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Abstract: The realization of efficient classification with limited labeled samples is a critical task in
hyperspectral image classification (HSIC). Convolutional neural networks (CNNs) have achieved
remarkable advances while considering spectral–spatial features simultaneously, while conventional
patch-wise-based CNNs usually lead to redundant computations. Therefore, in this paper, we estab-
lished a novel active inference transfer convolutional fusion network (AI-TFNet) for HSI classification.
First, in order to reveal and merge the local low-level and global high-level spectral–spatial contex-
tual features at different stages of extraction, an end-to-end fully hybrid multi-stage transfer fusion
network (TFNet) was designed to improve classification performance and efficiency. Meanwhile,
an active inference (AI) pseudo-label propagation algorithm for spatially homogeneous samples
was constructed using the homogeneous pre-segmentation of the proposed TFNet. In addition, a
confidence-augmented pseudo-label loss (CapLoss) was proposed in order to define the confidence
of a pseudo-label with an adaptive threshold in homogeneous regions for acquiring pseudo-label
samples; this can adaptively infer a pseudo-label by actively augmenting the homogeneous training
samples based on their spatial homogeneity and spectral continuity. Experiments on three real HSI
datasets proved that the proposed method had competitive performance and efficiency compared to
several related state-of-the-art methods.

Keywords: hyperspectral image; classification; transfer convolutional neural networks; pseudo-label
propagation

1. Introduction

In contrast to traditional panchromatic and multi-spectral images, hyperspectral im-
ages typically consist of dozens or even several hundred spectral bands in the visual and
far-infrared spectra, and they can be effectively utilized to distinguish between different cat-
egories of land covers. In recent years, the analysis and processing of hyperspectral images
have been used in many fields [1], such as in urban development and surveillance [2,3],
environmental management [4], agriculture [5], etc.

Various supervised machine learning methods have been proposed and developed
over time in order to improve the classification of HSIs, such as support vector machine
(SVM) [6–8], k-nearest neighbor (K-NN) [9,10], and random forest [11–13]. These algorithms
only consider the discriminant information of spectral signatures. Subsequently, spectral–
spatial-based algorithms have been proposed that also consider spatial contextual features
in order to improve classification accuracy and efficiency. A support vector machine
with a composite kernel (SVMCK) is a representative patch-wise-based algorithm that
simultaneously projects the spectral–spatial features in the reproducing kernel Hilbert
space (RKHS) [14]. A joint sparse-representation-based approach involved simultaneously
representing all pixels in the local patch, along with a group of common atoms in the
training dictionary (JSRC) [15]. In ref. [16], a joint spectral–spatial derivative-aided kernel
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sparse representation of patch-based kernels was proposed for HSI classification that
considered the derivative features of the spectral variation simultaneously. Additionally,
an adaptive non-local spectral–spatial kernel (ANSSK) was proposed in order to further
exploit homogeneous spectral–spatial features in the embedded manifold feature space [17].
As for spatial filter feature extraction, various filter design algorithms, such as extended
morphological profiles (EMPs) [18], edge-preserving features [19], and Gabor filters [20–23],
have been proposed to improve classification performance. Most of the aforementioned
classification algorithms adopted hand-crafted feature extractors and traditionally taught
models; therefore, specialized field expertise is usually required for hand-crafted extraction.

Along with increased computational GPU resources, convolutional neural network
(CNN)-based approaches have shown remarkable performances in visual tasks. For HSI
classification, a 2D CNN [24] was proposed with differently designed convolutional op-
erators. Thereafter, Song et al. designed a deep feature fusion network (DFFN) [25]. A
spectral–spatial residual network (SSRN) was proposed by Zhong et al. in order to extract
spectral–spatial features in an orderly fashion and classify HSIs according to joint spectral–
spatial features [26]. Swalpa et al. designed a structure with a spectral–spatial 3D CNN
to reduce the complexity of the model [27]. Mercede et al. proposed a rotating variable
model for HSI analysis, in which the conventional convolution kernel was substituted with
circular harmonic filters (CHFs) [28]. Wei et al. divided pixels into different clusters as a
material map for extracting spatial features in order to achieve an effective classification [29].
Haokui et al. [30] proposed a method of HSI classification with a cross-sensor strategy and
a cross-modal strategy based on transfer learning, and it utilized RGB image data and other
HSI data collected by arbitrary sensors as pre-training datasets. Wang et al. proposed a
network architecture search (NAS)-guided lightweight spectral–spatial attention feature
fusion network (LMAFN) for HSI classification [31]. A novel multi-structure KELM with an
attention fusion strategy (MSAF-KELM) was proposed in order to achieve the accurate fu-
sion of multiple classifiers for effective HSI classification with ultra-small sample rates [32].
Yue et al. [33] enhanced the representation of learned features by reconstructing the spectral
and spatial features of an HSI to achieve robust unknown detection. In addition, the graph
convolutional network (GCN) [34,35] and fully convolutional neural network [36] have
gradually attracted more and more attention due to the utilization of their inherent advan-
tages. For instance, to explore the internal relationships of data for semi-supervised label
propagation in few-shot image classification, an attention-weighted graph convolutional
network (AwGCN) model was proposed [37]. L. Mou et al. constructed a graph-based
end-to-end semi-supervised network, which was called the non-local GCN, that utilized
both labeled and unlabeled data [38]. A spectral–spatial 3D fully convolutional network
(SS3FCN) was designed for the simultaneous exploration of spectral–spatial and semantic
information [39]. In Ref. [40], a fully convolutional neural network was introduced by
including de-convolution layers and an optimized ELM for HSI classification. To augment
the available features, Zhu et al. [41] first explored a generative adversarial network (GAN)
for HSI classification, and it demonstrated better performance with limited training sam-
ples, as compared to some traditional CNNs. Nevertheless, the patch-wise-based GAN
and CNN exposed the computational redundancy problem caused by the repetition of the
patches of adjacent pixels during the training and testing processes.

