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Abstract: Due to the small sample size of underwater acoustic data and the strong noise interference
caused by seabed reverberation, recognizing underwater targets in Side-Scan Sonar (SSS) images
is challenging. Using a transfer-learning-based recognition method to train the backbone network
on a large optical dataset (ImageNet) and fine-tuning the head network with a small SSS image
dataset can improve the classification of sonar images. However, optical and sonar images have
different statistical characteristics, directly affecting transfer-learning-based target recognition. In
order to improve the accuracy of underwater sonar image classification, a style transformation
method between optical and SSS images is proposed in this study. In the proposed method, objects
with the SSS style were synthesized through content image feature extraction and image style transfer
to reduce the variability of different data sources. A staged optimization strategy using multi-modal
data effectively captures the anti-noise features of sonar images, providing a new learning method
for transfer learning. The results of the classification experiment showed that the approach is more
stable when using synthetic data and other multi-modal datasets, with an overall accuracy of 100%.

Keywords: side-scan sonar image classification; whitening and style transfer; multi-modal transfer
learning; staged optimization; feature representation

1. Introduction

The ocean covers a vast volume and contains abundant resources. With the deple-
tion of land resources, the development of the world economy and technology, and the
continuous enhancement of military strength, countries worldwide have shifted their
research focus to the ocean. Imaging Radar and Sonar (RS) are indispensable sensor de-
vices in underwater remote sensing and can provide rich visual information about the
observed area. Consequently, considerable research has been conducted on automatic target
recognition [1] in sonar images. Side-Scan Sonar (SSS) emits short sound pulses, and the
sound waves propagate outward in the form of spherical waves.

The sound waves are scattered when they hit objects, and the backscattered waves will
be received by the transducer according to the original propagation route and converted
into a series of electrical pulses. The received data of each emission cycle are arranged
vertically to form a row of an SSS image, and multiple such rows are concatenated to form
a complete SSS image. Due to the complexity of underwater environments and severe
seabed reverberation, sonar images are affected by various types of noise, such as Gaussian,
impulse, and speckle noise [2–6]. Noise can result in the loss of image detail, reduced
contrast, and blurred edges, making SSS target identification more difficult. Therefore,
target identification in sonar images acquired in harsh environments is an ongoing research
challenge.
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In recent years, RS target detection and recognition using Deep Learning (DL) have
been extensively investigated due to the advantages of high accuracy, strong robust-
ness, and amenity to parallelized implementations [7–9]. This has resulted in a new
trend of using DL methods for the automated recognition of targets in SSS images. Re-
lated studies have shown that utilizing a CNN for SSS object recognition is more ef-
fective than traditional methods (K-nearest neighbors [10], SVM [11], Markov random
field [12]) [13–18]. In order to extract deeper target features, Simonyan, Krizhevsky Alex,
and HeKaiming et al. proposed the VGG [19], AlexNet [20], ResNet [21], and DenseNet [22]
algorithms, respectively, based on Convolutional Neural Networks (CNNs). Especially in
the cases of ResNet and DenseNet, the number of deep network layers is expanded to 152
and 161 layers, respectively (ResNet-152, DenseNet-161) [23,24], proving that deep network
models are excellent for image recognition. However, for SSS image target recognition,
where it is difficult to obtain training samples, it is challenging to develop practical DL
methods.

Deep networks are generally divided into a backbone and a head. The backbone
network utilizes a CNN for feature extraction [20,25,26], and the head network uses the
features obtained from the backbone network to predict the target category. In target
recognition using Transfer Learning (TL) methods, the backbone network is pre-trained on
an external large-scale classification dataset (such as ImageNet [27]), and then, the head
network is fine-tuned on the target dataset to alleviate the problem of insufficient target
sample data. Pre-training on ImageNet has an advantage in general object recognition and
is helpful for object recognition on small-scale datasets, such as those available for SSS [28].

Therefore, using TL methods to identify SSS targets is a practical approach and a
research focus to solve the problem of SSS data shortage. Researchers have thus conducted
a series of related studies on TL-based object recognition in SSS images.

2. Related Work

Regarding current research on TL, Ye, X. et al.applied VGG-11 and ResNet-18 to target
recognition in SSS images under water and adopted the TL method to fine-tune the fully
connected layer to address the problem of the low recognition rates caused by insufficient
data samples. However, the data difference between the source and transfer datasets was
not fully considered during the data transfer process, so the effect was not significantly
improved [13]. Yulin, T. et al. applied TL to the target detection method. In the head
network, two loss functions, the position and target recognition errors, were employed
to perform position detection concurrently with target recognition. The algorithm is an
improvement of YOLO [29] and R-CNN [30], but in the target detection process, the size of
the feature anchor box is predetermined based on experience, limiting the detection ability
of targets with large-scale changes [31–33]. Chandrashekar et al. utilized TL from optical
to SSS images to enhance underwater sediment images and increase their signal-to-noise
ratio [34]. Guanying H. et al. used semi-synthetic data and different modal data to fine-tune
the parameters of VGG-19 to improve its generalization further. Using semi-synthetic data
requires the target’s segmentation in the optical image, which is then transplanted into
the SSS image. Only the background of the synthesized image possesses the SSS image’s
characteristics, while the target does not. There is still a difference between the synthesized
image and the SSS image sample, which directly affects the target recognition result [14,35].

