intraday change in the sun’s altitude leads to variations in the shading over time. Shad-
ing can reduce the canopy transpiration by 40% [76] and reduce the air and urban surface
temperatures [77]. The influence of urban morphology in this work was concentrated on
the shading effect on net radiation. However, the thermal emissions of hardscape materials,
street orientation, etc., can also impact the humidity and microclimates, such as air and sur-
face temperatures [78–80]. The consideration of the urban microclimate as one of numerous
influencing factors and their coupling is a complex process. Therefore, a combination of
microclimate models (e.g., ENVI-met [81]) is needed for urban LE estimations in the future.
It should be noted that only the noon period was investigated in this study. The shading
effect could be more significant if the observations were made in shaded and unshaded
areas [58,77].

Aerodynamic characteristics (e.g., zero-plane displacement) are also influenced by
urban morphology, which indirectly affects dynamic footprint identifications [82]. A
zero-plane displacement (zd) is defined as the height at which the mean velocity is zero,
owing to large obstacles, such as buildings, in the urban region. The spatial distribution
of architecture causes the zd to vary at different wind speeds and wind directions [83].
To avoid complex urban numerical modeling, the dynamic footprints were calculated
iteratively with different wind directions and gridded zd values in this study.

4.3. Importance of Dynamic Footprint for Half-Hourly Urban LE Estimation

The PT-Urban model with dynamic footprints performed better than that with a fixed
source area in terms of both R2 and RMSE values. This suggests that real-time footprint-
weighted LE values are more suitable for resolving mismatches between the source regions
of different variables. The same footprint application can be seen in previous studies that
verified the urban ET model proposed by Duarte Rocha et al. [68] and Peters et al. [84].
However, the footprint model has much stricter data requirements than the traditional LE
model because it requires auxiliary data observed in more rigorous situations [46]. This
may reduce the applicability of the PT-Urban model proposed in this study. Moreover,
the consideration of both dynamic footprints and shading effects increases the compu-
tational complexity due to footprint-weighted value processing and real-time shading
map calculations.

Due to the highly heterogeneous urban land cover and the high percentage of built-up
areas, LE calculations largely come from vegetated areas, as shown in Figure 10. The
footprint-weighted NDVI derived from dynamic footprint changes over different wind di-
rections and the correlation between the observed LE footprint-weighted NDVI are shown
in Figure 12a,b, respectively. The observed LE versus its source area-weighted NDVI
derived from the two fixed source areas mentioned above is shown in Figures 12c and 11d.
The scatter of the historical footprint and the circle setting are near the x = 0.1 and x = 0.17
lines, as shown in Figure 12c,d, which indicates that changes in the site-based observed
LE are only related to fluctuations in the climatic conditions on an hourly time scale. This
is in accordance with calculations made under the assumption of homogeneous under-
lying surfaces [85,86] rather than heterogeneous urban land covers. Figure 12 suggests
that the intraday variation in wind direction could significantly affect the observed LE
and footprint-weighted NDVI. It also highlights that dynamic footprints are of critical
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importance for estimating half-hourly urban LE correctly. Therefore, in addition to the me-
teorological conditions (e.g., air temperature and net radiation), the phenological conditions
of vegetation in the dynamic footprints are also necessary in urban LE modeling.
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In this study, the PT-Urban model still faces a mismatch problem with the input data.
This study only tried to make a more comprehensive consideration of the variables that
are more important for urban ET estimations. The net radiation and air temperature were
corrected to footprint scales. However, other meteorological forcing data used in this
study, such as relative humidity, are still site observations and have not been corrected.
The issue of mismatch is still a problem that needs further research. Furthermore, the
large computational time for high spatiotemporal footprints and LE estimations limited
the quantity of data for training and validating the proposed model. Although the PT-
Urban model is essentially a physically process-based model rather than a data-driven
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model, the applicability and transferability of the proposed new method have to be further
demonstrated under various conditions and with more data.

5. Conclusions

In this study, a half-hourly urban ET model, called the PT-Urban model, was proposed
using flux, remote sensing, meteorological, and urban morphology data. Field observations
from the Hotel Torni and Fire Station sites in Helsinki, Finland, during the growing season of
2018 were selected for calibrating and validating the model. The influences of architectural
shadows and dynamic footprints were considered in the proposed PT-Urban model and
quantified with different modeling scenarios. The main conclusions of this study are
outlined below.

Urban canopy heat storage is critical for the calculation of half-hourly LE because it
accounted for 29.7% of the available input energy during the study period. Urban canopy
heat storage in the urban surface energy balance can improve the energy closure ratio
by 16.2%.

The PT-Urban model performed satisfactorily during the study period. The proposed
model showed R2, RMSE, and bias values of 0.59, 14.67 W m−2, and −4.5% during the
study period, respectively.

The consideration of shading effects and dynamic footprints is of critical importance
for urban ET estimations. Considering the shading effects can reduce ET overestimations
by 38.7%, while without dynamic footprints, the estimated urban ET can be significantly
biased, not only in the total quantity but also in the proportionate contributions of the three
different components.
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