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Abstract: The widespread adoption of green energy resources worldwide, such as photovoltaic (PV)
systems to generate green and renewable power, has prompted safety and reliability concerns. One of
these concerns is fault diagnostics, which is needed to manage the reliability and output of PV systems.
Severe PV faults make detecting faults challenging because of drastic weather circumstances. This
research article presents a novel deep stack-based ensemble learning (DSEL) approach for diagnosing
PV array faults. The DSEL approach compromises three deep-learning models, namely, deep neural
network, long short-term memory, and Bi-directional long short-term memory, as base learners for
diagnosing PV faults. To better analyze PV arrays, we use multinomial logistic regression as a meta-
learner to combine the predictions of base learners. This study considers open circuits, short circuits,
partial shading, bridge, degradation faults, and incorporation of the MPPT algorithm. The DSEL
algorithm offers reliable, precise, and accurate PV-fault diagnostics for noiseless and noisy data. The
proposed DSEL approach is quantitatively examined and compared to eight prior machine-learning
and deep-learning-based PV-fault classification methodologies by using a simulated dataset. The
findings show that the proposed approach outperforms other techniques, achieving 98.62% accuracy
for fault detection with noiseless data and 94.87% accuracy with noisy data. The study revealed that
the DSEL algorithm retains a strong generalization potential for detecting PV faults while enhancing
prediction accuracy. Hence, the proposed DSEL algorithm detects and categorizes PV array faults
more efficiently, reliably, and accurately.

Keywords: deep learning; ensemble learning; fault detection; fault classification; green energy
resources; green energy potentials and development; photovoltaic (PV); stacking

1. Introduction

The need for renewable energy sources has grown in recent years due to environmental
concerns and the scarcity of conventional energy sources. This universe has enormous
green energy potential. Recently, solar, wind, tidal, and geothermal energy have become
increasingly well-known as reliable, stable, and significant energy sources. Solar power
is among the most effective green energy sources [1–3]. Due to its abundance, durability,
and sustainability, solar energy is undoubtedly a vital renewable energy source. The power
generated by a PV panel is proportional to the total amount of solar radiation received on
its surface; this solar radiation comes either directly from the sun or indirectly through
diffusion or reflection. PV systems are popular because of their accessibility, adaptability,
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flexibility, eco-friendliness, availability, simple design, minimal air pollution, and fuel
cost [4,5]. For instance, PV power generation would minimize carbon dioxide discharges
by around 69 to 100 million tons by 2030 [6]. The installed capacity of the solar industry
around the world has gradually expanded since 2011; between 2017 and 2022, solar power
installations were expected to add up to 438 GW, according to the Inter-National Renewable
Energy Agency (IRENA). Solar farms or rooftop PV-generating stations could provide
electricity and manage various loads [7,8]. Despite having many positive qualities, the PV
system faces significant challenges, such as reliability issues, low power output, high initial
investment requirements, dependence on environmental conditions, such as temperature
and humidity, and vulnerability to faults. Fault susceptibility in PV systems is one of many
critical issues that must be solved.

This paper addresses the severe and challenging issue of detecting and classifying PV
system faults. The photovoltaic (PV) array is a fundamental component of PV systems that
generate electricity for the grid and is typically installed outdoors in harsh, challenging, and
severe environmental conditions. With the proliferation of power electronic devices and
non-linear loads, the power quality of the distribution grid has deteriorated, as reported by
Kerrouche et al. [9]. Furthermore, Lodhi E. et al. investigated that thunderstorms, shadows,
and physical or temperature impacts on wire insulation can induce faults in PV arrays.
These incidents can substantially decrease the PV system’s efficacy and output power [10].
For example, [11] presented a PV system monitoring study in which a loss of annual energy
of 18.9 percent has been reported due to multiple faults. Faulty PV arrays can lead to
fires or explosions, putting lives and property at risk. As an illustration, ground fault
created a fire hazard in Bakersfield, California, as documented by the authors. In addition,
the authors stated that a big PV plant in the state of California in the United States was
involved in a fire hazard due to a short-circuit fault [12,13]. The PV array is susceptible to
experiencing various faults (including open circuits, short circuit, ground, line-to-line, arc,
hot spot, bridge, partial shading, and degradation faults) [14]. PV faults are potentially
dangerous events that require immediate attention and response. Early detection of these
issues is extremely important to warn the user of impending PV system failures. This has
encouraged researchers to focus more on overcoming PV system interference, such as fault
detection and diagnostics. Various fault classification and diagnosis techniques have been
developed to address the challenges mentioned above for protecting PV systems. These
PV-fault-diagnostic techniques can be classified into four categories: protective devices,
signal processing-based models, performance comparison-based models, and artificial
intelligence-based models.

