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Abstract: Revealing the impact of future climate change on the characteristics and evolutionary pat-
terns of meteorological and hydrological droughts and exploring the joint distribution characteristics
of their drought characteristics are essential for drought early warning in the basin. In this study, we
considered the Jinghe River Basin in the Loess Plateau as the research object. The standardized precip-
itation index (SPI) and standardized runoff index (SRI) series were used to represent meteorological
drought and hydrological drought with monthly runoff generated by the SWAT model. In addition,
the evolution laws of the JRB in the future based on Copula functions are discussed. The results
showed that: (1) the meteorological drought and hydrological drought of the JRB displayed complex
periodic change trends of drought and flood succession, and the evolution laws of meteorological
drought and hydrological drought under different spatiotemporal scales and different scenario differ
significantly. (2) In terms of the spatial range, the JRB meteorological and hydrological drought
duration and severity gradually increased along with the increase in the time scale. (3) Based on
the joint distribution model of the Copula function, the future meteorological drought situation in
the JRB will be alleviated when compared with the historical period on the seasonal scale, but the
hydrological drought situation is more serious. The findings can help policy-makers explore the
correlation between meteorological drought and hydrological drought in the background of future
climate change, as well as the early warning of hydrological drought.

Keywords: climate change; meteorological drought; hydrological drought; spatial-temporal evolution;
the JRB

1. Introduction

Global warming and the increased frequency of extreme climate events have led to
frequent water shortages in many areas in recent years caused by large-scale drought
events [1–4]. The spatial and temporal distribution of precipitation in China is uneven [5].
The Loess Plateau is an important area for western development in China, especially in
northwestern China. Affected by severe climate change, extreme drought events have
occurred frequently in recent years [6,7]. There are four main types of drought events;
generally speaking, the study of meteorological drought and hydrological drought is worth-
while [8,9]. The primary cause of meteorological drought is a lack of precipitation. When
meteorological drought lasts for a certain time and reaches a certain severity where the
precipitation is insufficient to allow the soil water content to reach saturation and produce
surface runoff, this is defined as hydrological drought [10–12]. The standardized precip-
itation index (SPI) is recommended by the World Meteorological Organization (WMO).
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Liu et al. [13] applied the standardized precipitation evapotranspiration index (SPEI) to the
Tibetan Plateau (TP) region, which is sensitive to climate change.

Different types of drought characteristics can be obtained using “Run theory,” which
is widely used by researchers at home and abroad [14,15]. There are complex correlations
between different drought characteristics; however, correlation coefficients are limited by a
particular distribution function and thus lack universality. Meanwhile, the Copula function
is suitable for any distribution function, which can construct the joint distribution function
between different drought characteristics through the marginal distribution functions of
different drought characteristics as well as the joint frequency distributions and the joint
recurrence period [16–18]. Maryam Dehghannik et al. used the Copula function to estab-
lish a linear relationship between the meteorological drought and hydrological drought
characteristics and thereby predict the characteristics of drought [19]. The propagation
of meteorological drought and hydrological drought is influenced by many factors. The
existing research results show that the most significant influencing factors are precipitation
amount, land use, vegetation coverage, human activity changes, and other factors [20–22].
Since the 1990s, in the Loess Plateau, measures such as the return of farmland to forest,
urbanization construction, and water and soil conservation project implementation have
intensified, and this has affected the dynamics of surface runoff in the basin, thereby leading
to the increase in hydrological drought events in the basin.

Global circulation models (GCMs) can predict future climate characteristics at different
emission levels, and these models also have a universal applicability [23]. However, due to
the low resolution of the climate model data, error and uncertainty are present. Generally,
the statistical downscaling simulation model (SDSM) is used to decrease the error and can
improve the model’s applicability and simulation accuracy [24]. Chen et al. evaluated the
potential impacts of climate change integrated with land use alteration on the evolution of
future hydrological drought in the Luanhe River basin of China [25].

The SWAT model is a semi-distributed hydrological model developed by the American
Center for Agricultural Research. The model is widely used to simulate hydrological
processes under the influence of climate change and human activities due to its relatively
complete consideration of physical mechanisms [26,27].

The main purpose of this study was to evaluate the spatial and temporal evolution
laws of the meteorological and hydrological drought characteristics in the JRB under
climate change in the future. The research contents of this study include (i) to obtain
the future spatial and temporal evolution of precipitation and runoff; (ii) to identify the
meteorological and hydrological drought spatiotemporal evolution characteristics of the
JRB under different future emission scenarios; (iii) to reveal the joint distribution of the
meteorological and hydrological drought characteristics under different periods; (iv) and
to explore the probabilities of different types of drought propagation events in the future
for the JRB.

2. Materials and Methods
2.1. Study Area

The Jinghe River Basin (north latitude 34◦46′~37◦19′, east longitude 106◦14′~108◦42′)
is located in the middle of China’s Loess Plateau (Figure 1), with a total area of 45,412 km2.
The river flows from northwest to southeast through Ningxia, Gansu, and Shanxi province.
The Jinghe River Basin (JRB) has a typical temperate continental climate. The average
annual temperature in the JRB ranges from 8 to 10 ◦C and the average annual precipitation
ranges from 350 to 650 mm. Frequent droughts and the over-exploitation of water resources
have caused severe water shortages in the JRB [28]. A statistical analysis of the annual
average climate factors of the JRB is shown in Table 1.
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Table 1. A statistical analysis of the annual average precipitation and temperature.

