
Citation: Wang, J.; Li, Z.; Yang, J.; Liu,

S.; Zhang, J.; Li, S. A Multilevel

Spatial and Spectral Feature

Extraction Network for Marine Oil

Spill Monitoring Using Airborne

Hyperspectral Image. Remote Sens.

2023, 15, 1302. https://doi.org/

10.3390/rs15051302

Academic Editor: Merv Fingas

Received: 19 January 2023

Revised: 19 February 2023

Accepted: 23 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Multilevel Spatial and Spectral Feature Extraction Network for
Marine Oil Spill Monitoring Using Airborne Hyperspectral Image
Jian Wang 1, Zhongwei Li 1, Junfang Yang 1,* , Shanwei Liu 1, Jie Zhang 1,2 and Shibao Li 1

1 College of Oceanography and Space Informatics, China University of Petroleum (East China),
Qingdao 266580, China

2 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
* Correspondence: yangjunfang@upc.edu.cn; Tel.: +1-786-422-9460

Abstract: Marine oil spills can cause serious damage to marine ecosystems and biological species,
and the pollution is difficult to repair in the short term. Accurate oil type identification and oil
thickness quantification are of great significance for marine oil spill emergency response and damage
assessment. In recent years, hyperspectral remote sensing technology has become an effective means
to monitor marine oil spills. The spectral and spatial features of oil spill images at different levels are
different. To accurately identify oil spill types and quantify oil film thickness, and perform better
extraction of spectral and spatial features, a multilevel spatial and spectral feature extraction network
is proposed in this study. First, the graph convolutional neural network and graph attentional
neural network models were used to extract spectral and spatial features in non-Euclidean space,
respectively, and then the designed modules based on 2D expansion convolution, depth convolution,
and point convolution were applied to extract feature information in Euclidean space; after that, a
multilevel feature fusion method was developed to fuse the obtained spatial and spectral features in
Euclidean space in a complementary way to obtain multilevel features. Finally, the multilevel features
were fused at the feature level to obtain the oil spill information. The experimental results show that
compared with CGCNN, SSRN, and A2S2KResNet algorithms, the accuracy of oil type identification
and oil film thickness classification of the proposed method in this paper is improved by 12.82%,
0.06%, and 0.08% and 2.23%, 0.69%, and 0.47%, respectively, which proves that the method in this
paper can effectively extract oil spill information and identify different oil spill types and different oil
film thicknesses.

Keywords: hyperspectral remote sensing; oil spill type identification; oil film thickness detection;
multilevel spatial and spectral feature; deep learning

1. Introduction

Marine oil spills not only endanger marine life and the marine environment but also
threaten human health and social and economic development. The types of oil spills on
the sea surface are closely related to the formulation of pollution control programs. Oil
film thickness is an important parameter for estimating oil spills. Accurately identifying
the types of oil spills on the sea surface and quantifying the oil film thickness is of great
importance to the emergency treatment of oil spill accidents and the assessment of losses.
Therefore, the identification and monitoring technology of offshore oil spills has become
important for domestic and foreign scholars.

Hyperspectral remote sensing [1–4] is one of the main means of oil spill monitoring in
the ocean. Hyperspectral images (HSI) consist of hundreds of continuous spectral bands
and are rich in spectral and spatial information. Early hyperspectral image classifica-
tion models often utilized traditional machine-learning methods, such as Support Vector
Machine (SVM) [5], Multiclass Logistic Regression (MLR) [6], and K-Nearest Neighbor
(KNN) [7], and some dimensionality reduction methods based on spectral features, such
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as Principal Component Analysis (PCA) [8], Independent Component Analysis (ICA) [9],
and Linear Discriminant Analysis (LDA) [10]. However, these methods ignore the con-
nection between neighboring pixels and do not make use of the spatial information of the
image, so the classification is not effective. Later on, some joint spectral-spatial classifiers
emerged, which can use both spectral and spatial information for classification, such as
3D spectral/spatial Gabor [11], Support Vector Machine based on Markov Random Field
(SVM-MRF) [12], Multiclass Multiscale Support Tensor Machine (MCMS-STM) [13], and
Multiple Kernel-Based SVM [14]. Although these methods have improved the classification
accuracy to a certain extent, the above methods are usually only shallow models with
simple extracted features, and the classification results obtained are generally poor.

With the continuous development of deep learning, more and more deep learning
models are being used to deal with hyperspectral image classification problems. These
models can be broadly divided into network models based on spectral features and joint
spectral and spatial feature network models. The first approach based on spectral fea-
ture extraction focuses on spectral information, for example, Deep Convolutional Neural
Networks (DCNN) [15], Deep Residual Involution Networks (DRIN) [16], Depth-wise
Separable Convolution Neural Networks with Residual connection (Des-CNN) [17], and
Generative Adversarial Networks (GAN) [18] of the model. Approaches based on the
extraction of spectral information ignore the importance of spatial information, such as
the extraction of edge information. Secondly, many scholars focus on methods that com-
bine spectral and spatial features, for example, CSSVGAN [19]; SATNet [20]; SSRN [21];
SSUN [22]; DBMA [23]; DBDA [24]; DCRN [25]; MSDN-SA [26]; ENL-FCN [27]; SSDF [28];
and other models.