The first category makes faults diagnostic by utilizing protective devices. The national
electrical installation code suggests using an overcurrent protection device, an arc fault
circuit interrupter, and a ground fault protection device to identify line-to-line, arc, and
line-to-ground faults, respectively [15,16]. These safety devices have fuses that melt when
the fault current exceeds their rating, isolating the fault. On the other hand, these protective
devices cannot detect PV array faults with lower fault current magnitudes. Hence, faults
may be undiscovered for an extended period, demonstrating the limitations of conventional
PV array protection mechanisms. The second domain utilizes signal processing-based
models (the working principle is reflected signals) to detect PV array faults. Time domain
reflectometry (TDR) diagnoses and locates faults using the time-specific features of reflected
signals. TDR introduces a signal of external voltage into the system and examines the
impedance variation in the rejected signal. In [17], a 1 MW PV system was analyzed
experimentally, utilizing TDR to identify faults in PV arrays. The spread spectrum time
domain reflectometry is mentioned in another study [18] to locate and detect line-to-ground
faults. However, its accuracy is substantially affected by the device’s distance from the fault
spot. However, these methods could be more cost-effective since they need supplementary
equipment and development tools to extract the signals’ features. The third domain
employs performance comparison-based techniques to detect PV array faults. There are
two primary approaches used in performance comparison-based techniques. In the first
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approach, threshold limits are compared to real-time parameters. The second approach
evaluates the experimental constraints by comparing them to the predicted values of the
PV model’s constraints. In [19], a fault detection approach is presented to compute the
power loss by correlating monitored and expected AC output power. The research [20]
reported an entropy-based technique to detect open circuit, line-to-line faults even when
blocking diodes are present. A study [21] conducted a fault detection technique that
estimated the projected maximum power using the MPPT algorithm and compared it to
the power measured by the meter. In [22], Hariharan et al. presented a fault-diagnosis
methodology to differentiate line-to-line faults from normal and shading fault conditions.
However, the suggested method is inapplicable to larger PV farms with different solar
irradiances on PV modules. The precision of the aforementioned techniques is proportional
to the value of the threshold limit. Despite its simplicity and the model’s dependence on
MPPT operation, MPPT failure may affect the diagnosis efficiency of these performance
measurement techniques. In addition, the model must be periodically updated because PV
parameters are extremely reliant on weather changes.

For detecting and classifying PV faults, the fourth domain employs artificial intelligence-
based algorithms. In [23], a fault detection approach is proposed based on an SVM classifier
to identify short-circuit faults. However, multiple filters are needed, which makes this
method costly. Chen et al. [24] developed an optimized kernel extreme learning machine
(KELM) technique to diagnose an open circuit, short-circuit partial shading, and degrading
faults. This approach has a high-performance ratio for experimental and simulated sce-
narios, but its computational time is high compared to other techniques. A graph-based
semi-supervised learning technique is reported in [25] to identify and classify PV. The
ANN method has been implemented in a monitoring system for PV panels to forecast the
output power for detecting degradation [26]. When data is noisy, the ANN model cannot
be used. Deep learning has recently attracted considerable attention due to its capability to
accommodate complex datasets and advancements in computing capacity. A variety of
ANN designs, from a basic and simple ANN network to more complex and complicated
models, such as auto-encoder [27], self-organizing maps [28], and LSTM [29] networks,
have been effectively used to forecast the production of PV power plants. A probabilistic
neural network (PNN) algorithm in [30] examines the PV array in the presence of blocking
diodes to evaluate the influence of line-to-line and line-to-ground faults. However, the
proposed method does not consider faults with a high impedance. Its relevance to real
PV arrays has yet to be verified, and its implementation is complicated and expensive.
Multiple layers of perceptron neural networks have been created and successfully identify
PV faults [31]. However, this study needs great consideration because extracting features
from a wavelet and finding the hidden layer in a neural network architecture is hard. The
authors [32] designed a deep residual network for detecting PV faults. The model exhibits
good classification accuracy in simulated and experimental conditions. However, this
model only detected line-to-line and open circuit faults. An AdaBoost ensemble approach
is proposed to diagnose PV array faults [33]. It showed good detection accuracy of about
97.58%, but it only detected open circuits, short circuits, and degradation faults. Another
complicated approach is discussed using CNN, AlexNet, and SVM [34]. However, the
results showed relatively low accuracy, between 69.39 and 73.53 percent. A supervised
learning technique follows the multilayer perceptron for fault detection in PV systems [35].
However, this technique is constrained to particular environmental conditions, as the
study only collects data during winter. A literature review revealed that fault detection
is challenging due to degradation, high impedance, MPPT, and power supply. Therefore,
previous studies conclude that more research is still needed for more robust performance.

Ensemble learning methods have recently seen widespread application across many
fields of study. Ensemble learning-based methodologies have been implemented for
anomaly detection, fault diagnostics, and PV energy estimation [36,37]. An ensemble
learning-based approach is introduced for the next day’s PV output power prediction in
smart grids [38]. This model illustrates that the proposed framework outperforms individ-
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ual and benchmark models in terms of accuracy. However, this model has limitations when
dealing with time series data. The ensemble learning approach is suggested for diagnosing
line-to-line faults by combining naive Bayes, SVM, and KNN classifiers. These classifiers
performed well under various conditions [39]. Another research [40] investigated bagging
and stacking-based ensemble learning for anomaly detection in the energy production of
grid-interfaced PV systems. The results obtained 94 percent for stack-based ensemble learn-
ing and 79.50 percent for bagging-based ensemble learning. Wu et al. [41] presented a radial
basis function (RBF) kernel extreme learning machine (ELM) using a simulated annealing
(SA) approach for the identification of partial shading, short circuit, and aging defects in the
PV system. The proposed model boosts accuracy, but training and testing times are longer
than ELM or RBF-ELM. Consequently, the suggested methodology is slower. Another
study utilized the ensemble learning model compromising decision tree, quadratic discrim-
inant analysis, and extra trees with entropy [42]. This model detected partial shading and
short-circuit faults with 97.46% accuracy before and 97.67% after optimization. Overall,
these fault identification algorithms have produced promising diagnostic outcomes. Most
of these methods, however, depend on manually extracting features, which requires an
expert level of familiarity with signal processing and diagnostics. Furthermore, manual
feature extraction is time-intensive and costly because of many filter requirements. Hence,
better performance is still needed for an ensemble learning-based method that accurately
diagnoses various faults in PV arrays.