Climate Factors Mean Median Std Cv

Annual precipitation 493.12 476.71 81.98 0.17
Annual temperature 9.63 9.62 0.62 0.06

2.2. Data Source

We obtained the daily rainfall, daily maximum temperature, daily minimum tempera-
ture, daily average wind speed, and sunshine hours from 14 weather stations in the Jinghe
River Basin from 1990 to 2017. The input data used to drive the SWAT model included a
90 m resolution of digital elevation DEM data, a resolution of 1 km of land use data, and
1 km resolution of soil type data.

The monthly runoff observation data of the Zhangjiashan Hydrological Station from
1990 to 2017 were obtained from the National Earth System Science Data Center. The
observed monthly runoff data from 1991 to 2005 was used to calibrate the SWAT model
parameters, and data from 2006 to 2017 were used to verify the SWAT model parameters.
This study used the GFDL-CM3 global climate model data in CMIP5 to analyze climate
change in the future period (2021–2060) and considered two representative emission sce-
narios named RCP4.5 and RCP8.5. The SWAT model input data and hydrometeorological
data are summarized in Table 2. The GFDL-CM3 climate model data were simulated by
the Geophysical hydrodynamics Laboratory of the National Oceanic and Atmospheric
Administration, and the climate data fit well. Climate predictions were corrected for bias
using the quantile mapping method (QM) [29]. The IDW interpolation method was used to
interpolate the meteorological drought characteristic value of each meteorological station
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of the JRB and the hydrological drought characteristic value of each sub basin to the grid
point of 0.2× 0.2 degree.

Table 2. SWAT model input data and hydrometeorological data.

Data Type Spatial/Temporal Resolution Source

DEM 90 m The geospatial data cloud; https://www.gscloud.cn/
(accessed on 12 December 2020).

Soil type 1 km
World Soil Database (HWSD);

https://www.fao.org/soils-portal/en/
(accessed on 15 February 2021).

Land use 1 km Resource and Environmental Sciences and Data Centre;
https://www.resdc.cn/ (accessed on 20 February 2021).

Meteorological station 1990–2017 China Meteorological Data Network; http://data.cma.cn/
(accessed on 15 June 2022).

CMIP5 2021–2060
World Climate Research Programme;

https://esgf-node.llnl.gov/projects/cmip5/
(accessed on 20 May 2022).

Observed runoff 1990–2017 National Earth System Science Data Center;
http://loess.geodata.cn/ (accessed on 20 October 2022).

2.3. Methods
2.3.1. Mann–Kendall Trend Analysis

The Mann–Kendall (MK) method can effectively distinguish whether a process dis-
plays natural fluctuations or has a certain change trend [30]. Because it is not disturbed by
a few outliers, it is widely used in the time series trend analysis of hydrometeorological
data. In this study, we use the MK trend detection method to characterize the evolution
of the JRB standardized precipitation index (SPI) and the standardized runoff index (SRI)
under different emission scenarios in historical and future periods.

The MK test statistic Z is generally used to identify the degree to which a trend
is consistently decreasing or increasing [31,32]. Positive values of the Z statistic indicate
upward trends over the whole time series, whereas negative values of the Z statistic indicate
downward trends over the whole time series. In this study, α = 0.01, α = 0.05, and α = 0.1
significance levels were considered, and the corresponding values of Z1−α/2 were 2.58,
1.96, and 1.64, respectively.

2.3.2. SDSM Method

The SDSM is a mixed method comprising multiple linear regression and a random
weather generator [33]. Multivariate linear regression (MLR) was used to establish the
statistical relationship between the measured data of 14 meteorological stations from
1990 to 2018 and the predicted value of NECP (large-scale climate data) to generate the
regression parameters and verify the observed data. Then, the data for two typical emission
scenarios (RCP4.5 and RCP8.5) of the GFDL-CM3 global climate model were input into the
constructed statistical model to predict the daily scale time series of the climate elements
of the JRB meteorological stations in the future (2021–2060). The quantitative statistical
function can be described as follows:

Y = F(x1, x2, · · · , xn) (1)

where Y is the local predictor and xi is the ith large-scale atmospheric predictor. The
precipitation determined by the SDSM through large-scale atmospheric variables is as
follows:

yt = F−1(φ(Zt)) (2)

where φ is a constant cumulative distribution function and F is an empirical distribution
function of yt.

https://www.gscloud.cn/
https://www.fao.org/soils-portal/en/
https://www.resdc.cn/
http://data.cma.cn/
https://esgf-node.llnl.gov/projects/cmip5/
http://loess.geodata.cn/


Remote Sens. 2023, 15, 1297 5 of 21

2.3.3. The SWAT Model

An important sub-model of the SWAT model is the hydrologic process module. We
used this sub-model to simulate the spatiotemporal evolution of the JRB runoff (RCP4.5,
RCP8.5) in the period of 1990–2017 and a future period (2021–2060).

The constructed SWAT model divided the basin into 43 sub-basins with 1226 hydro-
logical response units. The SUFI-2 algorithm was used in this study to rate determine the
model parameters, and the rate-determined parameter results are shown in Table 1. The
monthly runoff data of the Zhangjiashan Hydrological Station of the JRB Exit Hydrological
Station were used for verification.