Many domestic and foreign scholars have carried out research work on hyperspectral
oil spill detection [29], oil spill type identification [30,31], and oil film thickness estima-
tion [3,32] using machine learning and in-depth learning methods. Initially, models such as
Support Vector Machines (SVM) [31], K-Nearest Neighbor (KNN), and Least Squares (PLS)
were widely used for hyperspectral oil spill image classification tasks due to their intuitive
oil and water classification results. However, most of them use only hand-crafted features
that do not represent the specific distribution characteristics of oil and water. To address
this problem, a range of deep learning models such as Convolutional Neural Networks
(CNN) [33], Deep Neural Networks (DNN) [34], and Deep Convolutional Neural Networks
(DCNN) [35] have been proposed to optimize oil and water classification results by making
full use of and abstracting limited data to reduce the number of spectra. Although these
methods have made great strides, the learning of oil spill features is not comprehensive
enough and there is still much room for improvement in detection accuracy. To fully learn
the characteristics of the oil spill, many scholars have developed a deep learning model for
oil spill monitoring combined with several methods. For example, Jiang et al. [32] proposed
OG-CNN to invert oil film thickness; Wang et al. [36] proposed SSFIN; Jiang et al. [37]
proposed an ALTME optimizer; and Yang et al. [38] developed a decision fusion algorithm
of deep learning and shallow learning for marine oil spill detection.

In summary, current oil spill monitoring using hyperspectral images mainly extracts
spectral and spatial features based on a single level in Euclidean space. Despite the good
results, the spectral and spatial information of the oil spill image has not been fully exploited.
Some problems do not adequately express the differences between spectral and spatial
information. Therefore, it is an important research point to develop joint multilevel spectral
and spatial feature extraction methods. For this paper, a multilevel spatial and spectral
feature extraction network was developed. The method was applied to the hyperspectral
data of outdoor oil spill simulation experiments in UAV, and the validity of the method
for oil spill type and oil spill film thickness classification was verified. To evaluate the
effectiveness of the proposed algorithm in this study, we compared the effectiveness of
the proposed method for oil spill type identification and oil film thickness classification
with three mainstream deep learning methods, SSRN, CGCNN, and A2S2KResNet. The
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experimental results of the proposed method obtained better classification performance
and had higher identification and classification accuracy.

The main contributions of our research are as follows.

• We developed a dimension reduction composition module based on independent
component analysis and superpixel segmentation. Pixels with the same spatial and
spectral characteristics can be assembled into superpixel blocks to effectively focus
irregular oil spill edge information.

• The spectral features were extracted by graph convolution of the spectral domain;
the graph attention network assigns weights to different graph nodes to extract the
main spatial features, and the features in Euclidean space are extracted using modules
based on convolutional neural network architecture. On this basis, the feature fusion
algorithm was designed to fuse each part of the extracted features separately to obtain
multilevel features, and further fuse the multilevel features at the feature level.

2. Proposed Method

In this paper, a novel multilevel spatial and spectral feature extraction network (GCAT)
is proposed for marine oil spill type identification and oil film thickness classification.
The network framework is divided into three main parts: superpixel graph construction,
spectral and spatial information extraction and supplementation, and multilevel feature
fusion and classification. Figure 1 illustrates the architecture of the proposed GCAT method
for oil spill monitoring. The proposed model structure is based on the Pytorch framework,
and the specific structural parameters were set as shown in Table 1.

Figure 1. The architecture of the proposed model for oil spill monitoring.
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Table 1. Detailed configuration of the proposed network structure.

Layer Input/Output Kernel Dilation Activation

GCN layer-1 (128,128) - - PReLU
GCN layer-2 (128,64) - - PReLU
GAT layer-2 (128,64) - - ELU

2DConv layer-1 (128,128) 3 × 3 2 PReLU
2DConv layer-2 (128,128) 3 × 3 2 PReLU

DeepConv layer-1 (64,64) 5 × 5 - Sigmod
PointConv layer-2 (128,64) 1 × 1 - Sigmod

Full connected layer (64, Class_count) - - -

Hyperspectral oil spill images have rich spectral and spatial characteristics, and
hyperspectral oil spill image data are multidimensional data. In the superpixel graph
construction part, we reduce the dimension by ICA. The redundant bands in the oil spill
image are removed, and the bands with more information are retained. The segmented
superpixel blocks can effectively focus on the edge information of the oil spill image, which
is helpful to distinguish different types of oil spills.

In the spectral branch, the graph convolutional neural network converts the spatial
graph signal to the spectral domain. The spectral features of the non-Euclidean structure
data (graph structure data) after superpixel segmentation are learned in the spectral domain.
Its weights are shared, and its parameters are shared. As the number of layers increases,
information about distant neighbors accumulates. The more layers, the larger the receptive
field, and the more spectral information is involved in the operation, the more fully the
spectral information of the oil spill can be learned.