Although TL has helped generic DL object recognition models achieve accuracies as
high as 87% [13] and 97.76% [14] on small-scale SSS datasets, little attention has been paid
to the following challenges:

Challenge 1: Because optical and SSS images have apparent differences in terms of
perspective, noise, background noise, and resolution, current attempts to transfer optical
image training models to SSS images cannot strictly meet the requirements of TL-based
target recognition.

Challenge 2: For SSS images, generic DL network frameworks (such as VGG, ResNet,
and others) have many parameters, making them susceptible to overfitting when trained
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on small sample datasets for object identification. This severely limits their generalization
capability.

To tackle the first challenge, the proposed approach in this paper changes the style
of the optical images using suitable transformations. Hence, the transformed image has
the characteristics of noise, background noise, and resolution similar to SSS images. This
reduces the discrepancies between the optical and SSS images, decreasing the occurrence
of negative transfer in TL and the hindering effect of optical images on SSS images dur-
ing network parameter learning, and improves the adaptability of transfer networks to
SSS images.

For the second challenge, it is necessary to design a particular dataset and TL strategy
to pre-train a backbone network with many parameters and fine-tune the features of a
head network with a smaller number of parameters based on the SSS dataset. Following
a traditional TL approach, the backbone network is divided into multiple sub-backbone
networks, and optical, synthetic, and SAR datasets are used in sequence to train the
backbone network. In this manner, the ability of the backbone network to extract features
is increased.

In this work, the problem of the recognition accuracy degradation caused by the dif-
ference between optical images and SSS images was addressed via TL. First, optical images
were transformed through whitening and style transforms (WSTs) using an encoding–
decoding model, resulting in a synthetic dataset. Then, using optical, synthetic, SAR, and
SSS data, the different feature layers of the network were trained in stages to obtain stable
features that were robust to interference. Finally, the features were applied to identify the
SSS targets.

The main contributions of this article are summarized as follows:
1. Using the WST method, the optical target image is styled through an encoder–

decoder model to achieve a simulated SSS target image with similar background noise and
characteristics to the actual SSS image.

2. Based on a TL framework, a multi-modal staged parameter optimization strategy is
designed. Four modal datasets (ImageNet, a transformed SSS-style, a synthetic aperture
radar, and actual SSS datasets) were used, and the parameters were roughly adjusted for the
backbone network’s front, middle, and rear sections and then fine-tuned. This solves the
problem of network overfitting and poor generalization performance in target recognition.

3. In this paper, an image synthesis method is proposed that uses feature transforma-
tion to directly match the content and style information in the style image and combines
feature transformation with a pre-trained encoder–decoder model to achieve image style
conversion through simple forward transfer. This addresses the challenging problems of
the simulation of targets with varying complex shapes and reduces the computational load
and the effect of the too-ideal intensity distribution in the SSS image synthesis method.

The rest of this article is organized as follows: In Section 3, the image synthesis method
based on an encoder–decoder model is discussed from a theoretical perspective, and a style-
culling method (whitening transformation) and a style-adding method (style transfer) are
presented for the content images. From the perspective of TL-based SSS target recognition, a
multi-stage TL strategy is designed to obtain consistent features. In Section 4, the proposed
approach is compared to classical DL algorithms, and the accuracy, precision, recall, F1,
and other indicators are analyzed. At the same time, the proposed method is compared to
various TL networks in terms of the recognition rate.

3. Materials and Methods
3.1. SSS Image Style Transfer for Optical Images
3.1.1. Image Encoding–Decoding Reconstruction Model

Style transfer is a crucial image-editing technique that enables new works of art to
be created [36] and can be employed to generate SSS-style images from optical ones. Its
purpose is to transform an image’s style without changing its content so that it has similar
characteristics to the SSS images (signal-to-noise ratio, definition, resolution). Related work
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by Gatys et al. showed that the Gram matrix between features extracted using deep neural
networks can capture image style information [36–38]. SSS-style image data can thus be
obtained by minimizing a Gram-matrix-based loss function. This paper adopted a style-
independent SSS image style transformation method based on the encoding–decoding
model. In essence, the image style transformation method is an image reconstruction
process. The traditional image reconstruction process (encoding–decoding) is shown in
Figure 1. The loss function of the reconstruction is Equation (1), where Iin is the input
image, Iout is the reconstructed image, and ϕ is the encoded features extracted using the
deep network.