In order to reflect the main research content, we have drawn a flowchart (Figure 2),
which mainly illustrates the input datasets, methods, and output results of this study.
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2.3.4. Drought Index

The standardized precipitation index (SPI) and the standardized runoff index (SRI) are
used to describe the occurrence of meteorological and hydrological drought in the JRB. The
SPI was proposed by McKee et al. It has been applied to meteorological and hydrological
drought assessments globally [34]. The calculation of the SPI includes 3 steps: (1) the
accumulation of precipitation series according to a specific time scale (1, 3, and 12 months
were used to represent the monthly, seasonal, and annual condition in this study); (2) the
selection of optimal probability distribution to fit cumulative precipitation series; (3) and
the transformation of the optimal probability distribution to a standard normal distribution.
The calculation of the SRI is similar to the SPI. The Gamma distribution is confirmed to be
the optimal choice for the SPI and the SRI calculation in most regions of the world [35], so
the Gamma distribution is applied to fit precipitation and runoff series in this study. The
wetness/dryness levels of the SPI/SRI are ≥0.5, −0.5 to 0.5, −0.5 to −1.0, −1.5 to −1.0,
−1.5 to −2.0, and ≤−2.0, which correspond to wet, normal, mild dry, moderate dry, severe
dry, and extreme dry, respectively.

2.3.5. Run Theory

In this study, the run theory is applied to identify drought and derive drought charac-
teristics based on the SPI/SRI with multiple time scales. The drought severity, duration,
and intensity [36,37] are the most important features to characterize a drought event, with
any two being adequate to depict a specific drought event [38]. The drought duration and
severity are selected to characterize drought events.
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According to the dryness levels of the SPI/SRI, −0.5 (R2) and 0.5 (R1) are chosen as
the thresholds to initially identify dry and wet periods, respectively. A prolonged drought
event is often separated to a few mutually dependent droughts by short non-dry spells;
hence, a pooling procedure is necessary to ensure the accuracy of the drought assessment.
The steps of drought characterization are as follows (Figure 3): (1) set threshold R2 = −0.5
to capture drought events; (2) for 2 adjacent drought events, if the interval time between
these 2 events is less than 1 month and the SPI/SRI in the inter-event process is less than 0.5
(R1), the 2 adjacent drought events can be pooled to a new drought event; (3) and drought
duration is defined as the period from the start to the end of a drought event and drought
severity is defined as the cumulative value of difference between 0 and the drought index
during a drought event [39].
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2.3.6. The Copula Function

Drought events have many characteristic properties such as duration, severity, and
peak severity. However, it is difficult to comprehensively describe the characteristic proper-
ties of drought events only using single features. The Copula function can construct the
joint distribution function for different drought characteristics. For the two-dimensional
marginal distribution functions of FX(x) and FY(y), there is a two-dimensional Copula
function C:

F(x, y) = C(FX(x), FY(y)) (3)

In this study, we considered the duration and severity of meteorological and hy-
drological droughts; therefore, the drought univariate feature recurrence period can be
expressed as:

TMD =
E(L)

1− FMD(d)
(4)

TMS =
E(L)

1− FMS(s)
(5)

THD =
E(L)

1− FHD(d)
(6)

THS =
E(L)

1− FHS(s)
(7)

where E(L) represents the average interval between drought variables; TMD/TMS repre-
sents the recurrence period when the duration/severity of meteorological drought is greater
than d/s, and FMD(d)/ FMS(s) represents the recurrence period when the duration/severity
of hydrological drought is greater than d/s. FMD(d)/ FMS(s) is the cumulative probability
distribution function of the duration/severity of the meteorological drought. Similarly,
FHD(d)/ FHS(s) is the cumulative probability distribution function of the hydrological
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drought duration/severity. In addition, the two bivariate combined recurrence periods
“TAND

DS ” and “TOR
DS ” can be calculated from the following equation [40]:

TAND
DS =

E(L)
P(D ≥ d, S ≥ s)

=
E(L)

1− FD(d)− FS(s) + FDS(d, s)
(8)

TOR
DS =

E(L)
P(D ≥ d, S ≥ s)

=
E(L)

1− FDS(d, s)
(9)

where FD(d)/FS(s) indicates the duration/severity cumulative probability distribution
function of meteorological drought or hydrological drought, respectively, and FDS(d, s) is
the joint probability distribution function of the duration and the severity of meteorological
drought or hydrological drought. TAND

DS represents the combined recurrence period when
the drought duration and severity simultaneously exceed specific values. Similarly, TOR

DS
indicates the joint recurrence period when the drought duration is higher than a particular
value or when the drought severity is greater than a particular value.

2.3.7. Performance Evaluation Criteria

In order to evaluate the SWAT model in this study, the root mean square error (RMSE),
Nash–Sutcliffe efficiency coefficient (NSE), and the coefficient of determination (R2) were
used to evaluate the model performance:

RMSE =

√
∑N

i=1(yi − xi)
2

N
(10)

NSE = 1− ∑N
i=1(xi − yi)

2

∑N
i=1(xi − x)2 (11)

R2 =

 ∑N
i=1 (yi − y)(xi − x)√

∑N
i=1(yi − y)2∑N

i=1(xi − x)2

2

(12)

where N represents the number of samples; xi represents the observed data of variable i; yi
represents the simulated data of variable i; and x and y represent the average values of the
observed and simulated data, respectively.