In the spatial branch, the graph attention neural network can perform convolution on
the spatial structure of the graph structure data. The attention mechanism is constructed by
the features of nodes and neighbor nodes to calculate the edge weight of the central node
and neighbor nodes. The masked self-attentional layers were introduced to improve the
computational efficiency and process the features of all neighbor pairs in parallel. For each
node, the corresponding hidden information is calculated, and the attention mechanism is
introduced when calculating its adjacent nodes, improving the model’s ability to generalize
to unknown graphs. In the process of oil spill spatial feature extraction, the weights are
shared and do not depend on the number of nodes in the input graph.

In the Euclidean space structure data, the BCP module (BN-2DConv-PReLU) is de-
signed to enhance the oil spill features. The BPSDS module (BN-PointConv-Sigmoid-
DepthConv-Sigmoid) is used to extract the oil spill information. Among them, depth
convolution and point convolution consider both channels and regions, which can effec-
tively extract spectral and spatial information.

Traditional oil spill image classification tasks are mostly based on a single method
to extract oil spill information and mainly apply CNN to extract features in Euclidean
structure. A single method cannot focus on both spatial and spectral information about oil
spills. Moreover, the spectral and spatial information differences cannot be fully expressed,
and the oil spill information extraction is incomplete. We propose a variety of methods for
multilevel feature extraction while focusing on two different forms of structural feature
information, and multilevel feature fusion is proposed to combine the extracted features.
The oil spill information is fully mined to obtain more detailed oil spill characteristics.

2.1. Superpixel Graph Construction

This part mainly performs dimensionality reduction and normalization operations
on the data by independent component analysis (ICA) and segmentation of hyperspectral
images into superpixel maps by linear iterative clustering (SLIC).

A hyperspectral image contains hundreds of thousands of pixel points, which increases
the computational complexity of the subsequent graph neural network and classification.
To solve this problem, ICA is first used to perform the dimensionality reduction operation
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on the hyperspectral image. Simple Linear Iterative Clustering (SLIC) [39], one of the
superpixel segmentation algorithms, continuously iterates to cluster the original N pixels
of the image into K superpixel blocks by using a K-mean clustering algorithm, each of
which represents an irregular region with strong spectral spatial similarity, and treats each
superpixel block as a graph node, thus greatly reducing the number of graph nodes. The
features of each node are the average spectral features of the pixels in the superpixels, and
the SLIC algorithm effectively preserves the local structure information, which helps the
subsequent classification to be accurate. The superpixel segmentation algorithm is defined
as follows:

dcolor=
√(

lj − li
)2

+
(
aj − ai

)2
+
(
bj − bi

)2,

dspatial=
√(

xj − xi
)2

+
(
yj − yi

)2,

D′=

√(
dcolor
Ncmax

)2
+

(dspatial

Nmax

)2

·

(1)

Here, l, a, and b are color values, dcolor stands for color distance, and dspatial stands for
spatial distance. Nmax is the maximum intra-class spatial distance, defined as Nmax = sqrt(N/K)
and applied to each cluster. Ncmax is the maximum color distance.

2.2. Spectral and Spatial Feature Extraction

The spectral and spatial information extraction and supplementation section consist
of three main branches, which are used to extract spectral and spatial information and
Euclidean structure information, respectively, where GCN extracts the spectral features in
the non-Euclidean space transformed from the spatial domain to the spectral domain, GAT
extracts the spatial features in the non-Euclidean space of the pre-processed image, and
CNN is used to capture features in Euclidean space as a complement to the above spatial
and spectral features.

2.2.1. Spectral Feature Extraction

A graph is a complex non-linear structure used to describe a one-to-many relationship
in non-Euclidean space. Kipf et al. proposed the concept of GCN in 2017. The construction
of graph models in GCN [40] relies heavily on the creation of undirected graphs, which are
used to describe the set of nodes and edges of a graph structure, as well as the adjacency
matrix, which consists of connected nodes with similarity weights between edges.

In this paper, we define the relationship of spectral features in HSI as an undirected
graph of G = (V, E), where V denotes the set of nodes V = {v1, v2, . . . , vN}, and E is the
set of edges. The adjacency matrix defined as A is used to describe the internal associations
between nodes. The elements Ai,j in A denote the weights of the edges between node
vi and node vj and are defined as follows:

Ai,j = exp

(
−
‖xi − xj‖2

σ2

)
(2)

where σ is the parameter controlling the width of the radial basis function, and the vectors xi
, xj represent the corresponding spectral features of the graph nodes vi and vj determined
by the superpixel segmentation, respectively.

After this, we can solve for the corresponding Laplace matrix L which is shown below.

L = D− A (3)

where D is the degree matrix of the adjacency matrix A.
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A more robust representation of graph structure data can be obtained by normalizing
the Laplace matrix, which has the real symmetric positive semidefinite property

L = IN − D−1/2 AD−1/2 (4)

Firstly, to perform a nodal embedding of G, a spectral filtering on the graph is defined,
which can be expressed as a signal x with a filter in the Fourier domain gθ = diag(θ), the
product of

gθ ∗ x = UθU>x (5)

where U is the normalized Laplacian matrix L = I − D−(1/2)AD −(1/2) = UΛU> of the
eigenvector matrix, where Λ denotes the matrix of L the diagonal matrix of eigenvalues,
and I denotes a unit matrix of suitable size. gθ can be understood as an L as a function of
the eigenvalues of gθ(Λ).

