
Citation: Huang, R.; Chen, J.;

Feng, Z.; Yang, Y.; You, H.; Han, X.

Fitness for Purpose of Several

Fractional Vegetation Cover Products

on Monitoring Vegetation Cover

Dynamic Change—A Case Study of

an Alpine Grassland Ecosystem.

Remote Sens. 2023, 15, 1312.

https://doi.org/10.3390/

rs15051312

Academic Editors: Bingfang Wu,

Yuan Zeng and Dan Zhao

Received: 31 January 2023

Revised: 22 February 2023

Accepted: 24 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Fitness for Purpose of Several Fractional Vegetation
Cover Products on Monitoring Vegetation Cover Dynamic
Change—A Case Study of an Alpine Grassland Ecosystem
Renjie Huang 1, Jianjun Chen 1,2,*, Zihao Feng 1, Yanping Yang 1, Haotian You 1,2 and Xiaowen Han 1,2

1 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology,

Guilin 541004, China
* Correspondence: chenjj@glut.edu.cn

Abstract: Long-time series global fractional vegetation cover (FVC) products have received widespread
international publication, and they supply the essential data required for eco-monitoring and simula-
tion study, assisting in the understanding of global warming and preservation of ecosystem stability.
However, due to the insufficiency of high-precision FVC ground-measured data, the accuracy of
these FVC products in some regions (such as the Qinghai–Tibet Plateau) is still unknown, which
brings a certain impact on eco-environment monitoring and simulation. Here, based on current
international mainstream FVC products (including GEOV1 and GEOV2 at Copernicus Global Land
Services, GLASS from Beijing Normal University, and MuSyQ from National Earth System Science
Data Center), the study of the dynamic change of vegetation cover and its influence factors were
conducted in the three-rivers source region, one of the core regions on the Qinghai–Tibet Plateau,
via the methods of trend analysis and partial correlation analysis, respectively. Our results found
that: (1) The discrepancy in the eco-environment assessment results caused by the inconsistency
of FVC products is reflected in the statistical value and the spatial distribution. (2) About 70% of
alpine grassland in the three-rivers source region changing trend is controversial. (3) The limiting
or driving factors of the alpine grassland change explained via different FVC products were signifi-
cantly discrepant. Thus, before conducting these studies in the future, the uncertainties of the FVC
products utilized should be validated first to acquire the fitness of the FVC products if the accuracy
information of these products is unavailable within the study area. In addition, more high-precision
FVC ground-measured data should be collected, helping us to validate FVC product uncertainty.

Keywords: fractional vegetation cover products; alpine grassland ecosystem; consistency and
inconsistency; dynamic change of vegetation cover; influence factors

1. Introduction

Vegetation is one of the most vital components of the Earth’s ecosystem, serving as a
“link” between the atmosphere, hydrosphere, and pedosphere. The vegetation in the terres-
trial carbon cycle, energy exchange, water balance, and climate change is significant [1,2].
Climate change is closely tied to vegetation growth. Several studies have indicated that as
global warming continues, the likelihood of extreme weather events will increase, leading to
a higher probability of fires, drought, and melting glaciers and permafrost [3]. These events
can significantly impact the living environment of vegetation, potentially pushing more
species to the brink of extinction, reducing species diversity, and changing the composition
and structure of ecosystems. As a result, the ability of ecosystems to provide services and
adapt to climate change may be diminished [4]. Monitoring vegetation dynamic change is
the foundation for comprehending the changes in ecosystem structure and function, and it
is of the utmost importance to correctly comprehend these changes and their driving forces.
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Remote sensing has become the primary technical tool for regional ecological environ-
ment monitoring due to remote sensing satellite extensive coverage and robust capacity
for continuous observation [5–8]. However, remote sensing monitoring often utilizes a
long-time series vegetation index to track dynamic environmental changes. Although the
vegetation index can reflect the growth state and dynamic changes of vegetation, it lacks
physical significance and has great limitations in quantitatively assessing environmental
changes, as well as in qualitative assessment of providing information on species composi-
tion, structure and their changes. Moreover, the vegetation index has drawbacks of its own.
For instance, the normalized difference vegetation index (NDVI), the most well-known and
comprehensively used vegetation index, is affected by the heterogeneity of the underlying
surface in places with sparse vegetation cover and exhibits the phenomena of “saturation”
in areas with dense vegetation canopy cover [9–11]. Additionally, vegetation growth change
information may not be reflected in the long-term NDVI change trend in some regions [12].
Therefore, remote sensing information should be translated into ecological parameters with
physical significance in order to more accurately depict the status quo and changes in the
ecological environment [13,14].

Fractional vegetation cover (FVC), one of the distinctive biophysical factors of vege-
tation, is the percentage of the vertical projection area of vegetation (including branches,
stems, and leaves) on the ground in the total statistical area [15–17]. The changing trend of
the long-term FVC series may properly reflect the growth history of vegetation, reveal its
current growth condition, and forecast its future development tendency [2,18,19]. Utilizing
remote sensing images from the past few decades, a host of scientific research teams have
produced numerous global FVC products [2,20–24]. These FVC products with extensive
spatial coverage and long-time series have been conducted extensively in dynamic veg-
etation cover change monitoring and other applications [8]. Existing research indicates
that there are substantial disparities across FVC products in terms of spatial and temporal
resolution as well as FVC estimation accuracy for various vegetation species [25–27]. Thus,
in order to acquire the fitness of FVC products in monitoring vegetation cover dynamic
change, research on the results of simulated vegetation dynamics cover via different FVC
products is required immediately.