In practical applications, high-dimensional spectral features and limited labeled sam-
ples have consistently challenged classification tasks. As a consequence, a number of
unlabeled samples have been utilized to generate pseudo-labeled samples in order to
increase the number of training samples and improve the performance of the classifier.
Zhang et al. presented a semi-supervised classification algorithm that was based on simple
linear iterative cluster (SLIC) splitting [42], and it was expected to improve the efficiency
of an extended training set by selecting pseudo-labeled samples (PLSs). Considering the
number of unlabeled samples has also provided abundant discriminant spectral–spatial
features. Mingmin Chi et al. presented a continuation-method-based local optimization
algorithm for global optimization, which was tuned with an iterative learning procedure
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during the learning phase of the semi-supervised support vector machines (S3VMs) [43]. A
non-parametric and kernel-based transductive support vector machine (TSVM) classifica-
tion framework was proposed by L. Bruzzone to alleviate the Hughes phenomenon [44].
Meanwhile, a semi-supervised learning framework, based on spectral–spatial graph convo-
lutional networks [36,45] and generative adversarial networks [46,47], was also exploited to
increase the accuracy of the HSI classification by mitigating problems caused by limitations
in the labeling samples.

In order to eliminate the computation redundancy caused by patch-wise-based al-
gorithms and to fully utilize the abundance of unlabeled samples in an efficient way, we
established a novel active inference transfer convolutional fusion network (AI-TFNet) for
HSI classification. We have highlighted the notable outcomes of the proposed AI-TFNet
as follows:

• In the proposed AI-TFNet, an active inference pseudo-label propagation algorithm
for spatial homogeneity samples was constructed by utilizing the proposed TFNet to
segment the homogeneous area, and the proposed spectral–spatial similarity metric
learning function was constructed to select propagated pseudo-labels for spectral–
spatial homogeneity and continuity. Meanwhile, an end-to-end, fully hybrid multi-
stage transfer fusion network (TFNet) was designed for improving classification
performance and efficiency.

• A metric confidence-augmented pseudo-label loss function (CapLoss) was designed
to define the confidence of a pseudo-label by automatically assigning an adaptive
threshold in homogeneous regions for acquiring homogeneous pseudo-label samples,
which could actively infer the pseudo-label by augmenting the homogeneous training
samples, based on spatial homogeneity and spectral continuity.

• In addition, to reveal and merge the local low-level and global high-level spectral–
spatial contextual features during different feature extraction stages, a fully hybrid
multi-stage transfer convolutional fusion network was designed to achieve end-to-end
HSI classification and improve classification efficiency.

Experimental results demonstrated that, compared to other related algorithms, our
proposed AI-TFNet achieved better results on several different HSI scenario datasets in
terms of accuracy and efficiency.

The rest of this paper is organized as follows. In Section 2, we introduce our proposed
algorithm in detail. In Section 3, the parameters’ analysis and experimental results are
illustrated and discussed. Finally, conclusions are drawn in Section 4.

2. Methodology

The proposed AI-TFNet classification framework was mainly categorized into the
following parts: transfer fusion convolutional network (TFNet) for hyperspectral image
classification; active inference for pseudo-label augmentation with adaptive threshold
metric strategy (AI); and the proposed metric confidence augmented pseudo-label loss
function (CapLoss). The whole flowchart of the proposed AI-TFNet is shown in Figure 1;
we introduce the aforementioned parts in detail in this section.

Figure 1. The overall flowchart of the proposed AI-TFNet.
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2.1. Multi-Scale Transfer Fusion Convolutional Network

CNN-based algorithms have demonstrated satisfying feature extraction abilities in the
computer vision field. However, several shortcomings have also been exposed, such as the
loss of the location feature information by a fully connected layer in a CNN. Patch-wise-
based CNN algorithms usually lead to computational redundancy, as the data in adjacent
patches is calculated repeatedly. Therefore, in this paper, we constructed a hybrid multi-
stage spectral–spatial fully convolutional transfer fusion network (TFNet) that captured the
global spectral–spatial features during processing. We designed the proposed spatial con-
volutional layer and spectral convolutional layer tier by tier to augment and complement
the spatial and spectral features identified by the proposed hybrid spectral–spatial (HSS)
block. In the proposed structure, the multi-scale spectral information in different layers
was exchanged to consolidate the discriminant information in the spectral features. The
proposed HSS block is shown in Figure 2. Meanwhile, the local spatial features in shallow
layers and the contextual features in deep layers were combined and exchanged in parallel
to efficiently merge the spectral–spatial features in different stages. The proposed TFNet
structure is shown in Figure 3. The key model HSS block in the proposed TFNet effectively
exchanged and merged the spectrum and spatial feature information.

2.1.1. HSS Block

As shown in Figure 2, in each HSS block, the spectral Cl
spe and spatial feature maps Cl

spa
in the upper layer were utilized as input. Meanwhile, merged features were simultaneously
extracted by the combined spectral–spatial features in distinct stages. A 1× 1 convolution
kernel was exploited for the extraction of spectral information. Therefore, each channel of
the convolution layer can be expressed as:

El+1,k
spe = ∑

j

(
wk ∗

(
Cl,j

spe + Cl,j
spa

))
+ bk

(1)

Cl+1,k
spe = ReLu

(
BN
(

El+1,k
spe

))
(2)

where ∗ represents the 2D convolution operation. E is an intermediate variable to simplify
the interpretation. Furthermore, Cl,k

spe is the k-th channel of the l-th spectral feature map, and

Cl,j
spa is the j-th channel of the feature map on the l-th spatial feature map. The variable wk

represents the k-th convolution kernel, bk is the bias term of the k-th channel of the feature
map, and ReLu(x) = max(0, x) is the linear rectification function where BN(·) represents
the batch normalization function.

Figure 2. The structure of the HSS Block, where Cl,k
spe and Cl,j

spa are the k-th channel of the l-th spectral
feature map and spatial feature map, respectively.
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Similarly, atrous convolution was utilized as the basic operation in the multi-scale
spatial feature extraction. The spatial feature map in each channel can be expressed as:

El+1,k
spa = ∑

j

(
wk ⊗

(
Cl,j

spa + Cl,j
spe

))
+ bk

(3)

Cl+1,k
spa = AP

(
BN
(

El+1,k
spa

))
(4)

where ⊗ represents the 2D atrous convolution operation. Furthermore, Cl,k
spa is the k-th

channel of the l-th spatial feature map, and Cl,j
spe is the l-th channel of the feature map in the

j-th spectral feature map. In addition, AP( · ) is the 2D average pooling function. The appli-
cation of atrous convolution enhanced the perceptual field significantly without increasing
the computational costs, and it enhanced the spatial feature extraction performance.

Figure 3. The architecture of the proposed TFNet for HSI classification. The information extracted by
the spectral branch and spatial branch were fused by stacked HSS blocks. The merged feature map
was combined into two feature maps with weighted edges.