To reduce the number of parameters in (4), Kipf [40] et al. used the Chebyshev
polynomial Tk(x) to approximate the truncated expansion of gθ(Λ), up to order K.

gθ′(Λ) ≈∑K
k=0 θ′kTk(Λ) (6)

where θ′ denotes the vector of Chebyshev coefficients, and Λ = (2/Λmax)Λ− I, where Λmax
is the L the largest eigenvalue of the Chebyshev polynomial which, according to the
literature, can be defined as Tk(x) = 2xTk−1(x)− Tk−2(x), where T0(x) = 1, and T1(x) = x.
We, therefore, define the signal x of the convolution is defined as

gθ′ ∗ x ≈∑K
k=0 θ′kTk(L̃)x (7)

where L̃ = (2/Λmax)L− I is the scaled Laplace matrix. By limiting k = 1, and Λmax ≈ 2 [40],
so (7) reduces to

gθ ∗ x ≈ θ′0x + θ′1(L− I)x = θ′0x− θ′1D−
1
2 AD−

1
2 (8)

for which θ′0 and θ′1 are two variable parameters, and overfitting can be effectively pre-
vented by reducing the number of parameters, so (8) is further reduced to

gθ ∗ x ≈ θ
(

I + D−
1
2 AD−

1
2

)
x (9)

By order θ = θ′0 = −θ′1, since the I + D−
1
2 AD−

1
2 the eigenvalues are within [0,2],

repeated use would result in the gradients in the deep network exploding or disap-
pearing. To solve this problem, Kipf and Welling performed a reformulation of
I + D−(1/2)AD−(1/2) → D̃−{1/2) ÃD̃−(1/2) , where Ã = A + I and Dii = ∑j Aij.

The expression for the final graph convolution is

H(i) = σ
(

A(l−1)W(l)
)

(10)

where H(i) denotes the output of the first l the output of the layer, and σ(·) denotes the
activation function. We denote the extracted spectral features as Hspectral.

2.2.2. Spatial Feature Extraction

Graph Attention Neural Networks (GAT) [41] operates directly in the spatial domain,
with stacked layers that enable nodes to participate in the features of their neighbors, and
can assign different weights to different nodes in the neighborhood without any costly
matrix operations.

In the preprocessing part, we obtain the superpixel graph, considering each superpixel
block in it as a graph node, where the input is a set of node features V = {v1, v2, . . . , vN},
where N is the number of nodes. With all nodes sharing the self-attention mechanism, the



Remote Sens. 2023, 15, 1302 7 of 18

attention coefficient between nodes i and j is calculated, which indicates the importance of
node i’s features to node j. The resulting attention coefficient is

eij = a
(
Wvi, Wvj

)
. (11)

This coefficient can represent the importance of node j relative to node i. To capture
the boundary information more accurately, we use a first-order attention mechanism, i.e.,
only node j is connected to node i.

Next, we use the softmax function to normalize the attention coefficient to the weight
information as

αij = softmax
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik),

(12)

where Ni denotes the neighborhood of node i. Finally, we encapsulate this process into a
single-layer feedforward neural network using the LeakyReLU activation function. We
then have

αij =
exp

(
leaky ReLU

(
aT[Wvi‖Wvj

]))
∑k∈Ni

exp(leaky ReLU(aT [Wvi‖Wvk]))
(13)

where ‖ is the tandem operation. aT is the transpose of a, denoting the learnable parameter.
Thus, the node embedding can be expressed as

v′i = σ
(
∑j∈Ni

αijWvj

)
(14)

To make the node embedding a stable representation of node i, we apply the multi-
headed attention mechanism at the first attention layer, i.e., execute Equation (14) K times
independently, and then concatenate the obtained node embeddings to obtain the following
output node feature representation as

v′i = ‖K
k=1σ

(
∑j∈Ni

αk
ijW

kvj

)
(15)

Here, we denote the final acquired features as Hspatial.

2.2.3. Euclidean Structure Feature Extraction

This module is mainly implemented by 2D dilation convolution and depth-separable
convolution, consisting of depth convolution and point convolution. The 2D expanded
convolution has a larger perceptual field and better feature extraction capability than
conventional convolution under the same computational conditions. The depth-separable
convolution can effectively reduce the number of parameters required compared to ordinary
convolution. Unlike ordinary convolution, which considers both channels and regions,
depth-separable convolution achieves the separation of channels and regions.

The features extracted by the 2D expanded convolution and the depth-separable
convolution can be expressed as

Fl+1(Xn) = f
(

W l+1 · Xn + bl+1
)

(16)

where W l+1 is the weight matrix, bl+1 is the bias, and Xn is the feature matrix of each
layer, and f (·) denotes the activation function. The extracted features are represented
as HEuclidean.

2.3. Multilevel Feature Fusion Module

In the multilevel feature fusion and classification part, the acquired spectral, spatial,
and complementary features are fused, and the fused features are fused again to obtain the
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final features, which are feedback for the full-connected layer, and the final classification
results are output through softmax.