This research article presents a novel deep stack-based ensemble learning (DSEL)
algorithm for diagnosing and evaluating PV system faults that overcome the limitations
of previous research. The DSEL approach integrates deep neural network (DNN), long
short-term memory (LSTM), and Bi-directional long short-term memory (Bi-LSTM), three
distinct deep-learning models, as base learners for diagnosing PV faults. Multinomial
logistic regression (MLR) as a meta-learner is used to integrate the predictions from the
base learners. With optimal parameters for weak or base learners, the results demon-
strate that the suggested approach enhances the classification performance and retains
a powerful generalization capability for PV system fault diagnosis. The proposed DSEL
approach provides reliable and accurate PV-fault diagnostics for noiseless and noisy data.
The comprehensive and deep quantitative assessment of the suggested DSEL algorithm is
compared to eight earlier classification approaches (both classical machine-learning and
deep learning-based), such as Probabilistic neural network, Bi-LSTM, LSTM, DNN, ANN,
Gradient Boost, Support vector machine, AdaBoost, and Random forest. For a meaningful
comparison, all these fault-diagnosis techniques will be statistically evaluated on a consis-
tent dataset. This consistent comparison examination has not been explored in the previous
fault-diagnosis literature. Instead, the authors selected to apply their methodologies to
datasets collected under various environmental circumstances and system configurations,
with varying array sizes and characteristics, often only two or three fault categories, and
usually without MPPT. Therefore, comparing the performance provided in one research
work to that presented in another is almost meaningless in past research on fault diagno-
sis. Furthermore, in contrast to recent studies, this research considers five distinct faulty
conditions and one no-fault condition: open circuit fault, short-circuit fault, bridge fault,
partial shading fault, degradation fault condition, and no-fault condition. Very little work
has been performed on these specific faults in the deep-learning domain. Furthermore, this
research article uses the DSEL approach for the first time to analyze, classify, and detect
these specific PV array faults. Future studies on fault diagnosis for PV array systems will
benefit from this research work. The significant contributions of the proposed research
work are mentioned as follows:

• Designing a novel deep stack-based ensemble learning (DSEL) approach for PV-fault
diagnosis with deep base learners based on a probabilistic strategy without intensive
hyperparameter tuning;
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• A thorough review of fault-diagnosis techniques published in earlier studies has been
conducted to better comprehend the effectiveness and performance of the proposed
DSEL approach compared to other methods;

• The key features have been collected by examining the fluctuations in the I–V charac-
teristic curves of PV arrays under normal and fault conditions;

• The proposed DSEL methodology can identify and categorize defects through many
critical scenarios with high impedances, low mismatch, irradiance levels, etc.

The rest of this paper is organized as follows: Section 2 presents the description of the
PV system and related faults, while Section 3 provides the framework for the proposed
DSEL fault-diagnosis algorithm. Then, simulation results evaluation and comparison with
other techniques are analyzed in Section 4. At last, the conclusion and future directions of
this study are presented in Section 5.

2. Description of PV System and Related Faults

PV systems are frequently divided into grid-interfaced and stand-alone systems based
on their possible applications. The schematic diagram of the grid-interfaced PV system
under consideration is depicted in Figure 1. In addition to PV modules, a grid-interfaced
PV system comprises PV arrays, a DC-to-DC boost converter, an MPPT tracker, DC-to-AC
three-phase inverter, protective devices, and auxiliaries. The PV array under investigation
comprises five parallel strings, each with five series modules. The maximum power point
tracking (MPPT) technique controls the boost converter’s switching, which monitors the
duty cycle. This research uses the dragonfly optimization (DFO) algorithm to regulate and
control the DC-to-DC converter’s duty cycle, as reported in [43]. In order to integrate with
the grid, DC power from PV modules must be converted to AC power using an inverter.
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2.1. Modelling of the PV Array

PV cells are often characterized using either a single or double-diode model. The
superiority of two-diode models has been established. However, its popularity is limited
by further parameter limits. The single-diode form is preferred due to its lower cost and
advantageous balance of precision and convenience. As a result, the one-diode model is
adopted in this study, as it has been in previous pioneer studies [10]. Figure 2 displays the
equivalent one-diode PV module model.

I = Iphc − I0{exp (
q(V + I × Rsc)

nkT
)− U + I × Rsc

Rshc
} (1)
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where Iphc and I0 are the photogenerated current and reverse saturation current of the PV
module, respectively, T is the operating temperature, and K is the Boltzmann constant,
q is the electron charge, and V is the module’s output voltage. The analogous series
resistance is denoted by Rsc, and the corresponding parallel resistance is denoted by Rshc.
The specifications for the BP-MSX 120 Module’s output characteristics under standard test
conditions (STC) are listed in Table 1. Numerous PV cells are coupled in series to make a
PV module, and PV modules are successively linked in series and parallel to make a PV
string. The collection of these PV strings is called a PV array. The PV array is a collection of
PV strings. These PV arrays can produce electricity in response to the intended demand.
Assume that Npc and Nsc are the numbers of cells in parallel and series, respectively. As a
result, Equation (1) can be transformed into Equation (2).