2.1.2. TFNet

The complete TFNet structure is shown in Figure 3. In order to reduce the dimensions
of the channel, the feature map of the first layer of spatial and spectral features was
obtained by a 1× 1 point-wise convolution. The low-level feature maps typically represent
the detailed local contour features, and the high-level feature maps usually represent
the contextual and semantic features. Thereby, by stacking HSS blocks, the discriminant
information in the low-level feature map and the high-level contextual features can be
efficiently enhanced and presented. Through this procedure, the omitted information can
be supplemented and enhanced during the convolutional process. Therefore, the hybrid
multi-stage spectral–spatial feature extraction not only revealed deep spatial and spectral
contextual features but also augmented low-level pixel-wise spectral–spatial features.
Furthermore, for preserving and merging more feature information, the feature maps
extracted from each layer were fused to form an integrated layer, which can be expressed as:

Cmerge,k
spa =

4
∑

l=1
Cl,k

spa

Cmerge,k
spe =

4
∑

l=1
Cl,k

spe

(5)

In the integrated layer, the spectral feature Cmerge
spe and spatial feature Cmerge

spa were
extracted from HSS blocks with the corresponding weighting factors. The weights can
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be learned automatically, allowing the model to adapt to different spectral and spatial
conditions in HSIs. The integrated layer formed by weighted fusion can be represented
as follows:

Cunite = λspectralCspectral + λspatialCspatial (6)

The proposed TFNet classified a complete HSI image as input and ensured that only
the labels from training samples were used for loss calculation and network optimization.
When we only considered the labeled training samples, the loss function of TFNet can be
expressed as follows:

L =
1
m

m

∑
i=1

Yi log(Ŷi) (7)

where L is the cross-entropy loss function, and Yi and Ŷi are the labels and prediction labels
from the training sample xi, respectively.

2.2. Active Inference for Pseudo-Label Augmentation

The pseudo-label propagation algorithms assigned a pseudo-label, and the confidence
of the pseudo-label was determined by calculating the distance between the labeled pixel
and the unlabeled pixels, which were both located in the same homogeneous region ob-
tained by clustering for augmenting the available labeled sample. Therefore, we exploited
both spectral similarities and location metrics to measure the distance for labeling the
pseudo-label probability of unlabeled samples as the given training samples for the homo-
geneous area. As shown in Figure 4, after considering that the smaller spectral distance
of two pixels had a high probability of being in the same category, despite being located
far from each other, we first calculated the spectral distance between the two pixels by the
spectral feature metric for labeling the unlabeled samples. Then, we calculated the position
relevance between the labeled and pseudo-labeled samples by the spatial location metric in
order to assign confidence scores for the pseudo-labeled samples, which were based on
the hypothesis that the pixels located closer to each other were more likely to belong to the
same category.

Figure 4. The ground distribution of an HSI is very complex. Pixel A and pixel B are very close in
spatial location, but the categories are different. Pixel A and pixel C are far from each other but have
the same category.
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2.2.1. Pre-Classification of HSI

The accuracy of the hyperspectral image classification task is limited by the number of
training samples, so there have been many methods described in recent years for increasing
training samples [28]. Existing information in hyperspectral data, even without the label
information, has been used to increase training samples. For supervised classification tasks,
the domain is accessible as {xi, yi}i∈[Ns ] with Ns data points xi and the corresponding labels
yi from a discrete yi ∈ Y = {1, . . . , Y}. For an unsupervised pre-segmentation task, the
accessible domain includes Nu data points in {xi}i∈[Nu ]. Obviously, these two domains have
the same distribution: xi ∈ X . Considering a situation where we had two eigenfunctions
Φs, Φu : X → Rd, we used the eigenfunction to map the original distribution X to
Rd, as applicable for classification and pre-classification, respectively. We emulated the
common features through a subset of parameters that were shared among the feature
functions as Φs = Φθc ,θs and Φu = Φθc ,θu by implementing TFNet as a feature extraction
function. The variable Φθc corresponded to the parameters in the first few layers of the
TFNet network, and θs, θu corresponded to the relevant last layers. We selected k-means
unsupervised clustering for the original hyperspectral images to obtain the clustering label
matrix Lclu ∈ RH×W , where H and W are the width and height of the label matrix. TFNet
and clustered labels were utilized to pre-classify hyperspectral images in order to obtain the
pre-segmentation label matrix Lpre ∈ RH×W and the pre-segmentation network weight Φθc .

2.2.2. Spectral–Spatial Adaptive Threshold

In order to actively augment the unlabeled samples by the pre-segmentation label ma-
trix, we assigned an adaptive threshold that provided an adaptive circumstance-changing
strategy. For each pixel xi, the spectral distance Dspe between any pixel xi and the specified
pixel xj was defined by the following:

Dspe =
∥∥xi − xj

∥∥2 (8)

We defined the training set as Xtrain = {X1, X2, · · · , XN} = {x1, x2, · · · , xM}, and
its label set is Y = {Y1, Y2, · · · , YM}, where N and M are the number of classes and the
number of labeled samples, respectively. Xi = {xi

1, xi
2, · · · , xi

ni
} represents the ith training

set. In order to adaptively evaluate the similarity of the unlabeled samples in the same
pre-classification region, we first calculated the average spectral vector x̄i of the ith training
set Xi, according to the following formula.

x̄i =
1
ni

ni
∑

j=1
xi

j (9)

In order to adaptively retain homogeneous region samples that were similar to the
target-labeled samples while eliminating dissimilar samples, we defined an adaptive
threshold β as the minimum inter-class distances by calculating the Dspe of all the mean
vectors for N classes comprehensively. The details are described in Algorithm 1. Thereby,
we used the adaptive threshold β to adaptively and actively expand the available training
set. Since the pre-segmentation area containing the labeled sample xi consisted of ri
unlabeled sample set Si

u = {xu
1 , xu

2 , ..., xu
ri
}, the distances between the labeled sample xi

and all ri unlabeled samples were calculated by Equation (8), where the distance reflects
the level of similarity between the unlabeled and labeled target samples in the same pre-
segmentation area. By calculating all of the distances between ri distinct unlabeled samples,
we could select all of the samples for which the distances were smaller than the threshold β
to propagate the pseudo-labels as the same as the labeled sample and augment the available
pseudo-label sets Xp

i = {xp
i,1, xp

i,2, · · · , xp
i,pi
} by the following function:

xp
i,j =

{
xu

j Dspe(xi, xu
j ) < β

deleted otherwise
(10)
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YP
i,j = Yi (11)

2.2.3. Spectral–Spatial Confidence Metric

From Figure 4, we observed two phenomena: (1) the pixels located at the boundary
of the different classes belonged in different categories even when they were close to each
other (such as pixels A and B in Figure 4), and (2) the pixels that were far apart could also
belong to the same category based on having similar spectral signatures (such as pixels A
and C in Figure 4). Therefore, a compromise between the spatial location metric and the
spectral feature similarity metric had to be designed to address the differences in categories
between those with a minimal spatial distance between them, as well as for those in the
same category despite a minimal spectral distance between them. Since the pseudo-labels’
assignments were based on the spectral metric, we proposed that pseudo-label confidence
weights be used to enforce the spatial relations through the spatial metric.