We fuse the extracted spatial features, spectral features, and Euclidean structure
features to obtain multilevel features. The calculation formula is as follows.

H1 = Hspectral ·Hspatial (17)

H2 = Hspectral ·HEuclidean (18)

H3 = HEuclidean·Hspatial (19)

where · operation is feature stitching, and finally, the obtained multilevel features are
summed to obtain the final Hsum = H1 + H2 + H3. The classification result is output by the
softmax classifier, using the cross-entropy loss function, calculated as follows.

L(y, p) = − 1
N ∑N

i=1 ∑C
C=1 yic log(pic) (20)

where y denotes the true value, p is the predicted value for each pixel, and yic denotes the
label y of the c element of the label. pic denotes that the pixel i belongs to the first c class,
calculated by the softmax function, the probability that C and N denote the total number of
classes and the total number of samples in the training dataset.

3. Experiments and Results

In this paper, two outdoor simulated oil spill scenarios were designed, and an airborne
hyperspectral imaging system was applied to obtain typical oil spill type data and oil film
thickness data. Based on this, oil type identification and oil film thickness classification
experiments were carried out using the proposed method mentioned above and compared
with advanced methods such as CGCNN, SSRN, and A2S2KResNet. To evaluate the
performance of the proposed model, three evaluation metrics, overall accuracy (OA),
average accuracy (AA), and Kappa coefficient, were utilized.

3.1. Data

(1) Oil type data

The oil type detection experiment designed in this paper was carried out in an out-
door seawater pool (40 m × 40 m × 2 m), where the different oil types were separated
using PVC panels of 1 m × 1 m. The oil type data were acquired by Cubert-S185 un-
manned hyperspectral sensor at an altitude of 15 m (spatial resolution of 6 mm) at noon on
23 September 2020. The image has 125 spectral bands, with a spectral range of 450–950 nm.
The preprocessed image size is 500 × 500, with 250,000 labeled samples, including 10 types
of crude oil, fuel oil, diesel oil, palm oil, and gasoline. Crude oil was obtained in Shengli
Oilfield, China. Fuel oil is the engine fuel of large ships. Crude oil and fuel oil are heavy
oils. Diesel is the fuel of choice for high-speed diesel engines on small ships. The gasoline
was #95 gasoline, which is similar to the condensate oil that leaked in the East China Sea in
2018. Palm oil is the largest vegetable oil produced in the world in terms of production,
consumption, and trade. Diesel, gasoline, and palm oil are all light oils. The hyperspectral
false color image and ground truth image of different oil types are shown in Figure 2.
The ground truth image of oil type data was produced based on a combination of field
photographs and human–computer interactive interpretation.
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Figure 2. Oil type data: (a) False-color image (R: 10, G: 23, B: 42); (b) ground-truth image.

(2) Oil film thickness data

The oil film thickness detection experiment designed in this paper was carried out
in an outdoor black square tank (76 cm × 56 cm × 26 cm) loaded with seawater, with
different thicknesses of oil film separated using a PE ring with an inner diameter of 7 cm.
The oil film thickness data were acquired by Cubert-S185 airborne hyperspectral sensor at
an altitude of 10 m (spatial resolution of 4 mm) at 14:00 on 6 September 2022. The image
has 125 spectral bands in the spectral range of 450–950 nm. The preprocessed image size
is 96 × 150, with 4778 labeled samples, including seawater and 17 oil films of different
thicknesses. The hyperspectral false color image and ground truth image of different
thickness oil films are shown in Figure 3. The ground truth image of the oil film thickness
data was produced based on a combination of field photographs and human–computer
interactive interpretation.

Figure 3. Oil film thickness data: (a) False-color image (R: 11, G: 27, B: 45); (b) ground-truth image.
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3.2. Experimental Setting

In the outdoor simulated oil spill experiment, we used an anemometer to measure the
wind speed of the experimental environment. The experimental data in this paper were
collected under the conditions of cloudless and relatively stable wind speed, ensuring that
the oil film in the enclosure was relatively evenly distributed to avoid interference caused
by the unstable wind speed.

For this paper, we selected several well-known methods of deep learning for compari-
son, including SSRN [21], CGCNN [42], and A2S2KResNet [43]. To ensure the fairness of
the comparison experiments, we used the same hyperparameter settings for these methods,
and all experiments were executed on an NVIDIA GeForce RTX 3090 GPU with 24 GB of
memory. In this paper, we randomly selected a few samples from each dataset for training
and validation. Specifically, for the oil type data, we selected 5% of the samples for training
and 5% for validation. For the oil film thickness data, we selected 5% of the samples for
training and 5% for validation. Tables 2 and 3 show the number of training, validation, and
testing samples for the two types of data.

Table 2. Sample numbers of training, validation, and testing in the oil type data.