The dynamic change of vegetation growth status and geographical distribution is
primarily influenced by the change in climate circumstances. Hence, climate data are
commonly viewed as the most influential factor in vegetation change [28]. Investigating
the spatio-temporal change characteristics of vegetation and analyzing the reasons for vege-
tation change in conjunction with climatic elements are the advanced study methodologies
for current ecological environment change and its drivers [29]. However, while evaluating
ecological environmental change and understanding its driving elements, various scholars
have reached divergent or contradictory conclusions [9]. For example, Wang et al. (2021)
revealed that, from 2001 to 2016, the MODIS NDVI was negatively correlated with temper-
ature at low altitudes area in the three-rivers source region (TRSR) but positively correlated
with global inventory modeling and mapping studies (GIMMS) NDVI [30]. The discrep-
ancy in data sources may be the primary cause of the aforementioned results, which will
inevitably have an effect on the comprehension of ecological environment assessment and
its consequences, further misleading ecological environment decision-making departments
into implementing inappropriate ecological management policies.

The alpine grassland ecosystem, one of the typically fragile ecosystems, is mostly
located in high-altitude or high-latitude places. The dominant vegetation type is the alpine
grassland, which is extremely vulnerable to climate change [17,31]. The alpine grassland
changes will have a serious effect on both the ecological security of the local alpine grassland
ecosystem and the stability of the surrounding area. Since the majority of earlier studies
relied on a single vegetation index, quantitative understandings of the alpine grassland
change process and its growth driving mechanism are limited [30]. Moreover, while
providing more data sources for scientific teams, the current multiplicity of FVC products
also creates confusion regarding which FVC products to utilize. Hence, it is imperative
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to investigate whether discrepancies in the outcomes of eco-environment monitoring and
simulation studies exist when employing diverse remote sensing data and whether such
variations are tolerable. Here, we collected the current international mainstream FVC
products (including GEOV1 and GEOV2 at Copernicus Global Land Services, GLASS from
Beijing Normal University, and MuSyQ from National Earth System Science Data Center)
and MODIS NDVI, a current popular eco-environment monitoring indicator. Based on
the above remote sensing products, the changing trends of alpine grassland cover in the
TRSR of China were investigated using the methods of annual maximum value composite
(MVC), Theil-Sen slope estimation, and Mann–Kendall (MK) test. The discrepancy of
results obtained by different remote sensing products was quantified. In addition, in
conjunction with temperature and precipitation data, the main influencing factors of alpine
grassland change were analyzed via a partial correlation analysis method to a quantitative
examination of the effects of FVC product uncertainty on a study of the mechanism of
influencing vegetation cover dynamic change [32]. The study’s primary aims are as follows:
(1) to investigate the spatio-temporal discrepancies of various FVC product datasets; (2) to
evaluate the influence of FVC product discrepancies on the monitoring of dynamic alpine
grassland cover change; (3) to expose the impact of inconsistencies in FVC products on
studies of driving or limiting factors of alpine grassland change.

2. Materials and Methods
2.1. Study Area

TRSR, located in the northeast hinterland of Qinghai–Tibet Plateau (31◦39′–36◦16′N,
89◦24′–102◦23′E), is composed of the source area of the Yangtze River, Yellow River and
Lantscang River, and it is known as the “Water Tower of China” (Figure 1). The topography
of the TRSR is very rugged, mainly canyons and mountains, and there are permanent
glaciers. The terrain is high in the northwest and low in the southeast, with an average
altitude of about 4000 m. TRSR lies in a transitional zone between semi-arid and sub-humid
climate conditions. Its climate is the typical plateau continental climate, which can be
characterized by alternating cold and hot seasons and distinct dry and wet seasons [33]. The
annual precipitation ranges from 262.2 to 772.8 mm, and the annual average temperature
ranges from −5.38 to 4.14 ◦C [34]. The influence of East Asian summer monsoon is one of
the reasons for the concentration of precipitation in summer [35]. Moreover, the annual
sunshine duration ranges from 2312 to 2939 h, the average wind speed ranges from 1.1 to
4.3 m/s, and the relative humidity ranges from 49 to 66% [36]. The dominant vegetation
type in this region is the alpine grassland (including alpine steppe and alpine meadow),
which grows naturally in the harsh environment. Its growing season is very short, and
summer is its most prosperous period. The alpine grassland in the TRSR has been steadily
deteriorating over the past few decades as a result of interference from both natural and
human influences, posing a serious risk to the water safety of those living downstream.

2.2. Data Source and Pre-Processing

The remote sensing products, including four FVC products (GEOV1 and GEOV2 at
Copernicus Global Land Services, GLASS from Beijing Normal University, and MuSyQ
from National Earth System Science Data Center) and the MODIS NDVI product from
the Land Processes Distributed Active Archive Center website, utilized in this study were
from 2001 to 2018. For the purpose of comparing the discrepancies between remote sensing
products, we maintain the consistency of all remote sensing products in the coordinate
system, temporal resolution and spatial resolution. The coordinate system of all remote
sensing products was first uniformly changed into the WGS84 projection coordinate system
by using the projection transformation tool. Then, via the bilinear interpolation method,
the spatial resolution of the MuSyQ and GLASS FVC products was upscaled from 500
to 1000 m, and the spatial resolution of the MODIS NDVI was upscaled from 250 to
1000 m [37]. Finally, the MVC method was used to generate images with the maximum
annual value from the remote sensing product image sets in July and August every year.
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The preprocessing of the remote sensing products mentioned above was performed in
ArcGIS (v.10.2; ESRI, Redlands, CA, USA).
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2.2.1. Remote Sensing Products

(a) GEOV1 and GEOV2 FVC Products

The GEOV1 and GEOV2 were the officially part of the Copernicus Global Land Service
(CGLS). The spatial and temporal resolutions of the GEOV1 and GEOV2 FVC products were
1 km and 10-days, respectively. The inversion algorithms of the GEOV1 and GEOV2 FVC
products were neural networks in which the training data was CYCLOPE FVC data cor-
rected using a scaling coefficient and the input data was provided by a SPOT-VEGETATION
sensor (replaced with PROBA-VEGETATION sensor observations since 2014) [22,23,38].
Compared with the GEOV1 FVC products, the GEOV2 FVC products mainly improved
the algorithm and combined with Savitzky–Golay filtering, time smoothing, application of
meteorological data, and other key technologies to increase the spatio-temporal continuity
of GEOV1 FVC. The GEOV1 and GEOV2 FVC data were stored in netCDF files, which
were available at the CGLS website (https://land.copernicus.eu/global/products/fcover,
accessed on 9 April 2021). The ArcGIS was used to extract the GEOV1 and GEOV2 FVC
data from the netCDF files, and complete the FVC data reprojection and cropping.