Algorithm 1: Label propagation based on pre-segmentation map with spectral
and spatial metrics.

Input: Training set Xtrain = {x1, x2, · · · , xM} and its label set
Y = {Y1, Y2, · · · , YM}; pre-segmentation region of each training sample
Si

u = {xu
1 , xu

2 , ..., xu
ri
}; the adaptive threshold β.

1 for 1 ≤ i ≤ M do
2 Calculate all the ri spectral distances between xi and all unlabeled samples in

Si
u by (8).

3 for 1 ≤ j ≤ ri do
4 Assign the Xp

i = {xp
i,1, xp

i,2, · · · , xp
i,pi
} as the same label with xi to generate

YP
i,j by (10) and (11).

5 Assign the confidence weight Co f j by (13).
6 Augment the sample, pseudo-label, and confidence weight to the

pseudo-sample set Xpseudo, pseudo-label set Ypseudo, and confidence
weight set Co fpseudo, respectively.

7 Xpseudo ← Xp
i

8 Ypseudo ← YP
i,j

9 Co fpseudo ← Co f j

10 end
11 end

Output: Pseudo-label sample set Xpseudo, pseudo-label set Ypseudo, and confidence
weight set Co fpseudo.

For each pseudo-labeled sample xp
i,k belonging to Xp

i = {xp
i,1, xp

i,2, · · · , xp
i,pi
}, we defined

and calculated the spatial location distance Dspa by (12). Furthermore, the confidence
weighting function Co fk indicated the possibility that xp

i,k and xi could belong to the same
class, which was defined as follows.

Dk
spa =

√
(hi − hk)

2 + (vi − vk)
2 (12)

Co fk = 1− Dk
spa

Dmax
spa

(13)

where (hi, vi) and (hk, vk) are the spatial coordinates of xi and xp
i,k. Furthermore, Dmax

spa is
the maximum spatial distance between all pseudo-labeled samples xp

i,k and target-labeled
samples xi. The confidence weighting function was based on the hypothesis that pixels
located closer to each other were more likely to belong to the same category.



Remote Sens. 2023, 15, 1292 9 of 21

Therefore, the proposed adaptive homogeneous label propagation strategy derived
homogeneous samples in the same pre-segmentation area. The complete pseudo-label
propagation process is illustrated in Figure 5. The complete procedure is summarized in
Algorithm 1.

2.3. The Proposed CapLoss Function

The procedure of the proposed AI-TFNet classification framework is as follows. First,
through this active inferential pseudo-label propagation strategy, we obtained the pseudo-
label samples, pseudo-label confidence, and the training weight of our pre-segmentation.
Next, the pseudo-label samples were added to the original training set, and then, the TFNet
was trained after the initialized pre-training weight.

Figure 5. The pseudo-label propagation of HSI data. (a) is the HSI after the dimension reduction
algorithm (e.g., PCA). (b) is the image pre-classification by TFNet. Different colored regions represent
the different score areas on the table. (c) is the small portions of the hyperspectral image after pre-
classification. In (d), the increased number of red squares indicates the pseudo-label is the same as
the original label propagation in the pre-segmentation map.

In addition, AI-TFNet was a more efficient classification strategy due to exploiting
the pseudo-label propagation strategy when the number of labeled samples was limited.
Therefore, we speculated that the original training samples would have a greater impact on
the loss reduction, and the pseudo-label samples would adaptively participate in the loss
calculation. Therefore, the final objective function was mainly composed of two items: the
loss of the labeled samples and the loss of the pseudo-labeled samples with the confidence
factor Co fi to balance the two items. A metric known as the "confidence augmented score"
pseudo-label loss (CapLoss) function LCap for AI-TFNet was defined as follows.

LCap = L + Lpseudo (14)

Lpseudo =
1
p̃

np

∑
i

{
Co fi ×Yi

pseudo log(Ŷi
pseudo)

}
(15)

p̃ =
m

∑
i=1

pi (16)
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where p̃ is the number of pseudo-labeled samples and Yi
pseudo, Ŷi

pseudo, and Co fi are the

labels, prediction labels, and confidence weights of the pseudo-labeled sample xi
p, respec-

tively. The proposed CapLoss function efficiently utilized the labeled training sample set
and also exploited the augmented pseudo-sample set according to the confidence weights,
which efficiently improved the classification accuracy and performance even with a limited
training sample size. The complete procedure for AI-TFNet is summarized in Algorithm 2.

Algorithm 2: The procedure of AI-TFNet.

Input: The original HSI X ∈ RH×W×C; training set
Xtrain = {X1, X2, · · · , XN} = {x1, x2, · · · , xM} and its label set
Y = {Y1, Y2, · · · , YM}.

1 Reduce the dimensionality of X with PCA.
2 K-means is used to cluster the HSI after dimensionality reduction and use TFNet

to acquire pre-segmentation map enclosed areas Si
u = {xu

1 , xu
2 , ..., xu

ri
} of each

training sample and the weight W of the network.
3 Generate the adaptive threshold β using Algorithm 1.
4 Generate pseudo-sample set Xpseudo, pseudo-label set Ypseudo, and confidence

weight set Co fpseudo using Algorithm 2.
5 Initialize AI-TFNet with weights W and use the training set Xtrain and

pseudo-label sample set Xpseudo to train the AI-TFNet and update the parameters
of the network with the CapLoss by (14)–(16).

6 The original HSI is used as the model input to obtain the classification map.
Output: The classification map.

3. Experiment

In this section, we evaluate the proposed AI-TFNet on several commonly used HSI
datasets, such as the University of Pavia dataset, the Salinas dataset, and the Houston
dataset. The parameters’ analysis of the proposed algorithm, the comparison of classifi-
cation accuracy, and the classification performance results with several existing relative
algorithms are illustrated and analyzed in this section.