Number Class Train Validation Test Total

1 1.5 mm Crude Oil 562 562 10,117 11,241
2 2.5 mm Crude Oil 572 572 10,294 11,438
3 3.5 mm Crude Oil 551 551 9911 11,013
4 Gasoline 575 575 10,352 11,502
5 Seawater 6796 6796 122,328 135,920
6 Palm Oil 568 568 10,231 11,367
7 1 mm Fuel Oil 582 582 10,473 11,637
8 2 mm Fuel Oil 575 575 10,345 11,495
9 Diesel Oil 564 564 10,152 11,280
10 Containment Boom 1155 1155 20,797 23,107

Total 12,500 12,500 225,000 250,000

Table 3. Sample numbers of training, validation, and testing numbers in the oil film thickness data.

Number Class Train Validation Test Total

1 Seawater 14 14 259 287
2 0.04 mm Crude Oil 13 13 237 263
3 0.008 mm Crude Oil 13 13 235 261
4 0.07 mm Crude Oil 14 14 250 278
5 0.1 mm Crude Oil 14 14 249 277
6 0.3 mm Crude Oil 12 12 219 243
7 0.4 mm Crude Oil 14 14 255 283
8 0.5 mm Crude Oil 14 14 253 281
9 0.2 mm Crude Oil 13 13 242 268
10 0.6 mm Crude Oil 13 13 242 268
11 0.8 mm Crude Oil 13 13 224 250
12 0.7 mm Crude Oil 14 14 250 278
13 0.9 mm Crude Oil 14 14 251 279
14 1.01 mm Crude Oil 13 13 236 262
15 1.5 mm Crude Oil 14 14 246 274
16 2 mm Crude Oil 13 13 241 267
17 2.5 mm Crude Oil 12 12 219 243
18 3 mm Crude Oil 11 11 194 216

Total 238 238 4302 4778

3.3. Experimental Results

The oil spill simulation experiment in this paper was carried out under relatively
controlled outdoor conditions. The oil was spread over a long time to ensure that the oil
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film thickness was relatively uniform. The collected UAV hyperspectral data were obtained
under relatively stable illumination and wind speeds. These considerations ensured that
data acquisition was not affected by other factors.

The proposed method and the other three algorithms were applied to the data obtained
from the outdoor simulated oil spill scenario. The data were hyperspectral data of oil spill
type and hyperspectral data of oil film with different thicknesses. The oil type recognition
results (Figure 4) and the oil film thickness classification results (Figure 5) were obtained.
From the oil type identification results (Figure 4), CGCNN showed a poor ability to distin-
guish the same crude oil with different thicknesses, and it was easy to classify them into the
same class, such as classifying 2.5 mm crude oil into 1.5 mm crude oil; and the classification
effect for diesel oil was also poor; SSRN and A2S2KResNet showed misclassification in
each class boundary, such as classifying some oil boundaries as seawater. From the oil
film thickness classification results (Figure 5), CGCNN also had difficulty in distinguishing
some oil films thicknesses, such as dividing 0.4 mm oil film into 0.07 mm, 0.5 mm, and
0.6 mm thicknesses; SSRN and A2S2KResNet had the phenomenon of dividing thinner
oil films into thicker oil films, such as dividing 0.07 mm oil film into 0.4 mm oil film, and
0.1 mm oil film into 0.8 mm oil film. GCAT was obvious in each class boundary, and the
misclassification phenomenon was reduced, thanks to the superpixel composition based
on ICA and SLIC and the multilevel fusion features extracted by GCAT, which can better
focus on the spectral information and retain the class boundary information.

Figure 4. Identification results of the oil type data. (a) CGCNN, (b) SSRN, (c) A2S2KResNet,
(d) GCAT.
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Figure 5. Detection results of the oil film thickness data. (a) CGCNN, (b) SSRN, (c) A2S2KResNet,
(d) GCAT.

Evidently, the proposed GCAT method achieved the best performance in oil type
identification and oil film thickness classification compared with the other three methods,
which proves the effectiveness of our method in oil spill type identification and oil film
thickness classification.

To evaluate the performance of the proposed model, the overall oil type identification
accuracy and film thickness classification accuracy were evaluated using overall accuracy
(OA), average accuracy (AA), and Kappa coefficient. Additionally, the recall was used to
evaluate the classification accuracy of a single oil type or a single film thickness. The oil type
recognition accuracy and film thickness classification accuracy are shown in Tables 4 and 5.

Table 4. Classification results of different methods for the oil type data.

Number Class CGCNN SSRN A2S2KResNet GCAT

1 1.5 mm Crude Oil 90.77 99.62 99.95 99.13
2 2.5 mm Crude Oil 82.98 99.94 99.83 99.53
3 3.5 mm Crude Oil 94.82 99.41 99.08 99.05
4 Gasoline 97.85 99.14 99.98 99.31
5 Seawater 81.85 99.22 99.26 99.31
6 Palm Oil 92.62 98.92 98.96 97.97
7 1 mm Fuel Oil 92.12 99.86 99.87 99.16
8 2 mm Fuel Oil 96.87 99.66 99.21 98.25
9 Diesel Oil 84.44 99.06 98.70 98.88
10 Containment Boom 87.32 93.18 92.81 94.88

OA (%) 85.98 98.74 98.72 98.80
AA (%) 90.16 98.80 98.76 98.65

Kappa Coefficient 0.8052 0.9814 0.9811 0.9824
Note: The bolded values represent the optimal values.
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Table 5. Classification results of different methods for the oil film thickness data.