L = ‖Iin − Iout‖2
2 + λ‖ϕ(Iin)− ϕ(Iout)‖2

2 (1)

Encoding Decoding

VGGNet Reconstruction

Figure 1. Image encoder–decoder reconstruction model structure diagram.

3.1.2. Image Content Information Extraction

In order to remove only the style information from the image and keep only the
content information (contour, texture, and others) of the image, in this paper, a whitening
transformation method was adopted to remove the style-related information in the image.
During the process of synthetic image generation, considering that the decoder module in
the encoder–decoder model must perform many deconvolution operations, the network
model should be reused in the process of image style transfer, so the network structure
does not require intra-layer connections. At the same time, considering the ability of the
number of network layers to extract image features, this paper chose VGG19, which has
more network layers in the VGGNet model, as the network model for the synthetic data.

Given a content image Ic (the optical image) and a style image Is (the SSS image), the
feature vectors fc ∈ <C×HcWc and fs ∈ <C×HsWs are first extracted from the images using
VGGNet, where Hc, Hs and Wc, Ws are the heights and widths of the content and style
image features, respectively, and C is the number of channels in the image. fc ∈ <C×HcWc

and fs ∈ <C×HsWs are such that, if they are input into a decoding network, the original
content image Ic and style image Is will be restored.

Adding a whitening transformation method in the encoding–decoding network can
preserve the content information in the image and reduce the style information. Since the
style information is represented in the correlation between channels, removing the image
style information reduces the channel correlation. Therefore, fc is transformed through
correlation transformation, where the non-diagonal elements of the correlation matrix of
the transformed features are transformed to 0 and the diagonal elements are transformed
to 1 to retain the content information and remove the style information. The method
adopted was to transform fc, so that the transformed feature vector fca f ter is irrelevant,
i.e., fca f ter fca f ter

T = I.
In order to remove the noise interference of the extracted feature of fc, fc was prepro-

cessed by subtracting the mean mc. Then, the matrix Dc is defined as a diagonal matrix
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composed of the eigenvalues of the covariance matrix fc fc
T ∈ <C×C and Ec as the orthogo-

nal matrix of the corresponding eigenvectors, satisfying fc fc
T = EcDcEc

T . The whitening
transformation process is shown in Equation (2).

fca f ter = EcD−
1
2

c Ec
T fc (2)

The relevant derivation process is as follows:

fca f ter fca f ter
T = (EcD−

1
2

c Ec
T fc)(EcD−

1
2

c Ec
T fc)

T=EcD−
1
2

c Ec
T fc fc

TEcD−
1
2

c Ec
T

= EcD−
1
2

c Ec
TEcDcEc

TEcD−
1
2

c Ec
T = I

(3)

The features can be changed into a diagonalized covariance matrix using Equation (3).
This process removes, to a large extent, the information related to the style and retains the
content information.

3.1.3. Image Style Information Transfer

Image style transfer transfers the application of the SSS sonar image style to an optical
image that has undergone a whitening transformation so that the obtained image has
the style characteristics of the SSS image while retaining its content information. The
above correlation analysis shows that the style transfer can be quantified using the Gram
matrix, which is a correlation matrix between the feature channels and the image channels
and describes the style information of an image. fca f ter is transformed so that the Gram
matrix of the transformed features is equal to the Gram matrix of the style features. This
results in a transformed image acquiring the style of the image. Therefore, by designing a
style transformation method, the whitening feature vector fca f ter will be transformed into
fca f ter−s, which is equal to the Gram matrix of the style feature vector fs, thus changing and
applying the required SSS style features to the image. This is expressed mathematically
through the condition fca f ter−s fca f ter−s

T = fs fs
T .

Similarly, before style transformation, the style features fs are turned into zero-mean
by subtracting the mean ms. The style transformation process is shown in Equation (4).

fca f ter−s = EsD
1
2
s Es

T fca f ter (4)

where Ds is a diagonal matrix composed of the eigenvalues of the covariance matrix
fs fs

T ∈ <C×C and E is the orthogonal matrix of the corresponding eigenvectors, satisfying
fs fs

T = EsDsEs
T . The relevant derivation process is as follows:

fca f ter−s fca f ter−s
T = (EsD

1
2
s Es

T fca f ter)(EsD
1
2
s Es

T fca f ter)
T

= EsD
1
2
s Es

T fca f ter fca f ter
TEsD

1
2
s Es

T
(5)

Since fca f ter fca f ter
T = I and Es

TEs = I, Equation (5) can be rewritten as Equation (6).

fca f ter−s fca f ter−s
T = EsD

1
2
s Es

T fca f ter fca f ter
TEsD

1
2
s Es

T=EsDsEs
T = fs fs

T (6)

It is evident from Equation (6) that the feature vector fca f ter−s after the style transfer
transformation and the style image feature fs have the same Gram matrix, and fca f ter−s
can be used to restore the image through the image reconstruction network to achieve
the transformation of the image style. Finally, fca f ter−s is restored to its original mean, i.e.,
fca f ter−s = fca f ter−s + ms.