3.1. Hyperspectral Datasets

The first dataset was obtained from the Reflective Optical System Imaging Spectrome-
ter (ROSIS) in the sky over the University of Pavia in northern Italy. The original image
consisted of 610× 340 pixels with 103 spectral bands that covered from 430 nm to 860 nm
with a spatial resolution of 1.3 m. The training and test sample sizes and the nine labeled
classes are shown in Table 1 and Figure 6.

Figure 6. (Left) False color image and (Right) ground truth map of the University of Pavia dataset.

The second dataset was acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) in the sky over Salinas Valley, California. The original image was composed
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of 512× 217 pixels and had a high spatial resolution of 3.7 m/pixel; it consisted of 204
spectral bands. The training and test sample sizes and 16 labeled classes are shown in
Table 2 and Figure 7.

Table 1. The numbers of the training and testing sampling for the University of Pavia dataset.

Class Class Name Total Train Test

1 Asphalt 6631 20 6611
2 Meadows 18,649 20 17,136
3 Gravel 2099 20 2079
4 Trees 3064 20 3044
5 Metal sheets 1345 20 1325
6 Bare Soil 5029 20 5009
7 Bitumen 1330 20 1310
8 Bricks 3682 20 3662
9 Shadows 947 20 927

Total 42,776 180 42,596

Figure 7. (Left) False color image and (Right) ground truth map of the Salinas dataset.

Table 2. The numbers of the training and testing sampling for the Salinas dataset.

Class Class Name Total Train Test

1 Broccoli green weeds 1 1977 10 1967
2 Broccoli green weeds 2 3726 10 3716
3 Fallow 1976 10 1966
4 Fallow rough plow 1394 10 1384
5 Fallow smooth 2678 10 2668
6 Stubble 3959 10 3949
7 Celery 3579 10 3569
8 Grapes untrained 11,213 10 11,203
9 Soil vineyard develop 6197 10 6187

10 Corn senescent green weeds 3249 10 3239
11 Lettuce romaine 4wk 1058 10 1048
12 Lettuce romaine 5wk 1908 10 1898
13 Lettuce romaine 6wk 909 10 898
14 Lettuce romaine 7wk 1061 10 1051
15 Vineyard untrained 7164 10 7154
16 Vineyard vertical trellis 1737 10 1727

Total 53,785 160 53,625

The last dataset was captured by the ITRES-CASI 1500 sensor over the University of
Houston campus and its neighboring urban areas in Texas. The original image consisted
of 1905× 349 pixels with 144 spectral bands that covered from 380 nm to 1050 nm with a
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spatial resolution of 2.5 m. The training and test sample sizes and the 15 labeled classes are
shown in Table 3 and Figure 8.

Table 3. The numbers of the training and testing sampling for the Houston dataset.

Class Class Name Total Train Test

1 Grass healthy 1251 10 1241
2 Grass stressed 1254 10 1244
3 Grass synthetic 697 10 687
4 Trees 1244 10 1234
5 Soil 1242 10 1232
6 Water 325 10 315
7 Residential 1268 10 1258
8 Commercial 1244 10 1234
9 Road 1252 10 1242

10 Highway 1227 10 1217
11 Railway 1235 10 1225
12 Parking lot1 1233 10 1223
13 Parking lot2 469 10 459
14 Tennis court 428 10 418
15 Running track 660 10 650

Total 15,029 150 14,879

Figure 8. (Up) False color image and (Down) ground truth map of the Houston dataset.

3.2. Parameter Effect Analysis

In this section, we analyze the impact of the parameters of the proposed TFNet and
AI-TFNet on the different datasets. Dilated convolution was used in TFNet as a basic
operation of spatial feature extraction. The dilation rate K of the dilated convolution and
the numbers of the trained samples in each class were the main parameters analyzed in
this section. The experimental results were evaluated based on their overall accuracy (OA).
During the training process, we used the Adam optimization algorithm as an optimizer,
with a learning rate of 0.000025.

The effects of the dilation rate K of the atrous convolution for the different datasets are
illustrated in Figure 9. The atrous convolutions with a varying dilation rate K efficiently
exploited the different perceptions of the spatial regions. We observed that the OA value
increased slowly when K increased to four and then decreased slowly when K increased to
eight, which indicated the small dilation rate was likely to overlook contextual information,
while a larger dilation rate was likely to overwhelm the network when attempting to
capture detailed local features. Therefore, we selected an optimal dilation rate K of four in
the following experiments.
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Figure 9. OA curve of two datasets with different dilation rates.

In the second set of experiments, we compared our proposed method with the follow-
ing algorithms: (1) a spectral-based SVM (SVM) [6]; (2) an SVM with CK (SVMCK) [14];
(3) a dual-channel capsule GAN (DcCapsGAN) [48]; (4) a spectral–spatial based LMAFN
(LMAFN) [31]; (5) a spectral–spatial residual network (SSRN) [26]; and (6) a spectral–spatial
fully convolutional network (SSFCN). These were carried out on three HSI datasets, used
as benchmarks, for different training sampling rates [49]. As shown in Figure 10, it was
evident that the OA improved when the training size increased. Deep-learning-based algo-
rithms (DcCapsGAN, LMAFN, SSRN, SSFCN, TFNet), when compared with conventional
machine-learning methods (SVM, SVMCK), presented more requirements for the labeled
training set, further proving that deep-learning models require a large dataset for achiev-
ing better performance. The proposed pseudo-label propagation strategy demonstrated
that AI-TFNet yielded the most robust results across all sampling rates, especially on
training samples that were limited in size. Furthermore, AI-TFNet yielded a considerable
improvement in classification accuracy, as compared to TFNet, due to active pseudo-label
propagation learning.

(a) (b) (c)

Figure 10. The overall accuracy of different methods on three datasets with different training sampling
rate: (a) the University of Pavia dataset; (b) the Salinas dataset; and (c) the Houston dataset.

3.3. Ablation Experiment

At this point, we conducted an ablation test and verification to demonstrate the
advantage of the proposed active inference. Inaccurate pseudo-label samples could have
a negative impact on the classification results, which could then reduce the spatial and
spectral constraints of our pseudo-inference propagation strategy. The spatial constraint
was defined as our pre-segmentation results having produced adequate and rational
homogeneous regions. The spectral constraint was defined as when the pseudo-label
samples would be introduced, that is, only when the spectral distance was less than
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the minimum inter-class distance. These two constraints were imposed in tandem to
administrate the pseudo-label propagation. The complete propagation results are shown in
Tables 4 and 5. These results demonstrated that a large number of pseudo-samples were
involved in this procedure and only a few incorrect labels were identified.