Number Class CGCNN SSRN A2S2KResNet GCAT

1 Seawater 95.33 100.00 100.00 99.69
2 0.04 mm Crude Oil 100.00 100.00 100.00 100.00
3 0.008 mm Crude Oil 96.89 100.00 100.00 99.66
4 0.07 mm Crude Oil 100.00 98.66 100.00 100.00
5 0.1 mm Crude Oil 99.62 100.00 99.46 99.35
6 0.3 mm Crude Oil 98.33 100.00 100.00 100.00
7 0.4 mm Crude Oil 94.29 94.64 95.72 98.51
8 0.5 mm Crude Oil 100.00 100.00 97.71 99.92
9 0.2 mm Crude Oil 97.69 99.79 100.00 100.00
10 0.6 mm Crude Oil 94.46 100.00 100.00 99.34
11 0.8 mm Crude Oil 100.00 100.00 100.00 99.91
12 0.7 mm Crude Oil 96.95 99.04 100.00 99.61
13 0.9 mm Crude Oil 93.41 98.81 99.74 99.45
14 1.01 mm Crude Oil 88.60 96.08 98.37 99.65
15 1.5 mm Crude Oil 100.00 98.63 95.71 99.76
16 2 mm Crude Oil 100.00 100.00 100.00 98.67
17 2.5 mm Crude Oil 97.61 98.64 100.00 99.44
18 3 mm Crude Oil 99.90 96.45 99.16 99.58

OA (%) 97.35 98.89 99.11 99.58
AA (%) 97.39 98.93 99.22 99.59

Kappa Coefficient 0.9720 0.9882 0.9906 0.9956
Note: The bolded values represent the optimal values.

Firstly, from the classification results of oil type data, the algorithm that only uses CNN
to extract features (CGCNN) achieved general classification accuracy, especially for the
classification results with seawater, probably because the spatial and spectral features were
not extracted separately. Additionally, using only one way to extract features at the same
time may cause part of the spatial or spectral feature information to be ignored, making
the final results poor; SSRN and A2S2KResNet can recognize most of the categories, but
their classification results are not good for containment booms with relatively few pixels;
our proposed GCAT still maintains a high recall rate in the category with few pixel points.
Secondly, from the classification results of oil film thickness data, CGCNN showed poor
classification results in some categories, such as for 1.01 mm crude oil. The algorithms with
joint spectral spatial feature extraction (SSRN, A2S2KResNet) showed better performance,
which indicates that it is desirable to extract spectral and spatial information separately to
achieve classification. Finally, from the classification results, it can be seen that the GCAT
model combining spatial and spectral features extracted in non-Euclidean space with those
extracted in Euclidean space was effective, achieving the best OA, Kappa, and competitive
AA in both datasets.

Compared with a single method, the multilevel spatial spectral feature extraction
network proposed by us can obtain more complete oil spill information through multilevel
feature fusion. The results of each type of oil and each type of oil film thickness were more
continuous, and there were no more fragmented patches (results of misclassification). This
is because we fused the proposed features twice. First, we carried out a multilevel feature
fusion, fused each part of the acquired feature information in pairs to obtain more detailed
features, and then spliced the fused features to obtain the final output oil spill feature. This
output feature focuses on the important spectral and spatial information in the oil spill
image. In addition, the spilled oil and oil film boundaries in our method results are obvious,
which is due to the independent component analysis (ICA) dimensionality reduction and
superpixel segmentation method. The oil spill image was divided into superpixel blocks
with high spectral spatial similarity through superpixel segmentation. The boundary of
each superpixel block is obvious, and the edge information was fully learned.

Among these compared methods, GCAT improved the overall recognition accuracy in
oil type data by at least 12.82%, 0.06%, and 0.08%, and the overall classification accuracy
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for oil film thickness data by at least 2.23%, 0.69%, and 0.47%. The classification results
show that by simultaneously using the spatial and spectral features in non-Euclidean space,
and the features in Euclidean space, the information in the oil spill images can be fully
explored to improve the classification accuracy. Additionally, the accuracy of each category
is improved without the phenomenon that one category is very high or very low in the
comparison methods, and the algorithm is highly stable.

4. Discussion
4.1. Influence of the Proportion of Training Samples on Classification Results

In this section, several experiments are designed to explore the robustness of the
proposed method under different training ratios. Two datasets were randomly selected
with 1%, 3%, and 5% training samples. Figures 6 and 7 show the results of the four methods
on the two datasets with different training ratios.

Figure 6. Classification results on the oil type data with different proportions of training samples.

Figure 7. Classification results on the oil film thickness data with different proportions of
training samples.
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Firstly, it is clear that different proportions of training samples resulted in different
classification performances for the four methods: as the proportion of training samples
increased, the classification accuracy increased, and the proposed GCAT method achieved
the best performance compared to the other methods with different samples.

Secondly, in the oil film dataset, GCAT still showed better oil film classification perfor-
mance than CGCNN, SSRN, and A2S2KResNet for a small sample size of 1%.