(b) GLASS FVC Product

The spatial and temporal resolutions of the GLASS FVC were 500 m and 8 days,
respectively. Initially, the generalized regression neural network (GRNN) algorithm was
utilized to produce the GLASS FVC. Since 2016, it has been replaced by the multiple
adaptive regression spline (MARS) algorithm, which has higher estimates for efficiency and
accuracy. MOD09A1 product, one of the MODIS series products which provided surface
spectral reflectance of MODIS bands 1–7 with 500 m resolution, has further undergone
spatiotemporal filtering to remove cloud pollution and other unfavorable observational
factors. Then, the reprocessed MOD09A1 data were selected as the input data of the MARS

https://land.copernicus.eu/global/products/fcover
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algorithm and the training data were FVC samples inversion via high-quality Landsat
TM/ETM+ reflectance data [2,19]. The GLASS FVC product is available from the National
Earth System Science Data Center (http://www.geodata.cn/, accessed on 16 September
2021). The preprocessing of the GLASS FVC product, including image stitching and
projection, was performed by MODIS Reprojection Tool. Then, the ArcGIS was used to
crop the GLASS FVC data.

(c) MuSyQ FVC Product

The MuSyQ FVC product provides FVC data with a spatial resolution of 500 m and a
time step of 4 days. Based on the MuSyQ leaf area index (LAI) products and the MODIS
clumping index (CI) products, the MuSyQ FVC data were calculated using gap probability
theory [21]. The MuSyQ FVC data were stored in HDF5 files, which were available on the
National Earth System Science Data Center website (http://www.geodata.cn/, accessed
on 1 June 2022). A MuSyQ FVC data preprocessor was developed using the python
programming language (version 3.9) for extraction and stitching of the MuSyQ FVC data.
Then, the ArcGIS was used to complete the MuSyQ FVC data reprojection and cropping.

(d) MODIS NDVI Product

MOD13Q1 was one of the MODIS series products. It provides vegetation product data
with a spatial resolution of 250 m after 16 days of composite processing, mainly including
NDVI data, enhanced vegetation index (EVI) data, and reflectance data of red, blue, near-
infrared bands, etc. [39]. The MOD13Q1 product stored on the Land Processes Distributed
Active Archive Center website (https://lpdaac.usgs.gov/, accessed on 19 September 2022)
can be free to acquired. We extract the MODIS NDVI data from the MOD13Q1 product via
MODIS Reprojection Tool. The preprocessing such as image stitching, reprojection, and
cropping, was performed by this tool.

2.2.2. Meteorological Data

The temperature and precipitation data were provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF), named the fifth-generation ECMWF at-
mospheric reanalysis of the global climate (ERA5). ERA5 is part of the Copernicus Cli-
mate Change Service with a spatial resolution of 0.1◦ (about 10 km) [40]. Through the
downscaling method developed by Jing et al. (2016), based on precipitation and surface
characteristics, the spatial resolution of ERA5 was resampled to 1 km [41]. These temper-
ature and precipitation data with spatio-temporal resolutions were 1 month and 1 km,
respectively, which were downloaded from the National Earth System Science Data Center
(http://www.geodata.cn/, accessed on 17 October 2022). In this study, the average temper-
ature was calculated by averaging temperatures from June to August, and the accumulated
precipitation was obtained by adding precipitation from June to August.

2.2.3. Auxiliary Data

The land cover map is a 1:1,000,000 spatial distribution map of vegetation types in
China, which is derived from the Resources and Environmental Sciences and Data Center of
the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 1 September 2022).
It reflects the spatial distribution map of many vegetation types in China, such as meadow,
steppe, coniferous forest, broadleaf forest, etc. It is the basic map of China’s national
natural resources and physical geographical characteristics, and it comprises indispensable
scientific data for the study of global eco-environmental change and monitoring.

2.2.4. Field Measured FVC Data

We delineated 243 remote sensing monitoring plots in the TRSR from July to August
2017, and each plot was 250 × 250 m in size [6] (Figure 1). At each remote sensing moni-
toring plot, we acquired high-resolution aerial images through aerial photography using
unmanned aerial vehicles (UAV), named DJI Phantom 4 Professional Edition. The UAV
can fly precisely and hover smoothly, since it uses the global positioning system/global

http://www.geodata.cn/
http://www.geodata.cn/
https://lpdaac.usgs.gov/
http://www.geodata.cn/
https://www.resdc.cn/
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navigation satellite system dual-satellite positioning module [5]. The spatial resolution of
the aerial image obtained by an UAV flying at the relative altitude of 20 m is about 1 cm.
We can clearly distinguish the vegetation pixels and non-vegetation pixels in these aerial
images, so that we can obtain reliable vegetation coverage data. The specific field sampling
plan and the process of obtaining measured FVC data from aerial images can be referred to
in our previous studies [6,31,42].

2.3. Methods
2.3.1. Dynamic Monitoring Method of Alpine Grassland Cover

In this study, the Theil-Sen slope estimation method is used to estimate the spatial
distribution trends of the alpine grassland in the TRSR, and the MK test method is used
to test the significance of these trends. The Theil-Sen slope is the median value of the
calculated long-time series and is commonly used to determine the magnitude of the
rise and fall of the trend in long-time series data [43]. The MK test is a nonparametric
statistical test used to determine the significance of the trend [44,45]. Both the methods
are non-parametric statistical methods, which have a solid statistical theoretical basis and
can effectively reduce the impact of missing values and outliers on long-time series data,
widely used in vegetation, meteorology, hydrology, and ecological long-term time series
trend analysis [46,47]. The formula of the Theil-Sen slope estimation method (Formula (1))
and MK test method (Formulas (2)–(5)) are as follows.