This paper adopted the VGG19 network as the encoder (feature extraction) and the
inverse VGG19 network as the decoder (image reconstruction). The encoding–decoding
network was trained through the optical dataset, and the loss function used is Equation (1).
This paper adopted a linear transformation method of feature addition (the WST) to the
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encoding–decoding network. In this way, the SSS image style transfer is performed on the
optical image, and the transformed features have Gram matrix invariance. Therefore, in
the style transfer process, once the network is trained to perform image reconstruction,
the parameters of the encoder–decoder network do not need to be adjusted. The detailed
process is shown in Figure 2. Finally, Equation (7) is employed to adjust the balance of the
transferred style and the content features, where α ∈ [0, 1] is the style control factor. The
formula indicates that, with the increase in α, the composite image tends to be more in the
style of the SSS image. In this paper, the covariance matrix difference between the synthetic
image and the style image was applied to evaluate the quality of the synthetic image. This
paper selected the α value with the highest quality of the synthesized image.

fca f ter−s = α fca f ter−s + (1− α) fc (7)

Decoder
InverseVGG19

Encoder
VGG19

Decoder
InverseVGG19

Encoder
VGG19

Freeze Parameters

Freeze Parameters

WST

Content ImageStyle Image

Synthetic Image

Image Reconstruction Image Style Transfer

Figure 2. Illustration of image encoder–decoder style transfer.

3.1.4. WST Multi-Feature Layer Sequential Image Style Transfer

Figure 2 demonstrates that adding the WST in the middle of the encoder–decoder
network results in the style transformation of the image. In order to further improve the
ability of the style transfer, the transformed features are the deepest, and the WST is applied
to multiple feature layers. This multi-level method can utilize the deep and shallow features
of the encoder–decoder network, and the generated SSS-style images have better visual
quality.

The VGG19 network used in this paper can be divided into five feature extraction
sub-blocks based on each network layer. Similarly, the inverse VGG19 network also has
five inverse feature sub-blocks. The WST is applied before each inverse feature sub-block.
Figure 3 depicts the addition process.
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Figure 3. Illustration of WST multi-feature layer sequence image style transfer: (a) VGG19 network
structure diagram; (b) WST process details and multi-feature layer addition.

Figure 3a indicates that the five feature layers VGGEncoder(n)(n = 1, 2, 3, 4, 5) of
VGG19 perform feature extraction on the image sequentially. As the network layers deepen,
the feature extraction takes place at finer levels of detail, and the extracted features are
more detailed and abstract.

First, the WST is added to VGGEncoder(n)(n = 1, 2, 3, 4, 5) and VGGDecoder(n)
(n = 5, 4, 3, 2, 1), and a synthetic image In(n = 5, 4, 3, 2, 1) is generated based on the content
and style images, as illustrated in Figure 3b. Then, In is passed as a content image and style
image through VGGEncoder(n− 1)(n = 1, 2, 3, 4, 5), the WST, and VGGDecoder(n− 1)
(n = 5, 4, 3, 2, 1) to generate the composite image In−1(n = 5, 4, 3, 2, 1). The final style
transfer image is obtained iteratively. Because the features extracted by VGGEncoder(n)
become more local as n increases, so I5 → I1, the style transfer of the images progressively
expands from a local to a global level. Thus, the synthesized images finally obtained are of
good quality.

3.2. Multi-Modal Multi-Stage Transfer Network for Object Recognition

The classic ResNet152 network structure is deep, and the number of network param-
eters to be calculated is large. In order to avoid overfitting, a large number of training
samples are required to optimize the network parameters. The ImageNet dataset includes
1,000,000 training samples and is utilized for training ResNet152. However, the number
of samples included in the SSS dataset employed in the current study is less than one-
thousandth of that of ImageNet, and it is insufficient to train ResNet152 fully from scratch,
as this will result in poor results. With the application of DL in fields that lack a large
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number of training samples, TL has gradually become a popular solution to deal with
the lack of training samples. Figure 4 displays the target recognition structure used for
TL. First, after the network is trained on a large-scale optical image dataset, the model
can be immediately applied to classify more than 1000 commonly used target categories.
Then, the backbone network in the network structure is frozen, and the head network in
the network structure is trained using underwater SSS images to achieve the SSS image
target identification.

 

Transfer Parameters

Pre-tuning
Output

Fine-tuning
Output

Pre-trained Network

Fine-tuning Network

New Parameters Training

Figure 4. Basic model of TL-based object recognition.