I =
(

Iphc.Npc

)
− (I0.Nsc)× {exp (

q(Npc
Nsc
× I × Rsc + V)

nkTNsc
)− 1} (2)

Table 1. The specifications for the BP-MSX 120 PV module at STC [34].

Parameter Values

Short-Circuit Current 3.87 (A)
Maximum Current 3.56 (A)

Open Circuit Voltage 42.1 (V)
Maximum Voltage 33.7 (V)
Maximum Power 120 (W)

Maximum Series Fuse Rating 10a
Operating Temperature (−40~+85) ◦C
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2.2. Fault Analysis in PV System

PV systems can occasionally experience a variety of electrical faults because of many
internal layout abnormalities [14]. The PV array under investigation comprises five parallel
strings, each with five series modules. In contrast to recent studies, this research considers
five distinct faulty conditions and one no-fault condition. Figure 1 displays the faults
examined for the research to undertake a qualitative assessment of the proposed DSEL
algorithm and its comparison with other traditional ML and DL-based fault-diagnostic
techniques. A detailed discussion regarding these specific faults is described below.

2.2.1. Open Circuit Fault

An incidental disconnection issue within a string or between two neighboring strings
is known as an open circuit fault in PV arrays [15]. It can happen for various causes,
including a broken cable connecting two strings, something dropping on solar panels, or a
loose connection between two points. The open voltage in these circumstances remains
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virtually constant, while the maximum power and short current drop drastically as the
quantity of disconnected strings increases.

2.2.2. Short-Circuit Fault

A sudden short circuit between two PV array locations at various potential levels
causes short-circuit faults. It might happen within the same string or across two adjacent
strings [12], causing a fire disaster. The magnitude of a short-circuit fault is often determined
by mismatch level and fault path impedance. When a short-circuit defect occurs, the
PV arrays’ open-circuit voltage rapidly drops, whereas the short-circuit current remains
constant as in any other regular string.

2.2.3. Bridge Fault

The bridge fault refers to a low-resistance link between two potential places in a string
of modules or wires. The bridge fault typically results in lower array voltage but only a
slight change in array current. The bridge fault typically results in a lower array voltage
but only a little drop in array current. A higher voltage difference between the fault sites
reduces open circuit voltage, maximum current, and maximum voltage, respectively.

2.2.4. Partial Shading Fault

This is known as a partial shading fault condition when certain modules are completely
shaded and others are partially shaded. It is a transient situation that results in a temporary
drop in power [43]. There can be two categories of shading. The first is static shading, and
the second is dynamic shading. Static shading is created by exposure to leaves, dust, and
bird droppings on solar panels. In contrast, dynamic shading is caused by the temporary
shadow cast by surrounding trees, buildings, or overhead power lines. The shaded part
in dynamic shading changes throughout time, resulting in a continual variation in output
power. The occurrence of several peaks in PV characteristics is caused by partial shading.
During PSF, there is a tremendous decrease in short-circuit current; however, open-circuit
voltage gradually reduces.

2.2.5. Degradation Fault

The degradation fault occurs due to increases in the value of series resistance between
the PV modules because of corrosion caused by water vapors or poor adherence of contacts.
The consequence of this fault is a reduction in the array’s power output because of the
increase in the resistance value. However, this fault scenario has noticed no change in open
circuit voltage and short-circuit current. Raising internal series resistance might lead to a
reduction in peak power.

PV systems are commonly affected by several electrical defects induced by several
irregularities in the configuration of PV arrays [14]. As seen in Figure 3a, when a fault
happens among PV panels, the power output from the array varies widely, even though
the operational characteristics of a single PV panel do not differ substantially. Figure 3a
shows the power-voltage characteristic curves under the normal and faulty scenarios, while
Figure 3b shows the current-voltage characteristic curves under the normal and faulty
scenarios. The short-circuit current will drop significantly if a PV array experiences an
open circuit fault. When a short-circuit fault occurs, the open-circuit voltage declines
significantly. The consequences of bridge fault are a reduction in open circuit voltage and
a smaller decrease in the short-circuit current of PV arrays. The P-V and I-V operating
curves behave differently under partial shading fault conditions. The open circuit voltage
gradually reduces; however, a tremendous decrease is observed in the short-circuit current
experience during partial shading fault. Compared to the typical PV array operation, the
degrading fault causes a reduction in the maximum current and voltage; however, no
changes have been observed in the PV array’s open-circuit voltage or short-circuit current.
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3. Proposed Fault-Diagnosis Model

There are two important phases when attempting to diagnose a fault with PV arrays—
the first phase in PV-fault diagnostics is collecting and processing raw data, and the
second is using a proposed algorithm to recognize and classify faults in PV systems.
Figure 4 depicts a workflow diagram for the proposed DSEL fault-diagnosis technique.
The steps of this workflow research investigation are examined and analyzed in detail in
the following sections.
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3.1. Data Acquisition and Preprocessing