3. Results
3.1. GCM Simulation Assessment

Different CMIP5 models shows different simulation performances for different cli-
matic elements in different regions; therefore, five commonly used CMIP5 models were
selected in this study for comparing and analyzing the simulation effects of different cli-
mate models under two RCPs on precipitation in the JRB (Figure 4). the reasonableness of
the model selection is comprehensively examined in terms of the correlation coefficient,
ratio of standard deviation, and centralization root mean square error by using Taylor
diagrams [41].

The simulation shows that the GFDL-CM3 climate models are better than other climate
models, with spatial correlation coefficients reaching nearly 0.8. In general, the simulation
of precipitation under the RCP8.5 emission scenario is better than the RCP4.5 scenario.

The performance of the statistical downscaling model (SDSM) was evaluated by three
elements: daily average precipitation, daily average maximum temperature, and daily
average minimum temperature from the 14 weather stations. Accordingly, the performance
of the downscaling model was evaluated using standard statistical methods (R2, RMSE,
and NSE). The results shows that the atmospheric downscaling model had the highest
simulation accuracy and could be used to simulate the drought characteristics under future
climate change scenarios in the JRB.
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3.2. Calibration and Validation of the SWAT Model

The SWAT model parameters were determined and verified according to the observed
monthly flow data of Zhangjiashan Hydrological Station from 1990 to 2017. The year 1990
was the initial preheating period of the model operation. The Zhangjiashan Hydrological
Station is the main outlet hydrographic station of the JRB and controls more than 95% of the
total area of the basin. To reduce the impact of the initial conditions, the model considered
the period from 1991 to 2005, and the model verification period was from 2006 to 2017. The
uncertainty of the SWAT model parameters was analyzed by using the SUFI-2 method. R2,
NSE, and RMSE are usually used to evaluate the simulation accuracy and applicability
of the model parameters. The optimized parameters for the SWAT model of the JRB are
shown in Table 3. The SWAT model simulates runoff from the actually observed runoff,
and their relation to rainfall is shown in Figure 5.

Table 3. Optimization parameters of SWAT model in the JRB.

Parameter_Name Definition of Parameters Fitted_Value Min_Value Max_Value

1:R__CN2.mgt Runoff curve number −0.5203 −0.833 −0.197
2:V__ALPHA_BF.gw Baseflow coefficient 0.5506 0.0834 0.5529
3:V__GW_DELAY.gw Groundwater delay days 612.15 337.97 638.71
4:V__GWQMN.gw Limiting of shallow aquifers 376.24 −13.65 428.57
5:R__SOL_AWC(..).sol Soil water availability 0.044 −0.1878 0.2652
6:R__SOL_K(..).sol Saturated hydraulic conductivity 0.1472 −0.2225 0.4059
7:R__SOL_BD(..).sol Moist bulk density −0.3232 −0.8726 −0.261
8:V__REVAPMN.gw Guaranteed to shallow groundwater for re-evaporation 276.26 81.38 286.88
9:V__ESCO.hru Soil evaporation compensation factor 0.507 0.2847 0.7309
10:R__HRU_SLP.hru Average slope steepness −0.0957 −0.2323 0.2584
11:V__SLSUBBSN.hru Average slope length 11.61 10 14
12:V__CH_K2.rte Effective hydraulic conductivity of the mainstream 13.09 12.44 31
13:V__EPCO.hru Plant evaporation compensation factor 0.0848 −0.6598 0.1366
14:V__RCHRG_DP.gw Permeability coefficient of deep aquifers 0.277 −0.2745 0.3217
15:V__SURLAG.bsn Surface runoff delay factor 3.3509 0.75 22.7291
16:V__SFTMP.bsn Snowfall temperature parameters 4.3803 −1.8696 9.7401
17:V__SMTMP.bsn Snowmelt minimum temperature −5.187 −13.3622 −2.1377
18:V__SMFMN.bsn Minimum snow melt day factor 1.5257 −0.8357 7.1689
19:V__TRNSRCH.bsn Proportion of main channel propagation losses into deep aquifers 0.2142 0 0.5
20:V__ESCO.hru Soil evaporation compensation factor 0.9305 0.7 1
21:V__CANMX.hru Maximum canopy interception 3.8433 3 5
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Figure 5. Comparison between simulated runoff and observed runoff in the JRB.

From the relationship between the precipitation data of 14 weather stations and the
simulated runoff in Zhangjiashan, the simulated runoff was higher in the months with more
precipitation, indicating that the runoff is correspondingly large under greater precipitation,
and the two are positively related. In terms of the correspondence between precipitation
and runoff, the 14 meteorological stations selected during the modeling process had a high
spatial correspondence with the Zhangjiashan hydrological station (Table 4). According
to the results, the simulated runoff series and the observed runoff series were well-fitted,
which indicated that the SWAT model constructed in this study accurately simulated the
runoff process and could be adapted to the JRB and used in the next step.

Table 4. Model evaluation of the calibration and validation periods at the hydrological station.