β = mean
(

Xb − Xa

b− a

)
(2001 ≤ a < b ≤ 2018) (1)

S =
n−1

∑
b=1

n

∑
a=b+1

sgn(Xb − Xa) (2)

sgn(Xb − Xa) =

 1, Xb − Xa > 0
0, Xb − Xa = 0
−1, Xb − Xa < 0

 (3)

s(S) =
n(n− 1)(2n + 5)

18
(4)

Z =

(S− 1)/
√

s(S), S > 0
0, S = 0

(S + 1)/
√

s(S), S < 0

 (5)

where Xa and Xb are the pixel value of remote sensing products in year a and year b. β < 0
denotes decreasing trend, and β > 0 denotes an increasing trend. n is the length of the
period from year a and year b, α is the confidence levels, and Z is the standardized test
statistic. Z1−α/2 is the value corresponding to the confidence level α. Confidence level
α = 0.05 and α = 0.01 are used in this study, which correspond to Z1−α/2 values of 1.96 and
2.58, respectively. When |Z| > 1.96 and |Z| > 2.58, it indicates that the trend passes the
significance test of 95% and 99%, respectively. Based on the β and Z values, this study
divides the changing trend of all remote sensing products’ value into five levels (Table 1).

Table 1. Level classification of the change trend of the remote sensing products’ value.

Confident Levels β Values Z Values Changing Trend

α = 0.01 β > 0 |Z| > 2.58 Significance increase
α = 0.01 β < 0 |Z| > 2.58 Significance decrease
α = 0.05 β > 0 2.58 ≥ |Z| > 1.96 Slight increase
α = 0.05 β < 0 2.58 ≥ |Z| > 1.96 Slight decrease
α = 0.05 β > 0 or β < 0 |Z| ≤ 1.96 No significance change
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2.3.2. Influencing Factors of Dynamic Change of Alpine Grassland Cover Analysis Method

The partial correlation analysis method is one of the popular methods to research
the influencing factors of vegetation dynamic change, since it can effectively exclude the
influence of other variables and investigate the correlation between vegetation index and
another variable, such as climate factors, human factors, etc. [8]. The values of partial
correlation are between −1 and 1. The negative partial correlation coefficient means that
factor 1 and factor 2 are negatively correlated when the third factor is controlled, while
the positive partial correlation coefficient is the opposite, and 0 means that there is no
phase relationship [48]. In this study, the partial correlation analysis method was used
to quantitatively investigate the response of alpine grassland in the TRSR to average
temperature when the cumulative precipitation factor was controlled. In addition, the
response of alpine grassland in TRSR to accumulated precipitation was investigated when
the average temperature factor was controlled [49]. The calculation formulas are as follows.

rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(6)

rxy,z =
rxy − rxzryz√

(1− rxz2)
(
1− ryz2

) (7)

where rxy represents the correlation coefficient between the variable x and variables y. xi
and yi represent the value of the variable x and variables in year i. n represents the total
number of years. rxy,z represents the partial correlation coefficient between variable x and
variables y after controlling variable z. The p values are used to assess significance when
p < 0.05 is considered significant at the confidence level of 95%.

2.3.3. Maximum Value Composite Method

The MVC method can obtain the maximum value of remote sensing image pixels in a
period and can effectively remove the possible outliers in some remote sensing images [50].
The formula of the MVC method is as follows.

Pi = max(p1, p2, . . . , pt) (8)

where Pi is the maximum pixel value of remote sensing product in year i. p denotes that in
year i, the value of a remote sensing product contains t images from July to August, and pt
denotes the value of the t image.

2.3.4. Coefficient of Variation and Standard Deviation

In this study, the coefficient of variation (CV) and standard deviation (SD) are used to
determine the stability and inter-annual fluctuations of the inter-annual variation trend of
long-time series data [51]. The calculation formulas are as follows.

CV =
SD
A

(9)

SD =

√
∑n

i=1
(

Fi − F
)

n
(10)

where CV, SD, and A refer to the value of the coefficient of variation value, standard
deviation value, and average value of the long-time series data, respectively. n is the length
of the study period. Fi and F represent the value in year i and the average value in study
period, respectively.
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2.3.5. Direct Validation Method and Accuracy Assessment

The direct validation method uses the measured FVC values to compare the FVC
product pixel values [52,53]. Two statistical indicators are selected for accuracy validation,
including coefficient of determination (R2) and root mean square error (RMSE), which are
used to evaluate the goodness of fit and uncertainty, respectively [13]. R2 and RMSE were
calculated as follows:

R2 = 1− ∑N
i=1(Fi − fi)

2

∑N
i=1

(
Fi − f

)2 (11)

RMSE =

√√√√ 1
N

N

∑
i=1

(Fi − fi)
2 (12)

where N is the number of the monitoring plots. Fi and fi represent the measured FVC
values and the values of FVC product pixel, respectively. f represents the average values
of FVC product pixel.

3. Results
3.1. Spatio-Temporal Characteristics of Different Remote Sensing Products
3.1.1. Consistency and Inconsistency of Temporal Changing Characteristics

The inter-annual variation trend of the average values of the MODIS NDVI and
the FVC of the four FVC products all showed positive growth (slope > 0) (Figure 2).
However, the changing trends of these five remote sensing products were noticeably
different. The inter-annual growth rate of the average value of the MODIS NDVI was
at a moderate level (1.1 × 10−3/a), which was significantly lower than the inter-annual
growth rate of the average value of the GEOV1 FVC (4.3 × 10−3/a) and GEOV2 FVC
(3.6 × 10−3/a). In addition, the inter-annual growth rate of the average value of the GLASS
FVC (0.8 × 10−3/a) and MuSyQ FVC (0.1× 10−3/a) increased relatively gradually (Table 2).
The values of the coefficients of variation and standard deviation of the MODIS NDVI
product, GLASS and MuSyQ FVC products were also relatively low, compared to those of
the GEOV1 and GEOV2 FVC products.
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Table 2. The fitting curve features of the inter-annual trend of the average values of the FVC and
NDVI provided by remote sensing products.