However, as noted in Challenge 1 in the previous section, for the classification of
underwater SSS images, models pre-trained on optical images cannot achieve satisfactory
results due to the significant difference between SSS images and optical images and the
minimal size of the sonar image dataset used for training. Therefore, in this paper, different
DL-based model network feature layers were trained using the optical, synthetic, real
SAR, and SSS datasets. From the perspective of the number of samples in the dataset, the
ImageNet dataset has about 1.2 million samples, the synthetic dataset about 20,000 samples,
the SAR dataset about 9000 samples, and the SSS dataset about 1100 samples. Hence,
this article trained duringthe process, and the network was trained in stages by adopting
the dataset usage strategy with the number of samples from large to small to achieve the
process of network transfer from a large sample dataset to small sample dataset and to
solve the problem of the low recognition rate caused by insufficient sample data. From the
perspective of data quality, ImageNet’s data quality is superior to the synthetic, SAR, and
SSS datasets. Using the dataset strategy presented in this paper can allow the network to
gradually adapt to changes in data quality. The problem of transfer learning failure caused
by the difference between the optical and SSS dataset sample was solved. The feature layer
of the network pre-trained using the optical dataset can extract basic features. The layer
trained using the synthetic dataset has an improved ability to extract target features from
a noisy background. The layer trained with the SAR dataset has the strongest ability to
extract features under the background of interference because noise interference in SAR
data is strong. Finally, the SSS dataset was used to train the remaining part of the network.
The parameters of multiple models learned from the different modalities were transferred
to the classification model of the SSS images for better low-level and high-level feature
extraction and representation. The detailed multi-modal and multi-stage migration process
is revealed in Figure 5. The details of the network training strategies are shown in Table 1.
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Table 1. ResNet152 transfer learning network training strategies.

Usage Step/Datasets

Subnetwork
Subnetwork_1 Subnetwork_2 Subnetwork_3 Subnetwork_4

Step 1/ImageNet Train Train Train Train
Step 2/Synthetic Data Freeze Train Train Train

Step 3/SAR Freeze Freeze Train Train
Step 4/SSS Freeze Freeze Freeze Train

multi modal and multi stage migration process is shown in Figure 5. 

 

New Parameters TrainingTransfer Parameters

New Parameters TrainingTransfer Parameters

New Parameters TrainingTransfer Parameters

Share Parameters

Share Parameters Share Parameters

Share Parameters Share Parameters Share Parameters

Basic ResNet152 Neural Network

Figure 5. Structure diagram of multi-mode multi-stage transmission network for object recognition.

Figure 5 indicates the method of the network feature layer training applied in stages. Each
training link adopted the cross-entropy loss function as the objective function (Equation (8)). The
network was sequentially trained from shallow to deep, so that its ability to extract target
features and resist noise improved gradually, and its recognition performance improved.

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c

yic log(pic) (8)

where M is the number of categories; yic is a sign function (0 or 1), where if the true class of
sample i is equal to c, yic = 1, otherwise yic = 0; pic is the probability that the predicted
sample i belongs to category c.

4. Experiments

This section presents the test results of the multi-modal staged SSS target recognition
method based on style transfer. The experiments were run on a Microsoft Windows 10
operating system with an NVIDIA GTX TITAN-XP GPU and 64 GB of memory. Python
Version 3.6.8 was used to design the network structure. This part verifies the robustness and
effectiveness of the proposed method through comparative experiments and analysis. The
method was compared to traditional DL recognition methods to verify the improvement
effect of the algorithm on the recognition rate. In addition, this algorithm was compared to
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related TL algorithms, and the positive effect of the style target generation method adopted
in this paper on target recognition was analyzed.

4.1. Experimental Settings
4.1.1. Application Dataset

A target image dataset collected via imaging sonar was employed to conduct the
experiments (https://toscode.gitee.com/wangjian19870118/ssd-dataset.git accessed on
27 January 2023). The dataset used in the experiment includes three image targets: planes,
ships, and others. The dataset comprises 66 plane pictures, 484 ship pictures, and 578 other
pictures. Some example dataset images are shown in Figure 6. It can be seen that the images
have strong noise interference, which causes great difficulty in accurately identifying the
target.

 plane
 ship
 other

578 samples 484 samples

66 samples

Sample Data Distribution Diagram

(a) (b)

Figure 6. Side-scan sonar dataset samples: (a) three classes of side-scan image targets; (b) sample
distribution diagram.