Hydrological Station Calibration (1991–2005) Validation (2006–2017)

R2 NSE RMSE R2 NSE RMSE

Zhangjiashan 0.75 0.72 9.45 0.83 0.79 5.56

3.3. Temporal and Spatial Evolution Characteristics of Meteorological Drought
3.3.1. Temporal Characteristics of MD

Figure 6 illustrates the changes in and trends of the standardized precipitation index
(SPI) in the JRB under different scenario modes (RCP4.5 and RCP8.5) and different time
scales. The analysis indicated that the SPI value of the JRB will be in a state of alternating
drought and flooding in the future, with more complex periodic changes. Overall, the
RCP4.5 scenario mode predicted more frequent drought at the monthly, seasonal, and
yearly scales than the RCP8.5 scenario mode.

The changing trend of meteorological drought in different scenarios was clearly dif-
ferent, and the frequency of alternating drought and flooding at the monthly, seasonal,
and annual scale decreased successively. On the monthly scale, the drought trend in the
RCP8.5 scenario was more intense than that under the RCP4.5 scenario, and the drought
trend reached a 0.05 significance level in 2024. It is interesting that the seasonal scale was
similar to the monthly scale situation. However, on the annual scale, the RCP4.5 scenario
was more arid than the RCP8.5 scenario. Especially after 2033, the overall drought trend
under the RCP8.5 scenario would be eased, which basically showed a wetting trend. In
contrast, the RCP4.5 scenario showed characteristic drought and flood alternation patterns,
and the drought severity was more serious.
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Figure 6. Evolution trends of different time scales of the SPI.

Combined with the changes in the M-K mutation curve, the different time scales of the
JRB under the RCP8.5 scenario mode were basically from drought aggravation to drought
mitigation, while the opposite was found under the RCP4.5 scenario. The mutation points
were concentrated in 2030, 2032, and 2033. The simulation prediction results showed that
the overall annual precipitation of JRB in the river basin increased after 2032 because the
SPI value was directly affected by the amount of precipitation. Therefore, the trend of JRB
wetting is consistent with the trend of precipitation changes. In addition, the spatiotemporal
distribution of the SPI of the JRB varied in different time scales, and thus the drought trend
mutation points were also different.

3.3.2. Spatial Drought Characteristics of MD

In order to reveal the spatial evolution characteristics of meteorological drought at dif-
ferent time scales under two different future scenarios (RCP4.5 and RCP8.5),
Figures 7a–f and 8a–f revealed the spatial evolution pattern of meteorological drought
duration and drought severity in the future period (2021–2060). On the monthly scale,
the meteorological drought duration of the JRB under RCP4.5 lasted between 2.78 and
3.35 months, with a drought severity of between 2.12 and 2.60. The duration and severity
of meteorological drought under RCP8.5 are similar to that of RCP4.5. However, the area
with a long drought duration and large severity under RCP4.5 is more extensive, and more
obvious in the middle reaches of JRB, while under the RCP8.5 emission scenario, JRB is
more prominent in the upstream Yanchi station.

On the seasonal scale, the JRB meteorological drought lasted between 4.52 and 5.63
in RCP4.5, and the drought severity was between 3.86 and 4.80, while the meteorological
drought duration and severity were reduced in the RCP8.5 emission scenario. The differ-
ence is that the meteorological drought duration and severity of the JRB in the RCP8.5
emission scenario decreased northwest to southeast, while the meteorological drought
duration and severity of the JRB under the RCP4.5 emission scenario are larger in the
middle reaches.
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On the annual scale, the JRB lasted between 9.79 and 19.14, and the drought severity
was between 8.74 and 15.49. The meteorological drought under the RCP8.5 emission
scenario lasted between 12.72 and 16.90 months, with a drought severity of between 9.62
and 13.26. However, under the RCP4.5 emission scenario, the overall drought duration and
severity of the whole JRB river basin were large, mainly concentrated in the middle and
upper reaches of the JRB. Interestingly, under the RCP8.5 emission scenario, the drought
duration distribution was similar to that in the RCP4.5 emission scenario, but the large
values of the drought severity were concentrated at the Yanchi meteorological station point
upstream of the JRB.

3.4. Temporal and Spatial Evolution Characteristics of Hydrological Drought
3.4.1. Temporal Drought Characteristics Evolution of HD

The SWAT model was used to drive the GCMs downscale atmospheric dataset to
simulate the JRB emissions in the future period under different runoff sequences to obtain
the standardized runoff index (SRI) time series (Figure 9). The future SRI was predicted to
show “drought_flood_drought_flood” periodic changes, and with the increase in the time
scale, the drought duration and severity gradually increased.
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Figure 9. Evolution trends of different time scales of the SRI.

Combined with the results of the M-K trend test, the results showed that the JRB had
two mutation years under the RCP4.5 scenario, and the hydrological drought mutation
years were 2021, 2049, 2022, 2049, 2023, and 2050, where the drought trends were similar.
For example, at the monthly scale, the JRB showed a significant wetting trend in the
overall watershed during 2021–2049. After 2049, the JRB began to show a drying trend.
Interestingly, the JRB hydrological drought trend on the monthly and seasonal scales has
never exceeded the significance level (p ≤ 0.05), while on the annual scale, the JRB drought
trend reached the significance level in 2021 and 2056 (p ≤ 0.05). The above results showed
that the annual future drought trend of the JRB under the RCP4.5 scenario was more
significant when compared with the monthly and seasonal scales.