Remote Sensing Products Slope (×10−3) R SD Average Value CV (%)

GEOV1 4.3 0.67 0.035 0.40 8.5
GEOV2 3.6 0.82 0.024 0.38 6.2
GLASS 0.8 0.24 0.018 0.34 5.3
MuSyQ 0.1 0.05 0.016 0.34 4.6

MODIS NDVI 1.1 0.34 0.017 0.47 3.7

3.1.2. Consistency and Inconsistency of Spatial Distribution Characteristics

The spatial distribution pattern of the average values of the FVC of the four FVC prod-
ucts and the MODIS NDVI was relatively consistent, and the texture details were similar
to the distribution pattern to a certain extent (Figure 3). On the whole, the southeastern,
southern, and northern regions of the TRSR had quite high FVC values (or NDVI values),
while the western and southern areas had relatively low FVC values (or NDVI values). In
terms of the FVC values, the GEOV1 FVC products have the highest average FVC value
(0.41), followed by the GEOV2 FVC product (0.38), the GLASS FVC product (0.34), and the
MuSyQ FVC product (0.34). Moreover, the number of pixels among the four FVC products
and the MODIS NDVI product at various FVC values (or NDVI values) intervals varies
significantly (Figure 3). Particularly, the GEOV1 FVC product provided a large number
of pixels with FVC values between 0.9 and 1.0, while the MODIS NDVI and the GEOV2,
GLASS, and MuSyQ FVC data virtually never gave pixels with FVC values (or NDVI
values) higher than 0.9. The pixel frequency of low FVC values (0 to 0.1) was around 10%
higher in the GLASS FVC products than it was in the other three FVC products. The pixels
with FVC values between 0.2 and 0.8 were more frequently provided by the GEOV2 and
the MuSyQ FVC products.
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Figure 3. Spatial distribution pattern of the average values of the remote sensing products. The
numbers 1 to 10 denote the intervals of FVC (or NDVI) values from 0.0~0.1, 0.1~0.2, . . . , 0.9~1.0,
respectively. The bar chart shows the pixel frequency of FVC (or NDVI) values intervals provided by
remote sensing products.
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The spatial distribution pattern of the difference images obtained by the pairwise
difference of the four FVC products (GEOV1, GEOV2, GLASS, and MuSyQ) showed that
the FVC values of the GEOV1 FVC product were slightly lower than that of the GEOV2
and MuSyQ FVC products in the north and west of the TRSR (most of the difference values
were between −0.05 and 0) (Figure 4). However, the FVC values of the GEOV2 and MuSyQ
FVC products were greater than those of the GEOV1 FVC product in the southern region of
the TRSR, and the positive difference values were mostly between 0.1 and 0.2. Additionally,
the difference values between the FVC values of the GEOV1 and GLASS FVC products
were primarily positive, with the exception of a few regions southwest of the TRSR. The
FVC values of the GEOV1 FVC product were greater than those of the GLASS product,
and almost 75% of the positive difference values were higher than 0.05. The FVC values of
GEOV2 FVC products in the western and northern regions of the TRSR were significantly
higher than those of the GLASS and MuSyQ FVC products. However, the FVC values
of the GEOV2 FVC product were significantly lower than the FVC values of the GLASS
and MuSyQ FVC products in the south and southeast of the TRSR. Meanwhile, the FVC
difference values between the GEOV2 and GLASS FVC products were higher than the FVC
difference values between the GEOV2 and MuSyQ FVC products. For the FVC difference
values between the GLASS and MuSyQ FVC products, the pixel frequency of positive
difference was roughly equal to the pixel frequency of negative difference. The pixels
of positive difference were primarily distributed in the south and southeast of the TRSR,
whereas the pixels of negative difference were primarily distributed in the west and north
of the TRSR.
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Figure 4. Images of difference between the four FVC products. Numbers 1 to 8 represent the intervals
of the FVC difference value between −0.3~−0.2, −0.2~−0.1, −0.1~−0.05, −0.05~0, 0~0.05, 0.05~0.10,
0.10~0.20, and 0.20~0.30, respectively. The small bar chart shows the pixel frequencies of difference
value intervals provided by the difference images of the two different FVC products.
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3.2. Consistency and Inconsistency of Alpine Grassland Changing Trend of Different Remote
Sensing Products

The numerical diagram and the spatial distribution map of the trends of the four FVC
products and the MODIS NDVI product over the last 18 years, obtained via the Theil-Sen
slope estimation and Mann–Kendall test (Formulas (1)–(5)), showed that numerous pixels of
the MODIS NDVI product, the GLASS FVC product, and the MuSyQ FVC product indicated
no significant change trend (frequency more than 80%) (Figures 5 and 6). Excluding the
pixels with no significant changes, the pixel frequency in the five remote sensing products
indicating a slight or significant increasing trend was much higher than that exhibiting
a slight or significant decreasing trend. The pixel frequency of the GEOV1 and GEOV2
FVC products exhibited a considerably significant increasing trend, accounting for 27.99%
and 39.63%, respectively, which was much higher than those of the MODIS NDVI product
(6.73%) and the GLASS (4.83%) and MuSyQ (4.74%) FVC products. The pixel frequency
showed a slight increasing trend that was the highest in the GEOV1 FVC product (18.47%),
which was higher than those of the GEOV2 FVC product (17.73%), MODIS NDVI product
(10.24%), GLASS FVC product (8.41%), and the MuSyQ FVC product (6.83%). Additionally,
only a very small percentage of the pixels in the five remote sensing products, less than 5%
overall, showed a significant or slight decreasing trend.
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Figure 5. Alpine grassland trends simulated by different remote sensing products.