Deep-learning algorithms work effectively when sufficiently trained on massive
amounts of data. Unfortunately, gathering extensive field data (made up of faulty and
standard samples) for any given PV array-operating scenario is impractical. The PV array’s
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unpredictable ambient temperature and solar irradiation cause this impracticability. In
addition, presenting an accurate PV system set up to the faults reported in this study can
result in substantial damage and hazardous circumstances. Because of this, simulation
is used to obtain the data used in this research. The model of the PV system utilized to
acquire the data is presented in detail here, along with a description of faulty cases and
the data itself. To examine the efficacy of the proposed DSEL methodology, a dataset
is gathered in both faulty and non-faulty operational circumstances using the MATLAB
Simulink model for a PV system, as shown in Figure 5. Six cases are taken into account
when analyzing the suggested DSEL algorithm, including open circuit (OC-Fault), short
circuit (SC-Fault), bridge (B-Fault), partial shading (PS-Fault), degradation (D-Fault), and
no-fault (No-Fault) conditions, as shown in Figure 1 of Section 2. Nine parameters extracted
for the data attributes are irradiance, temperature, open circuit voltage, short-circuit current,
form factor, maximum current, maximum voltage, maximum power, and output power
from the boost converter. Since these nine parameters are affected by PV system faults
directly or indirectly, they serve as representative datasets. In total, 3636 data samples
and labels were gathered. There are 606 instances of each class (No-Fault, SC-Fault, OC-
Fault, PS-Fault, B-Fault, and D-Fault). These 3636 samples were generated by executing PV
array simulations for the six scenarios indicated in Table 2 with different combinations of
parameter values adopted for data collection.
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Figure 5. Simulink-based model of PV Array System under consideration.

Table 2. Various parameter value combinations for the collection of data.

Parameter Targeted Values

Temperature 0 to 60 ◦C at a step change of 5 ◦C
Irradiance 100 to 1000 W/m2 at a step change of 30

Percentage of Partial Shading 30% to 70% at a step change of 15
High Impedances Values 25 Ω, 50 Ω, 75 Ω, 100 Ω, 150 Ω, 200 Ω

Fault Impedance 0 to 15 Ω at a step change of 5

In addition, the proposed DSEL algorithm is made to be compared with other PV-
fault-diagnosis techniques and will be statistically evaluated on this consistent dataset,
as observed in Table 2. This consistent dataset comparison investigation has not been
conducted in the earlier fault-diagnostic literature. Data missing and standardization are
problems arising during processing and extracting PV array characteristic parameters. A
lack of information for some variables is known as missing data. There are several potential
sources of data missing, such as equipment failures, human error in data entry, and others.
The average filling technique is utilized to approximate the missing values. In addition,
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data standardization is essential to enhance the dataset’s overall reliability by transforming
and standardizing.

3.2. Ensemble Learning-Based Algorithms
3.2.1. Ensemble Learning (EL)

The ensemble learning (EL) technique combines several base learner algorithm pattern
schemes when creating an ideal prediction model. The developed ideal prediction model
performs much better than the base learner algorithms alone. From this perspective,
this section attempts to demonstrate the critical aspects and concepts of those techniques
necessary to understand this study.

3.2.2. Stacking

Another ensemble learning (EL) method developed by Wolpert is stacking or stacked
generalization, which has been extensively applied in numerous domains since its incep-
tion [40]. Stacking combines the outcomes of multiple base learner models required to train
a new meta-learner model for the output result. The fundamental idea of stacking is built
on two stages of algorithms. The first stage includes several base learner algorithms, while
the second contains the meta-learner algorithm.

3.3. Framework of Proposed Fault-Diagnosis Algorithm

This paper highlights a customizable methodology that considers the ensemble ar-
chitecture to show the potential of stacked deep-learning models. Stacking is the most
advanced strategy for ensemble learning. The ultimate purpose of stacking is to discover
the optimal model combination for fault detection in PV arrays. Developing the stacking
ensemble model with reduced bias and variance highly depends on choosing the right base
models, describing the base models’ leveling, and selecting a suitable meta-learner. Both
homogenous and heterogeneous, multiple deep-learning algorithm families are studied
as potential foundation models. The literature research indicates that a stacking approach
using an ensemble of deep neural network (DNN), long short-term memory (LSTM), and
Bi-directional long-term memory (Bi-LSTM) classifiers is the most effective model for
PV-fault diagnostics. The following part provides a thorough explanation of these base
learner models.

3.3.1. Deep Neural Network (DNN)

An artificial neural network having numerous layers between the input and output
layers is known as a deep neural network (DNN). Data flows via neural networks in two
ways: the multilayer perceptron (MLP) model is used to predict the output for the provided
data in forwarding propagation, and the model updates its parameters in backpropagation
based on the prediction error. Figure 6 depicts the MLP architecture utilized for fault
classification. The feature vector is introduced into the model, and the output of the first
and subsequent hidden layers is given by the Equations below.

h1 = σ [W1.(x) + b1] (3)

hi = σ [W1i.(hi−1) + bi] (4)

Here i denotes the layer index, and the activation function is represented by σ. The
x-dimension is equal to 3636 × 9. Each column indicates a feature of the neural net, as
stated earlier. Following is the output of the MLP:

y = σso f t (hout) (5)

Each layer is assigned an activation function based on the hyperbolic tangent (tan h).
In order to identify the specific nature of a PV array fault, the output layer employs the
Softmax activation function.
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3.3.2. LSTM

Hochreiter et al. introduced LSTM networks, an updated recurrent neural network
(RNN) that aimed to capture long-term reliance in data sequences to counter the gradient
vanishing issue [29]. The local closest activation modifies a regular RNN’s hidden state,
sometimes referred to as short-term memory. On the other hand, the network weights are
adjusted by computations performed throughout the extended data sequence, which is
referred to as long-term memory. In order to maintain data integrity over extensive ranges,
LSTM is equipped with an activation state that is used as a weight. Figure 7 depicts the
basic structure of a single neuron in an LSTM neural network. The computation formulas
for LSTM neurons are as follows:

It = σ [Wxi (xt) + Whi (ht−1) + Wci (ct−1) + bi] (6)

Ft = σ
[
Wx f (xt) + Wh f (ht−1) + Wc f (ct−1

)
+ b f ] (7)

Ot = σ [Wxo (xt) + Who (ht−1) + Wco (ct) + bo] (8)

ht = ottan h(ct) (9)
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In this case, I, f, o, and c stand in place of the input gate, the forget gate, the output gate,
and the neuron memory cell, respectively. The neuron’s input and output are indicated
by the values of x and h, respectively. Whereas σ, W, and b denote the excitation function,
weight coefficient matrix, and bias matrix, respectively. In this study, x refers to input
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features compromising of PV system dataset, while h represents predicted output based on
the type of PV fault.

3.3.3. Bidirectional LSTM

Bidirectional LSTM, also called “Bi-LSTM”, is a specific RNN. The LSTM predicts
follow-up information. To improve prediction accuracy, however, the Bi-LSTM model may
simultaneously learn time-correlated info through both forward and backward directions.
Figure 8 depicts the architecture of the Bi-LSTM. Forward and backward LSTM hidden
vectors at a time are denoted by h f and h f , respectively. The h f and h f are independent
and only relate to their LSTM layers. The forward layer shows the unidirectional flow from
input to hidden to output [44]. Connecting the two hidden states allows us to compute the
final Bi-LSTM’s prediction yt, as depicted in Figure 8. The process can be described with
the help of Equations (10)–(12) as follows:

h f = LSTM
(

xt, h f (t−1)

)
(10)

hb = LSTM
(

xt, hb(t+1)

)
(11)

yt = σ [Why f

(
h f

)
+ Whyb (hb) + by] (12)

where LSTM (-) represents LSTM network, both the forward and backward LSTM layers’
weights at time t are denoted by Why f and Whyb, respectively. The activation function is
denoted by σ, while the bias of the output layer is indicated by by.
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3.4. Development of Base Learners and Meta-Learner for Proposed Algorithm

For the practical development of the DSEL algorithm for fault detection strategy, the
architecture of base learners (DNN, LSTM, and Bi-LSTM) and meta-learner model (MLR)
are briefly explained in the following section. Figure 9 illustrates a pseudocode for the
proposed DSEL approach.

3.4.1. Architecture of DNN

This subsection provides an overview of the DNN model’s internal structure, devel-
oped with the Keras deep-learning library. It comprises an input layer that accepts various
input features, two hidden layers with numerous nodes per layer and a relu activation
function, and an output layer with six neurons and a softmax activation function, which
directly links to the target value the model attempts to predict. The grid search technique
is used to determine the number of hidden layers. The 1–5 hidden layers are tested. Ulti-
mately, two hidden layers are the best option and work well on the test dataset because
the data is less complicated and has fewer parameters. Hence, DNN’s base model has two
hidden layers and runs for 125 epochs with a batch size of 16.
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3.4.2. Architecture of LSTM

An overview of the LSTM model’s design methodology, developed with the Keras
deep-learning package, is introduced in this part. The sequential API framework is utilized
to initialize the model variable. The first layer is an embedding layer, followed by two
LSTM layers that provide the recurrent segment with a default tanh activation function. In
order to provide an efficient regularization strategy that avoids over-fitting and enhances
generalization performance, a dropout layer is additionally added to the network. The
dropout rate is chosen as 0.5, which means that 50% of the layers will be removed. After
that, there is a dense layer with six outputs. The softmax activation function uses a number
between 0 and 5 to demonstrate the orientation of the fault class. Afterward, a widely-used
Adam optimizer tool is utilized to assemble our model. Then, the model is adjusted to use
a batch size of 32 and run for 100 epochs.

3.4.3. Architecture of Bi-LSTM

Bi-LSTM refers to the method by which a neural network may be constructed to
store sequence data in either the forward (from present to the future) or backward (from
the future to the past) direction. In this section, the Keras deep-learning framework is
examined for use in the architecture of the Bi-LSTM model. The model variable is initialized
through the sequential API framework. The Bi-LSTM layer is added to a conventional
neural network using Keras. Keras of tensor flow offers a new class (bidirectional) to
develop Bi-LSTM. A dropout layer of 0.4 is added to the network to provide an efficient
regularization method that prevents over-fitting and improves generalization performance.
Following that, a dense layer with six outputs depicts an orientation toward a faulty class
using a number between 0 and 5 as the softmax activation function. Afterward, the Adam
optimizer tool is utilized to assemble the Bi-LSTM model. The model is then adjusted to
run for 75 epochs with a batch size of 32.

3.4.4. Architecture of Multinomial Logistic Regression

The meta-learner model is generally simple, allowing for an easy interpretation of the
base model’s predictions. Consequently, linear models are frequently employed as the meta-
model—for example, logistic regression for the prediction of class labels in classification
tasks and linear regression for predicting a numeric value in regression problems. To en-
hance diversity, multiple meta-learner models (logistic regression, decision trees, AdaBoost,
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SVM, and XGBoost) are examined for the research in this study. Unlike other learning algo-
rithms, multinomial logistic regression (MLR) outperforms them on all datasets. Since the
meta-learner received the results from the output of distinct base learner models, this study
uses a forward propagation network to establish the network’s topology, with the Adam
method chosen by the optimizer and a Softmax function serving as the final output layer.