In the second set of experiments, we conducted an ablation test to demonstrate the
advantage of the proposed CapLoss approach. The results in Table 6 indicated that AI-
TFNet combined with CapLoss yielded better OA accuracy than the original cross-entropy
losses for the three datasets. This ablation experiment further demonstrated that CapLoss
had extracted information from the pseudo-labeled samples based on the generated confi-
dence score, indicating that it could efficiently provide additional useful information for
optimizing the whole network.

Table 4. Number of original samples, pseudo-label samples, and incorrect pseudo-label samples of
each class for the University of Pavia dataset.

Class Original Pseudo Incorrect Pseudo Labels

1 20 2736 0
2 20 3704 0
4 20 3913 0
5 20 240 0
6 20 1498 0
7 20 1072 0
8 20 4319 0
9 20 2417 0

Total 180 17, 899 0

Table 5. Number of original samples, pseudo-label samples, and incorrect pseudo-label samples of
each class for the Houston dataset.

Class Original Pseudo Incorrect Pseudo Labels

1 10 4094 0
2 10 1412 0
3 10 7809 0
4 10 1582 0
5 10 1865 0
6 10 1608 0
7 10 1067 0
8 10 3364 12
9 10 1164 0

10 10 8684 0
11 10 2856 0
12 10 3201 0
13 10 983 0
14 10 1599 0
15 10 1273 0

Total 150 42, 561 12

Table 6. OA(%) for AI-TFNet using cross-entropy loss or CapLoss for different datasets.

Loss Function UP Salinas Houston

Cross-entropy loss 98.57 98.22 89.89

CapLoss 98.73 98.59 90.74

Furthermore, for verifying the effectiveness of the active inference on the parame-
ter migration and the sample expansion in the proposed pseudo-label propagation, we
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observed in Table 7 that the active inference transfer parameter had improved the classifi-
cation accuracy, which ensured a more precise and efficient initialization for TFNet. As a
result, TFNet could then provide better convergence results. The active sample expansion
increased the diversity of the training set samples and improved the classification capacity
of the network. The experiments on multiple datasets further confirmed the efficiency and
suitability of the proposed AI-TFNet.

Table 7. Classification accuracy of ablation experiments for three datasets. (The best results are
represented in bold).

TFNet Pre-Seg Transfer AI Sample Expansion UP Salinas Houston

X 94.16 91.09 87.58
X X 94.57 91.50 88.69
X X 96.05 97.47 88.10
X X X 98.64 98.56 90.50

3.4. Classification Result and Analysis

In this section, we compare our proposed method with the aforementioned algorithms
on the three different datasets. A total of 20, 10, and 10 samples from each class were
selected as the labeled training samples for the University of Pavia, Salinas, and Houston
datasets, respectively. The RGB image segmentation model Deeplabv3 was also evaluated
in our experiments, as its loss function design was similar to that used in our proposed
TFNet. The training and test sets of three datasets are listed in Tables 1–3. The classification
results with the mean and the standard deviation values of the different algorithms are
summarized in Tables 8–10, and ten random iterations were performed in order to reduce
any potential bias. The optimal results are indicated in bold.

Table 8. Classification accuracy of different methods on the University of Pavia dataset with 20 labeled
samples for 10 random iterations. (The best results in each row are represented in bold).

Class SVM SVMCK DcCapsGAN LMAFN SSRN SSFCN TFNet AI-TFNet

1 62.80± 4.04 71.24± 6.06 93.77± 0.05 93.63± 5.21 99.74± 0.81 58.10± 3.12 88.71± 2.71 97.81± 0.41
2 65.35± 1.89 67.30± 7.50 90.04± 0.01 88.88± 7.31 99.10± 0.62 84.91± 3.29 92.55± 2.12 99.90± 0.13
3 72.15± 5.68 90.73± 2.28 81.99± 0.09 99.39± 0.70 79.45± 21.15 79.36± 6.78 95.33± 3.14 100± 0
4 92.54± 1.28 95.79± 1.08 97.16± 0.03 97.54± 1.15 78.89± 4.57 89.09± 2.11 98.42± 0.84 98.52± 0.18
5 99.14± 0.41 99.62± 0.32 99.92± 0.06 99.88± 0.14 99.92± 0.13 95.54± 0.12 100± 0 100± 0
6 65.03± 10.46 92.40± 3.01 95.93± 0.01 97.51± 2.48 85.93± 18.10 81.69± 7.32 98.96± 0.72 94.17± 1.24
7 86.20± 1.51 92.29± 4.94 98.44± 0.03 100± 0 79.25± 8.77 86.33± 5.75 99.84± 1.31 100± 0
8 77.39± 2.54 85.29± 8.07 93.46± 0.05 86.82± 19.77 83.82± 7.85 61.82± 3.84 95.84± 3.14 98.97± 0.19
9 96.83± 1.28 95.07± 2.83 99.85± 0.13 99.01± 1.07 98.88± 1.92 99.78± 1.65 99.89± 1.78 99.65± 0.12

OA (%) 70.60± 2.49 77.98± 3.02 92.50± 0.16 92.49± 5.68 91.36± 0.03 79.11± 3.84 94.16± 2.45 98.73± 0.20
AA (%) 79.71± 2.03 87.76± 0.89 94.51± 0.02 95.85± 3.65 89.44± 2.02 73.15± 2.14 96.62± 2.74 98.81± 0.19

KAPPA (%) 63.13± 3.10 72.50± 3.42 90.22± 0.02 90.38± 7.06 88.82± 4.26 72.72± 3.61 92.39± 1.57 98.32± 1.82
Test Time (s) 2.89 45.10 33.62 4.23 28.54 0.13 0.07 0.06
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Table 9. Classification accuracy of different methods on the Salinas dataset with 10 labeled samples
for 10 random iterations. (The best results in each row are represented in bold).