In the TRSR, according to the spatial distribution diagram integrating the changing
trend of the four FVC products (Figure 7), there were three pixel categories with relatively
high frequency: the first type comprised pixels in which the four FVC products all showed
an insignificant change trend (26.9%), the second type comprised pixels in which two
products exhibited an increasing trend (20.5%), and the last type comprised pixels in
which only one product exhibited an increasing trend (18.4%). Less than 5% of the pixels
were highly uncertain (one FVC product showed an increasing trend while another FVC
product showed a decreasing trend), and less than 5% of the pixels were represented as
a decreasing trend by multiple FVC products. Moreover, the TRSR’s center and southern
regions contained the majority of the areas with a decreasing trend in FVC value, while the
western and northeastern regions contained the majority of the areas with an increasing
trend in FVC value.
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Figure 7. The consistency and inconsistency of the changing trend of 4 FVC products. “U” represents
that the pixel trend was highly uncertain (one FVC product showed an increasing trend, but there
was another FVC product that showed a decreasing trend). “N” indicates that the four FVC products
of the pixel showed no significant change. “+”~“4+” represents that n kinds of FVC products
of the pixel showed an increase, and the other 4 − n FVC products showed no significant change.
“−”~“4−” represents that n kinds of FVC products in this pixel showed a decrease, and the remaining
4 − n kinds of FVC products were shown as no significant change.



Remote Sens. 2023, 15, 1312 13 of 23

3.3. Consistency and Inconsistency of Factors Impacting Alpine Grassland Growth in Different
Remote Sensing Products

From 2001 to 2018 in the TRSR, the cumulative summer precipitation increased at a
rate of 2.19 mm/a, ranging from 250 to 350 mm, and the average temperatures ranged
from 5.0 to 8.0 ◦C, increasing at a rate of 0.075 ◦C/a (Figure 8). Partial correlation coeffi-
cient spatial distribution maps of the five remote sensing products with average tempera-
ture and accumulated precipitation were obtained by partial correlation analysis method
(Formulas (3) and (4)) (Figures 9 and 10). The partial correlation coefficients between the
values from the five remote sensing products and the average temperature values were
varied in terms of numerical values and spatial distribution pattern (Figure 9). The pixels
with the positive partial correlation coefficient in the GEOV1 and GEOV2 FVC products
essentially covered the whole TRSR, while the pixels with the negative partial correlation
coefficient were dispersed in the northeastern portion of the TRSR. More pixels with a
negative partial correlation coefficient were found in the GLASS and MuSyQ FVC products,
and these pixels were primarily located in the west and south of the TRSR. For the MODIS
NDVI product, with a confidence level of 0.05, fewer pixels passed the significance test,
and the absolute values of the partial correlation coefficient were obviously lower (the color
of the pixels were lighter).
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2001 to 2018.

Strong consistency can be seen in partial correlation coefficients between data from
the five remote sensing products and accumulated precipitation (Figure 10). The primary
pixels in the TRSR were those with positive partial correlation coefficients, but there were
certain discrepancies in their spatial distribution pattern. The whole TRSR was essentially
covered by the pixels with the positive partial correlation coefficient in the GLASS FVC
products, and the pixel value was high. In the MODIS NDVI product and the MuSyQ FVC
product, the pixel value of the positive partial correlation coefficient was relatively small.
The pixel partial correlation coefficient in the southern portion of the TRST was negative in
the GEOV1 and GEOV2 FVC products.
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Figure 9. The partial correlation coefficient between FVC (or NDVI) products and the average
temperature. “·” represents that the region (10 km × 10 km) has passed the significance test with a
confidence level of 0.05.

With the significance test of 0.05 confidence level, the partial correlation coefficients
between the values of the four FVC products and the average temperature and accumulated
precipitation are integrated in Figure 11. The spatial distribution of integrated partial
correlation coefficients (Figure 11a) showed that the pixels with no significant relationship
between the four FVC products and the average temperature accounted for the highest
proportion (69.9%), which was higher than the pixel proportion with one FVC product
showing a significant correlation (23.1%) (Table 3). The proportion of the pixels that showed
a significant correlation via two or more FVC products was relatively scarce (less than
8%), and these pixels were mainly distributed in the center part of the TRSR. On the
contrary, there was only a small proportion of the pixels (29.7%) that showed no significant
correlation between the four FVC products and the accumulation of precipitation. In
addition, the proportion of the pixels, which showed a significant positive correlation via
the three FVC products and four FVC products, was relatively high (30.7%), and these
pixels were primarily centered in the northern part of the TRSR. The proportion of the
pixels that showed a significant positive correlation via the one FVC product and two FVC
products was the highest (37.8%), and these pixels were primarily clustered in the western
part of the TRSR (Figure 11b and Table 3).
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Figure 11. Correlation between the different FVC products and average temperature (accumulated
precipitation). “U” represents the pixels with high uncertainty (one FVC product was positively
(or negatively) correlated with the average temperature (accumulated precipitation), while there
was another FVC product had an opposed correlation). “N” represents that the pixels did not pass
the significance test of 0.05 confidence level. “+ (−)”~“4+ (4−)” represents that the pixels had n
kinds of FVC products, at the significance test of 0.05 confidence level, and were positively (or
negatively) correlated with the average, while there was had 4 − n kinds of FVC products had no
significant correlation.
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Table 3. The proportion of all kinds of pixels.

Meteorological Factors
The Pixel Labels and Their Proportion (%)

U N 4− 3− 2− − + 2+ 3+ 4+

Accumulated
precipitation 0.34 29.69 0.01 0.01 0.09 1.24 21.48 16.34 13.32 17.44

Average
temperature 0.70 69.86 0.13 0.30 2.08 10.12 13.00 3.25 0.46 0.04

3.4. Validation of the FVC Products in the Alpine Grassland Ecosystem

Based on the measured FVC values of monitoring plots in the TRSR, the direct val-
idation results of FVC products showed that these FVC products had good accuracies
(Figure 12). The GLASS FVC products had better accuracy assessment indexes than other
FVC products (R2 = 0.815, RMSE = 0.120). The accuracy assessment indexes of the GEOV1
FVC product (R2 = 0.787, RMSE = 0.146) were close to that of the GEOV2 (R2 = 0.746,
RMSE = 0.121) and MuSyQ (R2 = 0.733, RMSE = 0.123) FVC products. However, for the
GEOV2, GLASS, and MuSyQ FVC products, the scatter of the points composed of measured
FVC values and pixel values of the corresponding FVC product were located below the
1:1 contour line, showing an underestimation phenomenon. For the GEOV1 FVC prod-
ucts, more scattered points were clustered around the 1:1 contour line, but they were
relatively scattered.
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4. Discussion
4.1. Spatio-Temporal Discrepancies of Different Remote Sensing Products