Under the RCP8.5 scenario, the JRB has only one mutation point on the monthly,
seasonal, and annual scales in 2024, 2026, and 2029, respectively; a remarkable wetting
trend continued after the mutation year until 2060. Meanwhile, the JRB hydrological
drought trend did not exceed the significance level (p ≤ 0.05) on the monthly and seasonal
scales, but on the annual scale, the JRB drought trend repeatedly reached the significance
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level between 2021 and 2030 (p ≤ 0.05). As for the RCP4.5 scenario, the JRB was drier on
the annual scale than the monthly and seasonal scales, while the difference was that the JRB
drought–flood alternation frequency was dramatically decreased under the RCP8.5 scenario.

3.4.2. Spatial Drought Characteristics Evolution of HD

The statistical downscale atmospheric dataset of GCMs was input into the SWAT
model to simulate the spatial and temporal change distribution of the JRB runoff under
different scenario modes in the future (2021–2060). Therefore, we used run theory to reveal
the spatial and temporal distributions in the JRB, as shown in Figures 10 and 11.

Overall, the drought duration and severity of hydrological drought were prolonged
and increased compared with the meteorological drought in the JRB. On the monthly time
scale, the JRB hydrological drought duration lasted between 4.40 and 9.00 months under
the RCP4.5 emission scenario, and the drought severity was between 3.82 and 7.53. Taking
Huanxian-Yaoxian as the boundary, the hydrological drought in the west of the boundary
lasted for a long time; the drought severity was also large. However, the JRB experienced
the strongest hydrological drought duration and severity in Xifeng and Pingliang areas
under the RCP8.5 emission scenario, lasting for 13.4 months and with a severity that
reached 9.6.

From a seasonal perspective, under the RCP4.5 emission scenario, the hydrological
drought duration of the JRB was between 6.82 and 15.46 months, and the drought severity
was from 5.99 to 13.47 months, being more intense in Xifeng and Changwu than in other
regions. In contrast, under the RCP8.5 emission scenario, the drought duration was longer
than under the RCP4.5 emission scenario, lasting from 6.43 to 20.64 months, and the drought
severity increased slightly. The duration and severity in the west of the middle reaches
were more pronounced.
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Figure 11. Distribution of spatiotemporal scale of hydrological drought characteristics under the
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On the annual scale, the overall drought duration of the basin was longer under the
JRB emission scenario of RCP4.5; the drought lasted for a long time, reaching 30 months
west of the line of Huanxian-Xifeng-Changwu. The severity of drought ranged from 16.81
to 30.91 and reached 30.91 in the Changwu area. Under the RCP8.5 emission scenario, the
JRB hydrological drought duration distribution was similar to the severity distribution.
The hydrological drought duration ranged from 21.76 to 62.34 months, and the drought
severity ranged from 16.06 to 48.47 months. It is worth noting that in the east of the
Huanxian-Xifeng Changwu boundary line, there was little difference in the hydrological
drought duration or severity between RCP4.5 and RCP8.5 scenarios. However, west of the
boundary line, the hydrological drought duration and severity under the RCP8.5 scenario
were much greater than under the RCP4.5 scenario.

3.5. Univariate Drought Analysis
3.5.1. Univariate and Bivariate Distributions

The Copula function was adopted to optimize the marginal distribution functions
of different drought types and characteristics in historical and future periods. The anal-
ysis successively used the K-S, AIC, BIC, and other test methods to optimize the joint
distribution models of different marginal functions [42]. Many studies have shown that
the three-month time scale drought index can better represent the characteristic law of
watershed drought evolution [43]. Therefore, the meteorological and hydrological drought
duration and severity identified by the SPI-3 and SRI-3 were revealed.

We selected the marginal distribution functions that were most suitable for the drought
duration and severity from the six probability distribution functions of normal, exponential,
log-normal, gamma, Weibull, and generalized extremal distribution, as shown in Table 5.
The results of the K-S test indicated that the gamma distribution, Weibull distribution,
and log-normal distribution functions could effectively fit the JRB drought eigenfunctions.
Additionally, corresponding to Table 6, the Gumbel and Frank functions could be used to
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combine the marginal distribution characteristic functions of both drought duration and
drought severity.

Table 5. MD and HD duration and severity fitting distribution function and goodness test under
different scenarios.

Periods Drought Type Drought Characteristics Marginal Distribution Parameter K-S Test
a b D p-Value

History
MD

Duration Gamma 2.9 1.64 0.1143 0.7544
Severity Gamma 1.27 2.03 0.0754 0.9869

HD
Duration Gamma 1.94 6.21 0.1216 0.9695
Severity LN 1.63 1.19 0.1347 0.9317

RCP4.5
MD

Duration Gamma 2.32 1.82 0.1174 0.5998
Severity Gamma 1.14 2.89 0.0902 0.8254

HD
Duration Gamma 1.19 7.23 0.1571 0.5451
Severity Weibull 3.13 13.52 0.2022 0.7399

RCP8.5
MD

Duration Gamma 1.87 2.44 0.0845 0.8699
Severity Gamma 1.36 2.67 0.0701 0.9657

HD
Duration Gamma 1.54 4.92 0.1399 0.7547
Severity Weibull 0.57 7.58 0.0873 0.9927

Table 6. Best-fit Copula function test between duration and severity of MD and HD under different
scenarios.