4.1.2. Experimental Dataset Preprocessing

Random extraction was conducted for each image type, where 70% of the data were
used for training data and 30% for testing. Table 1 lists the specific data allocation for each
category. In order to reduce the influence of the random initialization of the parameters
and the random sampling of the samples on the recognition effect, the average values
of repeated experiments were used for the final evaluation of the recognition effect. The
data types in the dataset were unbalanced, with the largest being the 578 other samples
and only 66 plane samples. Unbalanced data will cause the classifier to favor categories
with large sample sizes, and the recognition rate of small sample categories will be poor.
At the same time, the total number of samples in the dataset was 1128, and the network
trained using this dataset exhibited overfitting. In this experiment, to reduce the above
problems’ impact on the algorithm, some basic data enhancement methods (flipping,
rotation, cropping) were also applied to preprocess the data. These included cropping
(center, bottom-left, top-left, bottom-right, top-right), equal-height or -width stretching,
contrast transformations, rotation (45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦), and left and
right flipping. Figure 7 depicts the image transformation result. Figure 8 shows the image
data used in the experiment. It indicates that different types of images have different
appearances and distributions.

https://toscode.gitee.com/wangjian19870118/ssd-dataset.git
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 (a) (b) (c) (d) (e) (f)

 (g) (h) (i) (j) (k) (l)

 (m) (n) (o) (p) (q) (r)

Figure 7. Image transformation result graph: (a) image sample; (b) center crop; (c) bottom-left crop;
(d) top-left crop; (e) bottom-right crop; (f) top-right crop; (g) equal-height stretch; (h) equal-width
stretch; (i) contrast transformation (gamma = 0.87); (j) contrast transformation (gamma = 1.07);
(k) rotation by 45◦; (l) rotation by 90◦; (m) rotation by 135◦; (n) rotation by 180◦; (o) rotation by 225◦;
(p) rotation by 270◦; (q) rotation by 315◦; (r) left and right flip.



Remote Sens. 2023, 15, 1303 12 of 19

 

 

(a)

(b)

(c)

(d)

Figure 8. The datasets used in the experiments: (a) grayscale optical image samples; (b) synthetic
image samples; (c) SAR image samples; (d) SSS image samples.

4.2. Evaluation Metrics

The criteria for evaluating the model performance adopted in this paper were the
accuracy, precision, and recall. The calculation method of the above evaluation criteria is
described in Table 2:

TP: If a sample belongs to a specific class, and is predicted as such, this is considered a
true positive outcome.

TN: If a sample does not belong in a class, and is predicted not to belong, this is considered
a true negative outcome.

FP: If a sample does not belong to a class, but is predicted to, then this is considered a
false positive outcome.

FN: If a sample belongs to a class, but is predicted not to, this is considered a false negative.

The problem tackled in this paper involved the classification into multiple categories.
Since the above indicators only apply to binary classification problems, they were applied
separately to each category to evaluate the proposed algorithm.

Table 2. Evaluation metrics of the algorithm.

Prediction
Total

1 0

Actual
1 True Positive (TP) True Negative (FN) Actual Positive

(TP+FN)

0 False Positive (FP) False Negative
(TN)

Actual Negative
(FP+TN)

Total Predicted Positive
(TP+FP)

Predicted Negative
(FN+TN) (TP+FN+FP+TN)

Accuracy: the ratio of correctly predicted samples to the total sample number.

accuracy =
TP + TN

TP + TN + FP + FN

Precision: the ratio of the number of samples correctly predicted to be positive to the
number of samples predicted to be positive.

precision =
TP

TP + FP
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Recall rate: the ratio of the number of samples correctly predicted to be positive to
the total number of positive samples.

recall =
TP

TP + FN

4.3. Performance Analysis

The network presented in this paper employed the ResNet152 network as its basis.
The ImageNet, synthetic, and SAR images were used, respectively, to train the front section,
middle section, and back-end of the backbone network, while the SSS images were utilized
for training the head of the network. The batch size was set to 100 and the learning rate
to 0.001. The VGG19 network was used for image style transfer to generate a synthetic
dataset with a learning rate of 0.001 and a batch size of 50.

Model validation was performed ten times using the cross-validation method, and
the average value of each performance indicator in the test dataset was used as the final
recognition effect measurement:

(1) Comparison of our method with traditional DL models:

In order to analyze the method’s performance in terms of the recognition accuracy, a
comparison was conducted with the traditional AlexNet, VGGNet, and DenseNet meth-
ods. These three methods are the most-commonly used backbone structures in SSS target
recognition [13,14]. VGGNet has more network layers than AlexNet, and DenseNet’s struc-
ture is more complex than that of VGGNet. Comparing these three networks’ structures
will help to evaluate the proposed method’s performance in terms of the network layers,
the data used for training, and the network structures employed. Figure 9 demonstrates
that the worst performance was that of the AlexNet algorithm, achieving less than a 70%
recognition accuracy. The VGGNet and DesNet algorithms performed similarly at about a
89% accuracy, with DenseNet performing slightly better than VGGNet. The performance
of the proposed method was substantially better, with a recognition accuracy of nearly
100%, and the identification curve was more consistent than the other two methods. To
further analyze the algorithm’s performance, the precision and recall of the method in
this paper and those of DenseNet, which had better performance than the other methods,
were compared. The results are shown in Table 3, indicating that the proposed method’s
precision and recall were higher than the related evaluation metrics of DenseNet.
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Figure 9. Result graph comparing the proposed method with the traditional ones.
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Table 3. Evaluation metrics between the proposed and the DenseNet methods.