Monitoring the ecological environment via remote sensing technology has attracted
increasing attention, but the inconsistency of remote sensing products will affect how the
ecological environment is assessed and how its effects are understood [30,54,55]. Our
research results showed that although the yearly average value differences between the
four FVC products were between 0.02 and 0.06, the inter-annual change rates of the average
values of the four FVC products were highly discrepancy. In comparison to the GLASS
FVC product (0.8 × 10−3/a) and MuSyQ FVC product (0.1 × 10−3/a), the inter-annual
change rates of the average value of the GEOV1 FVC product (4.3 × 10−3/a) and GEOV2
FVC product (3.6 × 10−3/a) were much faster. One of the crucial statistical indicators to
assess regional vegetation change is the rate of inter-annual vegetation change. Varied
remote sensing products, however, produce different information about vegetation change
as a result of these FVC products cannot provide the same FVC values. These “unreal” or
“uncertain” facts about vegetation changing trend would deceive the relevant departments
while drafting environmental protection policies, compromising the ecological security and
stability of the region. We quantified the spatial distribution pattern of the FVC products
and performed spatial difference processing on the spatial distribution pattern of the four
FVC products in order to more thoroughly analyze the effects of differences among the
various FVC products on the monitoring results of alpine grassland change.

Our results demonstrate that there were clear disparities in the spatial distribution of
the four FVC products and that the FVC value of the GEOV1 product was systematically
larger than that of the GLASS FVC product. Where there is sparse alpine grassland (mostly
alpine steppe) in the northwest of the TRSR and dense alpine grassland (primarily alpine
meadow) in the southeast of the TRSR, the differences were primarily focused (Figure 7).
The cause may be that various algorithms and training data of different FVC products
lead to different estimation accuracies of FVC values of diverse biological communities
by the FVC product inversion models [6,25,56]. Additionally, the quality of the input
data and the quality of the surface reflectance captured by sensors, had a great impact
on how accurate the FVC value estimations were. The moderate spatial resolution of
the SPOT-VEGETATION, PROBA-VEGETATION, and MODIS sensors (>250 m) was an
important factor [9,57,58]. The surface reflectance captured by these sensors in the highly
heterogeneous underlying surface of the TRSR was a mixed information reflection, which
contains diverse biological community types (or different land use types) [59–62]. Moreover,
because of the high altitude and rugged terrain in the TRSR, the bidirectional reflection
distribution function (BRDF) was even more complex [17,63–65]. As a result, the surface
reflectance information obtained by different sensors may differ significantly. Thus, it may
provide highly ambiguous study results to analyze environmental change via only the
long-time series of a single remote sensing product. It is vital to conduct an authenticity
validation on remote sensing products to ascertain whether their quality is within the
expected range before conducting further study on environmental change. This activity is
essential to ensuring valid research results [37,59,66].

4.2. Analysis of Alpine Grassland Change Trends of Different Remote Sensing Products

The alpine grassland change trend in the TRSR from 2001 to 2018 was largely unno-
ticeable, with some alpine grassland even improving, but still, a little alpine grassland
degraded according to the demonstration via the five remote sensing products used in this
study (Figures 5 and 6), which was consistent with the results of other scholars [30,67,68].
However, the spatial distribution pattern and statistics values of the alpine grassland
change trend in the TRSR simulated by the five remote sensing products were noticeably
discrepant (Figures 5 and 6). In the TRSR, as compared to the alpine grassland change trend
simulated by the MODIS NDVI product, more alpine grassland deterioration occurred in
the southern region, and less alpine grassland improvement happened in the northeast
based on the MuSyQ and GLASS FVC products (Figure 6). The fact that both the GLASS
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and MuSyQ FVC products originated from MODIS reflectance data may explain why the
overall discrepancy was not the same as the GEOV1 and GEOV2 FVC products [2,19,21].
Based on the GEOV1 and GEOV2 FVC products, it was determined that the alpine grass-
land was obviously improved, especially in the southeast and west of the TRSR (Figure 6).
Figure 5 also shows that the proportion of pixels with a greening trend found utilizing
the GEOV1 and GEOV2 FVC products was significantly higher than that found using the
MODIS NDVI product and the MuSyQ and GLASS FVC products. We further integrated,
categorized, and quantified the changing trend of FVC values of the four FVC products in
order to better analyze the effects of different remote sensing data sources on the monitoring
results of alpine grassland change (Figure 7). We found that the pixels with an uncertainty
of alpine grassland changing trend in the TRSR can be divided into three categories. The
first category, which made up just a very small part (5%), was a highly uncertain pixel
category, which was a pixel with an opposing alpine grassland change trend acquired from
the distinct FVC products. The second category was the pixel category with uncertainty
to a certain extent, which was composed of a significant portion (roughly 50%) and refers
to the pixel with one or two types of FVC products showing a trend of improvement (or
deterioration). These pixels may be the different pixels between the remote sensing prod-
ucts produced from the different data sources or the remote sensing products produced
from the same data source (such as the GEOV1 and GEOV2 FVC products). Finally, the
third category, which constituted a relatively tiny part (15%), was a minor uncertain pixel
category, since at least three remote sensing products demonstrate that the alpine grassland
in this area had a tendency to improve (or deterioration). The variance in vegetation change
trends among the various remote sensing products can be attributed to two key factors.
First, there were certain discrepancies, the data of various remote sensing satellites and
measured data (or the reference truth data) were utilized in the inversion of different remote
sensing products [7,58,69]. Additionally, there were discrepancies among the sensors and
the temporal and spatial resolution of various remote sensing satellites. Remote sensing
products will be impacted by all of these aspects [60]. Another uncertainty of FVC products
resulted from the uncertainty of remote sensing parameter inversion theory, including
the performance and transfer of the machine learning arithmetic, the ill-posed inversion
problem, etc. [6,56]. Our study demonstrated that one remote sensing product replaced by
another remote sensing product may not yield similar results. While the ground-measured
data were absent, cross-validation between remote products or research on the trend of
vegetation change using various remote sensing products is required for the purpose of
assessing the relative reliability of the research results [59,70,71]. It is an effective way to
lessen the uncertainty in the study of vegetation change caused by the inconsistency of
remote sensing products [68], but it is urgent to produce a collection of remote sensing
products that possesses adequate representation and qualification and can be served as a
calibration or benchmark for research on vegetation change and other relevant topics.