3.5. Training and Testing

The operational dataset of the PV system is distributed into training and testing
datasets after the data preprocessing and feature engineering phases are completed. The
training dataset comprises seventy percent of the original data, while the test dataset
accounts for thirty percent of the overall data. Section 2 contains information on the
number of samples in each fault category. Using k-folds cross-validation, DNN, LSTM,
and Bi-LSTM base learners are trained on distinct folds of the training data. The k-fold
cross-validation also offers an unbiased assessment of the model’s performance. K-fold
cross-validation training reduces variance more effectively than a single hold-out model,
which might be necessary when limited data is available. K-fold divides the data into k
equal-sized chunks. Five folds of cross-validation are used to validate the base learner
models. The first four folds are utilized for training the models during the first iteration,
while the last one is used to test the model’s performance. The second to last fold is used
for model testing in the next iteration, whereas the remaining folds are used for training.
This procedure is performed five times to get predictions for each of the five test folds.
In this scenario, the cross-validation stacking structure generates second-level data for
multinomial logistic regression (MLR) meta-learner. Stacking is similar to cross-validation
in that it solves two critical problems: collecting varied regions where each model works
best and producing out-of-sample predictions. The primary concept of deep ensemble
stacking is to add weights (w1, . . . , wi) to the predictions (p1, . . . , pi) made by the base
models, as shown in Equation (13).

fs(x) =
n

∑
i=1

(wi pi) (13)

The meta-learner is used to train with predictions from the base learners’ algorithms
to discover the optimal way to merge the predictions for the output. The meta classifier
is primarily responsible for the stacking algorithm’s generalization ability, which can
differentiate whether each base classifier executes well or badly. The MLR is used as
a meta-classifier because it is capable of more rapid computing and can make accurate
predictions using higher-dimensional space with smaller training datasets. The ultimate
predictions are acquired utilizing the test dataset after training the base learners and the
meta-learner. The description of the whole algorithm is shown in Figure 9. The training
data D is used to train each base learning algorithm (bc1, bc2, bc3), and the cross-validated
predicted values are obtained from each algorithm. A new (m ∗ p) matrix is created by
combining the p′i cross-validated predicted values from each algorithm. The meta-learner
training data consists of this (m ∗ p) matrix and the initial response vector yi. This new
metadata Dm is used to train the meta-learning algorithm. The stacked ensemble model
DSm is derived from the base and meta-learning models, which are then utilized to generate
the test dataset prediction. The data partition of the proposed DSEL model used in the
training and testing process is depicted in Figure 10.

3.6. Development Setup

The simulated PV system is designed in a MATLAB Simulink environment and is used
for data collection, and it is powered by an Intel Core(TM) i5-3210M processor having a
frequency of 2.70 GHz and 8 GB of RAM. The proposed DSEL algorithm used Python in an
open-source, cross-platform IDE, called Jupyter Notebook. Keras was utilized to develop
LSTM and Bi-LSTM due to its extensibility and modularity. Keras runs on TensorFlow
to expedite deep neural network exploration. Google’s TensorFlow is an open-source
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platform for differential programming. Finally, the efficacy and superiority of the proposed
DSEL algorithm are validated compared to other existing contemporary fault-diagnosis
techniques. Observations indicate that the proposed approach outperforms previous
techniques, attaining 98.7% fault detection accuracy for noiseless and 95.77% for noisy data.
According to the results, the DSEL technique enhances classification performance while
retaining a dominant generalization potential for fault detection.
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4. Results Evaluation and Discussion

Performance evaluation is important to examine and investigate the effectiveness
of any technique. This section presents the outcomes achieved by using the proposed
DSEL fault-diagnostic algorithm. The optimal set of hyperparameters for each model of the
proposed DSEL fault-diagnosis algorithm is determined via a grid search. Machine-learning
models rely heavily on hyperparameters, which regulate the strength of training algorithms
and are, thus, imperative to the success of these models. The tested grids’ hyperparameters
and optimal parameters for the trained base learners and meta-learner models are listed
in Table 3. After each model was trained, its generalization ability was checked using its
test data. This research takes into account five distinct faulty conditions and one no-fault
condition, namely, open circuit (OC-Fault), short circuit (SC-Fault), bridge (B-Fault), partial
shading (PS-Fault), degradation (D-Fault), and no-fault (No-Fault) conditions. The findings
of the proposed DSEL approach are provided and compared with eight other contemporary
fault classification techniques, such as probabilistic neural network (PNN), Bi-LSTM, LSTM,
DNN, ANN, Gradient Boost, Adaboost, support vector machine (SVM), and Random forest
(RF). The proposed DSEL algorithm provides reliable and accurate PV-fault diagnostics for
noiseless and noisy data.
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Table 3. The optimal hyperparameters for the trained base learners and meta-learner.