Precision Recall Accuracy

planeDenseNet 0.5386 0.5345 0.8672
shipDenseNet 0.8316 0.819 0.8523

othersDenseNet 0.9764 0.9597 0.9775
Our Method 1 1 1

In order to analyze the recognition effects of the proposed and DesNet methods on
each of the three target categories, the confusion matrix was obtained (Figure 10), where
class1 corresponds to plane, class2 to ship, and class3 to others.

DenseNet Method Confusion Maxtrix

Tr
ue

La
be

l

Predicted Label

plane

ship

others

plane ship others

Our Method Confusion Maxtrix

Tr
ue

La
be

l

plane

ship

others

Predicted Label
plane ship others

Figure 10. Confusion matrix result graph between the proposed method and DesNet.

(2) Comparison of the methods for the classification of SSS images:

The proposed method was then compared to some improved algorithms used for SSS
recognition. The above algorithms were trained using only the SSS dataset presented in
this paper for underwater target recognition, and the synthetic style transfer dataset was
not used. The results revealed that using synthetic datasets can improve the accuracy of
target recognition.

Table 4 exhibits that, as the number of network layers increased, the recognition
accuracy of the algorithms of [14–16] showed an upward trend, and their accuracy rose
from 83.19% to 94.67%. The methods in [13,14,18] employed TL to identify the SSS target,
and the recognition accuracy was significantly improved. The transfer learning method also
had a positive effect on the recognition effect. Using semi-synthetic data samples for the TL-
based target recognition increased the recognition accuracy rate from 94.67% to 97.76%, an
increase of 3% points. The methods of [17,18] adopt self-supervised learning and empirical
knowledge to improve the recognition accuracy of SSS images. The proposed method in
this paper improved the target recognition performance through sample generation and
modal transfer, and its performance was better than all the above methods.

Table 4. Comparison of different methods for SSS image object recognition.

Methods Layer Number Accuracy (%)

Shallow CNN [15] 11 83.19
GoogleNet [16] 22 91.86

VGG11 fine-tuning + semi-synthetic data [13] 11 92.51
VGG19 fine-tuning [14] 19 94.67

VGG19 fine-tuning + semi-synthetic data 19 97.76
SPDRDL [17] 46 97.38

FL-DARTS [18] 50 99.07
Ours 152 100

(3) Comparison of different backbones for the classification of SSS images:
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In order to analyze the impact of different backbone networks on target recognition,
different networks were combined with the fine-tuned head network to identify SSS targets.
Table 5 indicates that VGG19 had better generalization performance because it has more
network layers than VGG16. Therefore, it was more suitable for generating SSS-style
images in the image synthesis, indirectly improving the recognition performance.

Table 5. Comparison of TL-based SSS image target recognition with different backbone networks.

Backbone Networks Accuracy (%)

AlexNet 94.14
GoogleNet 94.46

VGG16 94.5
VGG19 94.67

ResNet18 91.86
ResNet50 93.5
DenseNet 94.14

(4) Comparison of different TL strategies:

This paper adopted four TL strategies to identify the target and compare the perfor-
mance of different modal image transfer strategies. The recognition results are shown
in Table 6. Because the optical data characteristics were the most different from the SSS
data distribution, the achieved recognition accuracy was only 97.12%. After introducing
the SAR dataset, the robustness of the network to noise improved, with the recognition
rate was increased by 1.2 percentage points, reaching 98.34%. Through image synthesis,
the proposed method reduced the difference between the data distributions and, at the
same time, improved the anti-noise performance of the network, thus achieving the best
recognition effect.

Table 6. Comparison of multi-modal SSS image TL methods.

Dataset Training Order Accuracy (%)

SAR 97.72
Optical 97.12

SAR + Optical 98.34
Optical + Synthetic Dataset + SAR + SSS (Our Method) 100

(5) Comparison of various backbones for classifying noisy SSS images:

Because a variety of noise interference often accompanies SSS images, in order to
analyze the SSS target recognition performance under strong noise interference, in this
paper, Gaussian, speckle, multiplicative, and Poisson noises were randomly added to the
original SSS images. These are typical SSS image noises, which can simulate the underwater
image under a strong noise environment. Since VGGNet, ResNet, and DenseNet are the
most-classical and -widely used backbone network structures, the transfer recognition
methods of these three backbone networks were selected as the comparison algorithm.
Table 7 exhibits the experimental results.

Table 7. Comparison of strongly noisy SSS image target recognition with different backbone networks.