Periods Drought Type Copulas Correlation Parameters AIC Value BIC Value

History MD Frank 0.69 9.53 −34.71 −33.23
HD Gumbel 0.71 3.85 −20.73 −20.09

RCP4.5
MD Gumbel 0.72 3.33 −63.5 −61.72
HD Gumbel 0.7 3.31 −24.1 −15.52

RCP8.5
MD Frank 0.75 12.55 −69.22 −67.39
HD Gumbel 0.79 4.72 −40.93 −39.89

3.5.2. Univariate and Bivariate Distributions

Based on the Copula joint distribution function under different scenario combinations,
the “AND” and “OR” drought characteristics of MD and HD in the historical period
(1990–2017) and future period (2021–2060) are shown in Figures 12 and 13.
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the future.
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(a) “AND” type in the history; (b) “AND” type RCP4.5 in the future; (c) “AND” type RCP8.5 in the
future; (d) “OR” type in the history; (e) “OR” type RCP4.5 in the future; (f) “OR” type RCP8.5 in
the future.

As can be seen from Figure 9, under the same recurrence period, the MD severity
of both the RCP4.5 and RCP8.5 scenarios in the future period was significantly increased
compared with the historical period. However, the MD duration under the RCP4.5 scenario
was comparable to that of the historical period. It is worth noting that the duration of
MD was longer under the future RCP8.5 scenario compared to the historical period. For
example, in the “AND” joint distribution model, when the JRB encountered a 20-year
return period MD, the drought duration was 11.64, 11.3, and 13.26 months in the historical
period, future RCP4.5, and future RCP8.5, respectively, and the drought severity was 8.70,
11.52, and 11.98, respectively. Accordingly, there were similar characteristics in the “OR”
joint distribution model.

It can be seen from Figure 10 that under the same return period, the HD severity under
the scenarios of RCP4.5 and RCP8.5 would decrease in the future, and the HD situation
is alleviated. Meanwhile, the duration of HD under the RCP4.5 scenario is significantly
extended, but it is significantly shortened under the RCP8.5 scenario. For example, when
the JRB encounters an HD with a 20-year return period in the “AND” joint distribution
model, the duration of HD in the historical period, future RCP4.5, and future RCP8.5
scenarios are 32.40 months, 55.25 months, and 22.65 months, respectively, and the drought
severity is 46.95, 19.40, and 19.45, respectively. Accordingly, there are similar characteristics
in the “OR” joint distribution model.

4. Discussion
4.1. Drought Propagation Characteristics

This study explored the spatiotemporal evolution characteristics of MD and HD in
the JRB under different climate emission models. We also studied the correlations between
different drought characteristics. In addition, we should also be clear about how the MD
propagates the HD and what types of drought propagation events would arise in the
future. These studies are also very important and cannot be ignored. Different types
of droughts, MD, and HD propagate under certain conditions. However, the process of
drought propagation has diverse effects, including merger, attenuation, extension, and
hysteresis. Therefore, there are many forms and characteristics of drought propagation.
The present study divided drought transmission into the following situations.

S0: There is no correlation between MD events and HD events, i.e., when MD events
occur, hydrological drought events do not occur. In this case, the duration of MD is likely
to be short, and the severity is slight. After the MD event occurs, the HD event has been
relieved before the underlying surface system receives a response.
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S1: One MD event corresponds to one HD event because an MD event with a long
duration and high severity is “reduced” by the land surface system, resulting in attenu-
ation and triggering a hydrological drought event with a relatively short duration and
low severity.

S2: Multiple MD events correspond to one HD event. After multiple MD events
have occurred, an HD event with a long duration and high severity is generated due to
combination, lag, or other effects. After the previous MD event, with the lag effects, the
HD has not ended but has meanwhile ushered in a new MD event until the MD event no
longer occurs or has been alleviated. At this time, an HD event formed by these conditions
lasts for a long time and has a high severity with adverse effects.

S3: Multiple MD events correspond to multiple HD events. This situation is usually
rare, and it is often caused by complex meteorological fluctuations or human activities.
After this type of drought propagation event occurs, it is more likely to have serious
consequences for the local residents. According to the drought propagation characteristics
of the JRB, we matched the MD and HD events under different scenarios in the JRB historical
period and the future. The drought propagation types are shown in Figure 14.
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According to Figure 14, compared with the duration period, the probability of an S0
event occurring in the scenario of RCP4.5 of JRB increases, the probability of an S1 and
S3 event occurring is basically unchanged, and the probability of an S2 event occurring
is basically unchanged. Under RCP8.5, the probability of S0 events is almost unchanged,
the probability of S1 events decreases, and the probability of S2 and S3 events increases.
Therefore, more attention should be paid to drought propagation events under an RCP8.5
scenario in the future. After the occurrence of MD in this scenario, it is easy to form a
long-duration and high-severity HD event that is difficult to recover from. Furthermore,
although the impact of the drought propagation events of the JRB under an RCP4.5 scenario
is relatively small, its MD events are frequent, which also requires us to retain our attention.