Class SVM SVMCK DcCapsGAN LMAFN SSRN SSFCN TFNet AI-TFNet

1 97.09± 0.60 96.74± 3.99 99.98± 0.02 99.68± 0.28 99.95± 0.09 92.59± 0.23 100± 0 100± 0
2 98.48± 0.59 94.29± 5.52 99.97± 0.02 99.00± 1.32 98.37± 2.59 88.83± 2.12 98.54± 1.21 99.94± 0.05
3 88.82± 4.52 85.33± 10.27 99.98± 0.02 96.02± 1.87 94.05± 7.52 96.94± 3.75 100± 0 100± 0
4 99.42± 0.37 99.08± 0.04 99.90± 0.02 98.60± 2.80 97.04± 3.41 99.71± 1.02 100± 0 97.22± 2.49
5 96.80± 1.15 95.51± 5.43 96.28± 0.03 96.96± 2.62 98.72± 1.00 87.29± 5.85 95.61± 2.14 98.61± 0.78
6 99.29± 0.20 97.72± 3.21 99.96± 0.02 99.97± 0.05 99.70± 0.44 99.29± 1.13 98.75± 2.14 100± 0
7 99.36± 0.09 90.06± 9.00 99.95± 0.03 99.96± 0.04 98.65± 2.30 91.11± 3.78 99.91± 0.51 99.97± 0.03
8 70.76± 13.07 73.38± 1.07 53.60± 0.02 85.04± 6.35 88.44± 4.16 56.46± 17.52 75.57± 3.85 96.56± 0.94
9 97.03± 0.62 95.74± 2.38 99.96± 0.01 99.93± 0.13 99.36± 0.58 87.22± 4.86 99.62± 1.21 99.80± 0.16

10 79.43± 8.15 89.57± 2.67 93.51± 0.03 94.39± 1.05 95.03± 3.13 87.08± 5.78 84.36± 3.75 99.08± 0.03
11 97.19± 2.13 99.74± 0.43 99.81± 0.01 99.85± 0.19 95.45± 3.55 94.8± 3.21 91.68± 2.85 99.90± 0.09
12 99.86± 0.13 95.93± 5.92 99.98± 0.03 99.87± 0.08 99.81± 0.18 97.02± 1.78 99.42± 0.77 100± 0
13 97.16± 0.16 97.57± 1.12 99.88± 0.01 99.98± 0.04 95.43± 3.71 94.92± 2.18 99.77± 0.41 98.78± 0.22
14 94.08± 0.89 97.29± 0.84 99.55± 0.05 99.87± 0.14 92.24± 9.58 80.84± 7.59 99.90± 0.37 99.34± 0.19
15 47.60± 23.66 77.48± 7.66 83.28± 0.01 78.54± 18.11 69.50± 5.22 66.25± 16.37 86.81± 5.12 96.72± 0.25
16 94.10± 3.03 84.90± 7.23 99.25± 0.03 93.46± 7.52 100± 0 64.49± 7.32 96.6± 2.14 99.47± 0.14

OA (%) 83.96± 1.95 87.43± 2.16 87.43± 0.01 93.00± 2.02 91.38± 0.87 79.84± 3.12 91.09± 2.14 98.56± 0.12
AA (%) 91.03± 1.04 91.90± 1.88 95.30± 0.02 96.32± 1.45 95.11± 0.63 86.55± 2.18 89.85± 1.75 99.08± 0.11

KAPPA (%) 82.16± 2.14 81.70± 2.58 86.10± 0.01 92.20± 2.27 90.43± 0.95 77.76± 2.75 90.09± 0.97 98.40± 0.13
Test Time (s) 5.46 86.60 89.29 5.35 51.98 0.16 0.06 0.06

Table 10. Classification accuracy of different methods on the Houston dataset with 10 labeled samples
for 10 random iterations. (The best results in each row are represented in Bold).

Class SVM SVMCK DcCapsGAN LMAFN SSRN SSFCN TFNEt AI-TFNet

1 89.77± 5.82 75.46± 5.99 85.03± 0.03 93.94± 5.34 87.65± 1.45 73.05± 0.73 95.81± 3.42 92.05± 1.99
2 87.56± 8.74 93.62± 2.80 99.86± 0.07 92.83± 4.74 97.57± 3.55 76.49± 0.67 83.31± 1.41 78.21± 0.88
3 99.71± 0.13 99.24± 0.95 98.68± 0.11 98.75± 0.73 100± 0 74.45± 0.16 95.78± 2.99 100± 0
4 89.30± 2.33 77.29± 2.80 92.78± 0.22 90.66± 2.36 98.72± 2.22 58.67± 0.25 93.65± 0.37 96.74± 0.02
5 98.62± 0.79 93.18± 2.54 98.91± 0.07 88.85± 22.06 94.93± 7.69 86.47± 0.99 99.54± 0.45 100± 0
6 89.52± 6.65 93.84± 4.52 88.46± 0.39 91.94± 5.38 100± 0 43.73± 1.44 76.93± 3.65 87.30± 0.03
7 63.67± 10.54 67.30± 18.77 78.21± 0.11 88.47± 5.40 91.67± 3.05 55.94± 0.52 86.27± 0.95 89.88± 3.39
8 55.62± 9.05 50.31± 5.76 68.09± 1.79 72.35± 4.67 98.03± 3.41 50.20± 0.27 66.67± 1.78 73.5± 1.62
9 71.58± 7.26 70± 8.70 48.95± 0.39 76.09± 6.55 75.31± 7.49 35.51± 0.49 61.84± 0.45 76.35± 4.53

10 75.02± 5.63 70.09± 4.94 93.50± 0.03 95.22± 4.70 82.14± 18.99 73.40± 0.71 92.14± 0.53 100± 0
11 55.66± 6.87 61.08± 6.14 77.49± 0.33 72.42± 14.78 54.50± 5.08 45.16± 0.07 93.36± 1.02 97.81± 0.22
12 41.03± 9.45 57.25± 7.79 88.93± 0.32 86.15± 8.77 75.67± 14.79 50.72± 0.53 91.99± 3.96 95.05± 0.36
13 37.30± 2.47 82.57± 10.59 70.73± 1.87 86.15± 8.77 93.42± 3.14 24.24± 24.24 88.45± 0.79 72.44± 0.54
14 97.89± 1.63 94.55± 4.04 99.60± 0.11 99.62± 0.77 98.82± 1.25 88.94± 88.94 100± 0 100± 0
15 98.25± 0.88 99.75± 0.42 99.94± 0.07 100± 0 95.97± 0.67 50.88± 50.88 97.49± 4.35 98.84± 0.15