Backbone Networks Accuracy (%)

VGG 95.5
ResNet 92.68

DenseNet 91.63
Ours 95.92
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Figure 7 demonstrates that the recognition accuracy of the proposed method was
95.92%, while the recognition accuracy of DenseNet was the lowest at only 91.63%, and
the recognition accuracy of VGG was the highest at 95.5%. The proposed method had a
recognition accuracy higher than 0.42%, 3.24%, and 4.29%, respectively. This method has a
good recognition effect under strong noise interference.

(6) Application of FLS target recognition:

The proposed method can recognize SSS targets and be applied to FLS target recogni-
tion. In order to verify the effectiveness of the proposed approach in more categories of
target recognition, this paper used Forward-Looking Sonar (FLS) data for the experiments.
Among them, the total number of samples was 3192, the number of target categories 10,
the number of training sets 2231, and the number of test sets 961. Figure 11 depicts the data
sample diagram, whereas Table 8 displays the experimental results.

 Carton Chain Hook Pipe Platform Propeller Sachet Tire Valve Wrench

Figure 11. Forward-looking sonar dataset samples’ diagram.

Table 8. Comparison of different DL models for FLS image object recognition.

Methods Optimal OA (%)

DenseNet201 89.07
DenseNet121 88.87
DenseNet169 89.91

ResNet50 89.49
ResNet101 88.14
ResNet152 88.03
VGGNet16 90.63
VGGNet19 85.22
Proposed 100

Table 8 shows that the recognition rates of the DenseNet series of algorithms were
DenseNet201 OA = 89.07, DenseNet121 OA = 88.87, and DenseNet201 OA = 89.91, which were
slightly higher than the ResNet series of algorithms. The recognition rates of the DenseNet
and ResNet algorithms were above 88%. VGGNet16 was the best, with OA = 90.63%, among
the reference algorithms, and VGGNet19 was the worst, with OA = 85.22. The proposed
method was superior to the compared algorithms. This showed that the proposed approach
has a good effect on FLS target recognition.

5. Discussion

This paper solved the problem of the low recognition rates caused by the difference
between the transfer domain samples and the target domain samples in the TL target
recognition methods. A synthetic sample dataset was thus proposed to identify SSS targets
and multi-dataset joint TL-based recognition.

5.1. Method Importance

The data synthesis method proposed in this paper provides a new approach to under-
water target recognition. It is extremely useful as a recognition method when small amounts
of class samples are available and acquiring additional samples is costly or dangerous.

The WST image transformation method was introduced, and the SSS style transfer
was performed on optical data using an encoding–decoding model. This method reduces
the problem of data source differences in target recognition and provides a solution and a
new direction for TL-based underwater target recognition.
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The deep network multi-modal migration strategy is introduced in stages so that the
recognition model can extract deeper feature information as the number of network layers
continues to increase. This approach was adopted because the signal-to-noise ratio of the
dataset used was reduced, so the extracted features needed strong noise robustness.

5.2. Algorithm Limitations

The proposed method achieved good performance in the experiment, but the number
of data sample categories was small, while the effect of target recognition will decrease as
this number increases. At the same time, there are many kinds of targets in underwater
environments, including airplanes and ships, and many smaller objects. Therefore, a deep
network model that can extract stronger discriminative features is required.

In addition, the datasets used in this paper are suitable for supervised training. The
recognition effect of the proposed method will decline when training sets suitable for weak
supervision are used.

Because there is a large amount of unlabeled data in the weakly supervised training
dataset, making the sample size of the original SSS dataset comparably smaller, in the
process of network training, the recognition rate of the training data was high. However,
the recognition accuracy on the test dataset reduced, indicating that overfitting occurred.
At the same time, the proposed method’s network parameters are large, and the above
problems are more likely to occur. Therefore, there is still room for improvement of the
proposed method by adopting semi-supervised training methods. A network trained in a
semi-supervised manner can learn the parameters of the unsupervised network through
the unlabeled data in the limited training dataset and use the labeled data for fine-tuning,
improving the semi-supervised target recognition effect.

6. Conclusions

The performance of TL-based SSS target recognition methods frequently suffers when
there are substantial differences in the characteristics of the source and target domain
training data and from the high noise interference of SSS images, which negatively impacts
the feature extraction capability of the recognition network. This study proposed a dataset
synthesis method based on image style transfer. The method generates data samples
with an SSS image style using optical data and reduces the difference between the data
from the two modalities. Then, multiple datasets were used to train different sub-block
feature layers of the network to improve the robustness of the feature extraction ability.
The experimental results showed that the method can better identify sunken underwater
ships, wrecked planes, and other targets. This study provides theoretical support for the
accurate identification of more underwater targets. With the continuous addition of style
images and the continuous improvement of data samples, the target recognition effect will
be improved further.
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