4.3. Assessment of the Uncertainty of the Direct Validation Results of the FVC Products

Filed measurement data are an essential prerequisite for us to understand the quality
of remote sensing products. Although some scientific research teams have used some
global validation sites to validate the overall accuracy of these FVC products, there are still
many regions, such as the Qinghai–Tibetan Plateau (QTP), where the accuracy of these
FVC products is not available. Based on measured FVC data in the TRSR on the QTP,
our direct validation results showed that, from an annual maximum perspective, the four
FVC products all had a certain underestimation in the medium-high vegetation cover area,
which may be related to the limited measured data of the FVC production scientific research
team on the QTP [37]. However, in this study, our validation results may be affected by the
mismatch between the ground measurement range and the pixel scale of the FVC products
since each monitoring plot measures approximately an extent of 250 × 250 m, which is
much smaller than a pixel of the FVC products (1 × 1 km). Affected by the heterogeneity
of the underlying surface of the monitoring plots, the spatial representation ability of
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some monitoring plots may be insufficient, which may introduce certain uncertainties
into the validation of the FVC products [52,60]. Additionally, we used one year’s data
to validate these FVC products, but the validation of FVC products requires long-term
work, as eco-environment monitoring is also long-term work. Therefore, on the QTP, both
the quality of these FVC products and the validation strategy of FVC products have great
room for improvement. This also further emphasizes that the application groups of remote
sensing products should pay more attention to the fitness of remote sensing products in
the region scale because the quality of remote sensing products will affect the accuracy of
the eco-environment monitoring and simulation research results.

4.4. Analysis of the Factors Impacting Alpine Grassland Growth of Different Remote
Sensing Products

Climate is a key natural factor affecting the growth of alpine grassland. The change in
the climate and environmental conditions will affect the growth of alpine grassland [72].
Our results show that from 2001 to 2018, the average temperature and cumulative precipi-
tation have gradually increased, and the alpine grassland in the TRSR has been developing
well [28,73]. This was similar to the conclusion of previous studies, i.e., the warm and hu-
mid total environment has prolonged the growing season of alpine grassland in the alpine
ecosystem and has promoted the alpine grassland growth to be promising and prosperous
(Figure 8) [29,54,74]. However, there was still some discrepancy in the factors that influence
alpine grassland growth change in the TRSR. Differences in research methods, time span,
and geographical location were the main reasons for the inconsistent results, which has
reached a consensus. Nevertheless, according to our research, we also found that different
remote sensing products would produce diverse research results when used to examine
the factors influencing alpine grassland growth (Figures 9 and 10). For example, at the
confidence level of 0.05, the spatial distribution pattern of the partial correlation coefficient
between alpine grassland and the accumulated precipitation in the TRSR simulated by the
four FVC products was significantly different, and the discrepancy of the spatial distribu-
tion pattern of the partial correlation coefficient between alpine grassland and the average
temperature was more significant. Three or more FVC products revealed that the number
of pixels that were significantly correlated with the accumulated precipitation in TRSR was
relatively large (about 30%) and primarily distributed in the northern region of the TRSR,
while two or more FVC products revealed that the number of pixels that were significantly
correlated with average temperature was very small (less than 6%). This demonstrated that
accumulated precipitation had a significant impact on alpine grassland growth in the TRSR
(Figure 11). However, around 70% and 32% of the pixels, respectively, demonstrated that
the alpine grassland was insensitive to the average temperature and accumulated precip-
itation. In addition, the average temperature and accumulated precipitation influenced
alpine grassland in the TRSR, as shown by the fact that only one or two FVC products
were present in around 28 and 40 percent of the pixels, respectively (Table 3). Our research
showed that the study of the influencing factors of alpine grassland growth change will be
uncertain due to the uncertainty of remote sensing products. Therefore, it is essential to
conduct authenticity validation on the remote sensing products utilized when assessing the
driving mechanism of ecological environment change to better understand the constraints
on alpine grassland growth.

5. Conclusions

The spatio-temporal changes of alpine grassland in the TRSR from 2001 to 2018
were analyzed in this study, based on the four international mainstream FVC products
(including GEOV1, GEOV2, GLASS, MuSyQ) and MODIS NDVI product, via the Theil-Sen
median slope trend analysis and Mann–Kendall significance test methods. In addition,
by combining the temperature and precipitation data, the response of alpine grassland to
meteorological factors was evaluated. Our results showed that the uncertainty of remote
sensing products leads to significant discrepancies in the study conclusions such as the



Remote Sens. 2023, 15, 1312 20 of 23

dynamic cover changes in alpine grassland. These discrepancies were not only reflected in
the inter-annual growth rate of alpine grassland change, but also in the spatial distribution
pattern in alpine grassland dynamic change. Meanwhile, the alpine grassland growth limits
or driving factors that can be explained by each product were significantly different. Our
study quantified the potential impact of remote sensing product differences or their own
uncertainties on subsequent ecological environment monitoring and simulation studies.
In the future, the accuracy of remote sensing products should be first validated before
using them for eco-environmental monitoring or simulation studies at a regional scale. In
addition, a reliable and highly accurate FVC dataset that plays a role in calibration at the
regional scale should also be produced, which can effectively provide regional accuracy
standards for the global FVC products and provide guidance for inversion algorithm
optimization and mechanism model development of the global FVC products, improving
the applicability of the FVC products.
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