4.2. Analysis of Difference in Spatiotemporal Variation in Meteorological and Hydrological
Drought Characteristics

In this study, the meteorological data from the GFDL-CM3 model were first used
to predict the pattern of meteorological drought characteristics for the JRB over the next
40 years (2021–2060s), and then their future climate model data were driven into the SWAT
model. Even though the average annual precipitation of the JRB increases in the future,
but its spatial and temporal distribution of precipitation becomes more heterogeneous,
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which often leads to significant differences in the spatial and temporal characteristics of
meteorological droughts and an increase in the frequency of extreme weather events [44]
(Figure 6).

The JRB experienced a slight increase in meteorological drought on a 3-month scale,
but the JRB experienced a slowdown in hydrological drought, which is consistent with
Sun’s findings [40]. The main reason for this phenomenon is that hydrological drought
generally lags behind meteorological drought on a 3-month scale [45]. This allows the basin
to retain sufficient moisture in the soil to maintain surface runoff production in the absence
of precipitation, thus reducing or delaying the onset of hydrological drought.

4.3. Limitation and Extension

Due to the limited data collected, this study only explored the meteorological and
hydrological drought characteristics of the JRB under natural conditions. However, the oc-
currence of hydrological drought is not only influenced by natural meteorological elements,
but also closely related to local underlying surface conditions and anthropogenic distur-
bances [46]. Future studies should also consider the evolution of hydrological drought
patterns under the combined influence of natural and anthropogenic factors.

Furthermore, different GCM models have different simulations for precipitation and
temperature in different regions [47,48]. Although the GFDL-CM3 model is better used on
the JRB, more GCM models should be considered in the other regions. The CMIP6 model
data are already widely used and can be further investigated. Therefore, it is encouraged to
use this climate projection product for drought projections in future studies.

Many studies indicated that there are some improvements from the CMIP5 to CMIP6
GCMs in simulating the mean and extreme temperature and precipitation globally and
in China as a whole [49,50]. Compared with CMIP5, the resolution of CMIP6 for the
atmosphere and ocean is improved. Because it includes new and more complex processes,
as well as more complex surface processes, ice sheets, and permafrost, these processes can
restore hydrological processes more comprehensively [51].

Guo et al. evaluated and compared the performance of CMIP6 and CMIP5 models in
simulating the runoff on global-scale and eight large-scale basins and found that CMIP6
models have less uncertainty on the global scale when compared with CMIP5 models, but
it has not made outstanding progress on the basin scale [52]. Moreover, Cui et al. evaluated
the mean and extreme surface air temperature and precipitation in the CMIP6 multimodel
ensemble simulations over the Tibetan Plateau [53], and it shows that CMIP6 models
continue to suffer from cold bias in temperature and wet bias in precipitation similarly to
its predecessor CMIP5. Therefore, the runoff simulation capability at the basin scale needs
to be further improved to some extent.

5. Conclusions

This study explored the temporal and spatial evolution of meteorological drought and
hydrological drought in the JRB at different time scales by driving the SWAT model and
downscale climate datasets for two representative future emission scenarios. Moreover,
the Copula joint distribution function was used to reveal the relationship between differ-
ent drought characteristic values and the joint distribution characteristic law. The main
conclusions are as follows:

(1) With the increase in the time scale, the frequency of drought events gradually
decreased. The meteorological drought and hydrological drought of the JRB displayed com-
plex periodic change trends of drought and flood succession. The patterns were influenced
by the characteristics of precipitation distribution. Importantly, the JRB meteorological and
hydrological drought experienced effects from aggravation to mitigation under the RCP8.5
scenario. However, a periodic change pattern of drought–flood–drought–flood occurred
under the RCP4.5 scenario.

(2) In the future period, the JRB would have significant differences under different
emission scenarios of the spatial drought characteristic scale due to it being affected by
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an uneven precipitation distribution. The duration and severity of MD under the RCP4.5
emission scenario were more intense in the middle reaches of the JRB. As for the JRB
HD, the area affected by drought under the RCP4.5 scenario was larger than that under
the RCP8.5 scenario, which exceeds 50% of the whole area. However, under the RCP8.5
scenario, in the areas where the JRB suffered from serious drought, the drought was more
concentrated, the drought duration was longer, it was very difficult to recover from this
type of drought.

(3) It can be seen from the future joint distribution model of drought duration and
severity that the future MD severity of the JRB would increase both under the two emission
scenarios. Compared with the historical period, the overall runoff of the JRB in the future
period would be increased and the HD events would be mitigated. In contrast, the HD
duration of the JRB was significantly prolonged under the RCP4.5 scenario but reduced
under the RCP8.5 scenario.

It is worth noting that the combined return period of the JRB drought duration and
severity of the MD as well as HD in the future were slightly larger than those of the co-
occurrence return period, indicating that when one drought characteristic variable occurred,
the probability of another drought variable occurring simultaneously was higher. The
numerous and short-duration MD events causing long-duration HD events would increase.
In that case, the HD caused by this situation would last relatively longer, and the drought
severity would be high, making the recovery thereof difficult. Although the area affected
by HD under the RCP8.5 scenario was smaller than that under the RCP4.5 scenario, some
of its local areas were vulnerable to long-duration and high-severity HD events would
have unfavorable effects after the occurrence.
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