OA (%) 75.13± 1.42 75.55± 0.59 84.79± 0.13 87.79± 1.34 84.35± 0.97 60.09± 0.10 87.58± 0.66 90.50± 0.23
AA (%) 76.70± 1.06 79.04± 0.68 85.95± 0.04 89.58± 1.15 89.63± 0.83 59.19± 0.10 88.21± 0.68 90.61± 0.16

KAPPA (%) 73.12± 1.53 73.60± 0.62 83.54± 0.14 86.79± 1.45 83.08± 1.05 56.94± 0.10 86.58± 0.72 89.73± 0.25
Test Time (s) 1.20 20.19 21.04 1.89 11.55 0.37 0.10 0.12

In Tables 8–10, we observed that the deep-learning-based algorithms (DcCapsGAN,
LMAFN, SSRN, and TFNet) outperformed SVM in terms of their strong feature extraction
abilities through convolution and nonlinear activation functions. Compared to SVM,
which only utilized spectral information, the spectral–spatial-based algorithms greatly
improved the classification performance due to the combination of spatial and spectral
information. While the sequential spectral and spectral–spatial feature extraction method
(SSRN) and spectral–spatial feature extraction method with two branches (SSFCN) fused
the spectral and spatial information in their last steps, the proposed TFNet performed
a fusion operation at different hybrid stages in order to exploit the spectral and spatial
features at both low and high levels, which led to more representative and discriminant
features for the HSI classification task. Compared to the proposed TFNet, the AI-TFNet
improved the classification efficiency by adaptively propagating the pseudo-labels in the
pre-segmentation regions with the proposed adaptive spectral–spatial metric threshold for
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augmenting the available training datasets. Therefore, the proposed AI-TFNet achieved the
best accuracy on all three datasets. In the case of 20 training samples for each class in the
Pavia University dataset, the results were more than 98% accurate. For the Salinas datasets,
the classification accuracy was better than 98% with only 10 labeled samples, indicating
that the proposed AI-TFNet also achieved the best classification results for most categories.
Therefore, the accuracy performance verified the superiority of the proposed TFNet and
AI-TFNet, which further demonstrated the effectiveness of the proposed multi-stage hybrid
structure with an adaptive active pseudo-label propagation learning strategy.

The classification results of the different algorithms are shown in Figures 11–13. The
spectral-based SVM presented less spatial continuity in the classification map due to the loss
of spatial information. Meanwhile, we observed that the only spatial information included
in the algorithms was likely to omit discrete or tiny objects or misclassify the pixels around
the boundary of different categories. We observe that the classification maps in Figure 12i,j
contained fewer misclassified pixels than those in Figure 12c–h. Specific categories, such as the
untrained grape and the untrained grape vineyard, had better connectivity and smoothness
in their classification results using TFNet and AI-TFNet. Therefore, as shown in Table 10, the
accuracy of these two categories was higher than for the other approaches, which further
proved that the merging of the spatial–spectral features of different layers had augmented the
distinctions for different categories. In addition, in Tables 8–10 and the classification maps in
Figures 11–13, we noted that the active pseudo-sample propagation learning utilized in AI-
TFNet accuracy and performance, even with limited training samples. This further illustrated
the efficiency of the proposed active inference pseudo-sample propagation and CapLoss
functions. In Figure 11, we noted that in the red rectangular region, our proposed AI-TFNet
indicated smoother classification results than other conventional algorithms. In Figure 12, in
the black rectangular region, our proposed AI-TFNet provided more distinguishable details
for two related land-cover categories.

(a) (b) (c) (d)
‘

(e)

(f) (g) (h) (i) (j)

Figure 11. Classification maps for the University of Pavia dataset with 20 labeled training samples per
class. (a) False color image; (b) ground truth map; (c) SVM; (d) SVMCK; (e) DcCapsGAN; (f) LMAFN;
(g) SSRN; (h) SSFCN; (i) TFNet; (j) AI-TFNet.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Classification maps for the Salinas dataset with 10 labeled training samples per class.
(a) False color image; (b) ground truth map; (c) SVM; (d) SVMCK; (e) DcCapsGAN; (f) LMAFN;
(g) SSRN; (h) SSFCN; (i) TFNet; (j) AI-TFNet.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 13. Classification maps for the Houston dataset with 10 labeled training samples per class.
(a) False color image; (b) ground truth map; (c) SVM; (d) SVMCK; (e) DcCapsGAN; (f) LMAFN;
(g) SSRN; (h) SSFCN; (i) TFNet; (j) AI-TFNet.

Furthermore, to prove the efficiency of the proposed TFNet and AI-TFNet, we also
listed the operation time of all the algorithms on each dataset in Tables 8–10. In practical
remote-sensing applications, the training process can be executed by an offline model;
therefore, only the testing time was reported in Tables 8–10. We observed that the proposed
TFNet and AI-TFNet only cost 0.07 seconds and 0.06 seconds, 0.06 seconds and 0.06 seconds,
and 0.1 seconds and 0.12 seconds when tested on the three different datasets, respectively.
Therefore, the experimental results demonstrated that TFNet and AI-TFNet had better
performance and efficiency than other methods. This can be attributed to the end-to-end
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structure of TFNet, which was adopted to overcome the challenge introduced in patch-wise-
based repetitive computations. Meanwhile, the proposed active inference pseudo-sample
propagation strategy with a CapLoss function further mitigated the requirement of a high
quantity of labeled training samples for deep-learning-based algorithms.

4. Conclusions

In this paper, we proposed a novel active inference transfer convolutional fusion
network (AI-TFNet) to improve the accuracy and efficiency of HSI classification, especially
when training samples were limited in quantity. First, the proposed multi-stage hybrid
spectral–spatial fully convolutional fusion structure (TFNet) overcame the computational
repetition caused by patch-wise-based deep-learning algorithms. In addition, the multi-
stage hybrid structure was able to merge low-level spectral–spatial features (detailed
information) with high-level spectral–spatial features (contextual information), which not
only avoided the redundant path-wise computations but also revealed local and high-level
contextual features. In addition, a confidence score and a correct CapLoss function were
designed and utilized to augment the training sample sets for active inferential pseudo-
labeled samples and supported the backpropagation in the training stage, even with small
sample sets. The experimental results on three HSI datasets further demonstrated that the
proposed TFNet and AI-TFNet had better outcomes in accuracy, efficiency, and classification
performance, regardless of sample size.

Although the proposed TFNet and AI-TFNet had robust results for classification
accuracy, expanding their application with more adaptive, automatic training samples
via online inference and contextual analysis is a challenging direction to be addressed in
future research.
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