Finally, it can be seen from Figures 6 and 7 that as the training ratio increases, the
accuracy of the combined spatial and spectral methods (SSRN and A2S2KResNet) became
closer and closer, especially for oil data. Compared with these, our proposed GCAT is still
highly competitive.

4.2. Comparison with the Single-Level Feature Fusion Module

Taking the oil type data as an example, to further verify the effectiveness of the
proposed multilevel feature fusion module, the recognition accuracy of the single-level
feature fusion module was evaluated separately, and the results are shown in Table 6 (the
best results are bolded).

Table 6. The OA (%), AA (%), and Kappa coefficient for ablation experiments.

Modules OA (%) AA (%) Kappa

Y1 91.26 91.87 0.8712
Y2 90.65 91.59 0.86
Y3 98 97.89 0.9705

Y1·Y2 91.29 91.96 0.8717
Y1·Y3 97.23 96.95 0.9593
Y2·Y3 97.98 98.05 0.9703

Y1·Y2+ Y1·Y3+ Y2·Y3 98.80 98.65 0.9824

Where Y1 is the spectral feature extraction module, Y2 is the spatial feature extraction
module, and Y3 is the Euclidean spatial feature extraction module.

The results show that spectral features and spatial features were expressed differently,
and the effect of extracting only a certain part of features alone was not optimal. GCAT
improved OA by 7.54%, 8.15%, and 0.8%, respectively, in comparison with a single-feature
extraction module, and 7.51%, 1.57%, and 0.82% in comparison with a two-by-two fusion-
feature extraction module. It is further demonstrated that multilevel feature fusion helps
oil spill information extraction, which can significantly improve classification accuracy and
has better robustness.

4.3. Comparison with Other Works

This paper also focuses on oil type identification and oil film thickness classification.
The difference from other studies is mainly reflected in two aspects: (1) In terms of field
experiment setup, for oil type identification experiments, the experimental scene was
carried out in a real seawater pool. The selection of oil products was also based on past oil
spill events. For the oil film thickness experiment, the design of the oil film thickness was a
more detailed division of the oil film thickness mentioned in the Bonn agreement. The data
were obtained under relatively stable conditions of light and wind speed. (2) In terms of
the model, we used a variety of methods to extract multilevel features from the oil spill
image. The extracted spatial and spectral features were fused at multiple levels. Compared
with the features extracted by a single method, the fused features can better express the
oil spill information. From the results of model experiments, our method achieved good
accuracy in oil spill identification and oil film thickness classification.
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5. Conclusions

Marine oil spill accidents occur frequently and cause great harm to marine ecology.
The effective identification of oil spill type and the accurate quantification of oil film
thickness are the prerequisites for the emergency response and damage assessment of oil
spill accidents. In this paper, by designing an outfield oil spill simulation experiment,
we acquired hyperspectral images of five typical oil spill types and 17 different oil film
thicknesses based on an unmanned airborne hyperspectral imaging system and proposed
a marine oil spill monitoring model with multilevel feature extraction suitable for oil spill
scenarios. In this paper, we mainly draw the following two conclusions: (1) To address
the problem of incomplete extraction of oil spill information by single-level features, we
designed the graph convolutional network module to focus on spectral information, the
graph attention network module to focus on the main spatial information, and the module
based on convolutional neural network architecture to focus on the oil spill information in
the Euclidean space. A multilevel feature fusion method was developed to obtain multilevel
features by fusing the obtained spatial and spectral features and the features of Euclidean
space. Compared with the single-level feature extraction method, the proposed method
shows better oil type identification accuracy and oil film thickness classification accuracy.
(2) For the spectral and spatial feature differences in different oil spill images, a method of
fusing multilevel features at the feature level is proposed, which can more fully express the
spectral and spatial differences in oil spill type and oil film thickness images. By comparing
with the mainstream methods such as CGCNN, SSRN, and A2S2KResNet, the overall
classification accuracy of the proposed method was improved by 12.82%, 0.06%, and 0.08%,
and 2.23%, 0.69%, and 0.47%, respectively, and the classification results also achieve the
best visual effect, which proves the effectiveness and robustness of the proposed method.

Our model was designed to solve the problem of incomplete extraction of oil spill
information at a single level. The hyperspectral image of the oil spill was classified and
identified by combining the spectral and spatial characteristics of non-Euclidean space with
the information on the oil spill characteristics of Euclidean space. Although the final output
of the model was better than other classical neural networks, there were some problems
encountered in the actual classification. For example, the accuracy of the GCAT model
proposed in this paper was less prominent when there are few types of ground objects in
the oil spill hyperspectral image. The problem may be that the composition of the data
preprocessing section was not detailed enough to classify fewer and scattered categories
into other categories. Therefore, constructing a more effective feature map is the next step
to improve the accuracy of oil spill identification and oil film thickness classification.

In this study, multilevel feature extraction and fusion were carried out for the hyper-
spectral images of oil spills acquired by unmanned airborne hyperspectral sensors. We plan
to carry out future experiments on oil spill detection based on unmanned airborne multi-
sensors to acquire multisource remote sensing data such as hyperspectral, SAR, and radar.
The acquired multisource remote sensing data will be used to further validate the multilevel
feature extraction and fusion method and improve the marine oil spill detection capability.
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