Model Hyperparatmeters Grid Search Optimal Parameters

DNN

Hidden layers {1, 2, 3, 4, 5} 2
Learning Rate {0.0001, 0.001, 0.01, 0.1, 0.2} 0.001

Input Activation Fuction {“relu”, “sigmoid”, “tanh”, “linear”} Relu
Output Activation Fuction {“relu”, “sigmoid”, “tanh”, “softmax”} Softmax

Optimizer {“SGD”, “rmsprop”, “adagrad”, “adam”} Adam
Epoches {25, 50, 75, 100, 125} 125

Batch Size {10, 16, 24, 32, 48} 16

Loss Function { “crossentropy”, “relative entropy”, “sparse
categorical crossentropy”}

Sparse categorical
crossentropy

LSTM

Hidden layers {1, 2, 3, 4, 5} 2
Learning Rate {0.0001, 0.001, 0.01, 0.1, 0.2} 0.1

Input Activation Fuction {“relu”, “sigmoid”, “tanh”, “linear”} Relu
Output Activation Fuction {“relu”, “sigmoid”, “tanh”, “softmax”} Softmax

Optimizer {“SGD”, “rmsprop”, “adagrad”, “adam”} Adam
Epoches {25, 50, 75, 100, 125} 100

Batch Size {10, 16, 24, 32, 48} 32
Dropout {0.3, 0.4, 0.5, 0.6} 0.5

Momentum {0.5, 0.6, 0.7, 0.8, 0.9} 0.7
Decay rate {0.91, 0.93, 0.95, 0.97} 0.95

Loss Function { “crossentropy”, “relative entropy”, “sparse
categorical crossentropy”}

Sparse categorical
crossentropy

Bi-LSTM

Hidden Layers {1, 2, 3, 4, 5} 1
Learning Rate {0.0001, 0.001, 0.01, 0.1, 0.2} 0.0001

Bi-LSTM Nodes {10, 15, 20, 25, 30} 30
Input Activation Fuction {“relu”, “sigmoid”, “tanh”, “linear”} Relu

Output Activation Fuction {“relu”, “sigmoid”, “tanh”, “softmax”} Softmax
Optimizer {“SGD”, “rmsprop”, “adagrad”, “adam”} Adam
Epoches {25, 50, 75, 100, 125} 75

Batch Size {10, 16, 24, 32, 48} 32
Dropout {0.3, 0.4, 0.5, 0.6} 0.4

Momentum {0.5, 0.6, 0.7, 0.8, 0.9} 0.6
Decay rate {0.91, 0.93, 0.95, 0.97} 0.97

Loss Function { “crossentropy”, “relative entropy”, “sparse
categorical crossentropy”}

Sparse categorical
crossentropy

MLR

Solver {“newton-cg”, “sag”, “saga”, and “lbfgs”} lbfgs
Iterations {20, 50, 80, 100, 130} 100
Penalty {“l1”, “l2”, “elasticnet”, None} l2
C-value [0.001, 0.01, 0.1, 1, 10] 1

4.1. Performance Measure Based on Noiseless Data

This section discusses the performance measurements required to evaluate and analyze
the proposed DSEL algorithm on a noiseless dataset. This paper utilizes accuracy and
loss as evaluation criteria to track training and validation performances. Accuracy is the
percentage of data samples with correctly predicted labels. Loss is an error that measures
how good the model’s output is compared to the ground truth label. Too many epochs
overfit the training dataset, while too few underfit the model. The DSEL model was trained
for 25–125 epochs to eliminate overfitting and improve generalization. After 100 epochs,
model accuracy saturates, and validation error increases, which may indicate overfitting.
Thus, the ideal epoch is chosen as 100. The progression of accuracy in training and
validation throughout the training epochs for noiseless datasets is depicted in Figure 11a.
When examining Figure 11a, it is clear that the overall accuracy improves over time and
eventually reaches approximately 98.62%. The suggested DSEL algorithm model obtains
many better-optimized parameters with each subsequent epoch until convergence, as
evidenced by the constant improvement in training accuracy. Figure 11a illustrates that
progressive gains in training and validation accuracy show no variance problem with the
trained model. This lack of variance improves the model’s generalization to test data.
Figure 11b shows the progression of training and validation losses over epochs. The better
the model, the lower the convergence loss. A lower loss value at convergence indicates
a more accurate model. Training and validation losses decreased simultaneously and
converged around 0.056.
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Figure 11. (a) Convergence curves of training accuracy vs. validation accuracy by using DSEL
approach. (b) Convergence curves of training loss vs. validation loss by using DSEL approach.

Metrics, such as accuracy, precision, sensitivity (Recall), and F-Score, further evaluate
the proposed DSEL method’s overall behavior. Equations (14)–(17) provide a representation
of these metrics [33]:

A =

(
tpo + tno

)(
tpo + tno + fpo + fno

) (14)

P =
(tpo)

(tpo + fpo)
(15)

R =

(
tpo
)

(tpo + fno)
(16)

FS =
2 ∗ (R ∗ P)
(R + P)

(17)

Accuracy, precision, recall, and F-Score are denoted by A, P, R, and FS, respectively.
The tpo displays the amount of faulty data samples classified as faulty conditions. The tno
indicates the quantity of identified normal data samples and symbolizes a normal condition.
The fpo defines a collection of normal data samples that represent a normal condition. The
fno shows the quantity of faulty data samples that are classified as normal.

An analysis of the various models presented in a confusion matrix is shown in
Figure 12. The entries in the confusion matrix are discussed below. The confusion matrix’s
sum of entries along a row indicates samples from a certain class in the testing dataset.
From Figure 12a, the proposed DSEL algorithm for fault diagnosis categorized 177 testing
data samples from the normal (no-fault) category as belonging to the normal (no-fault)
category, one data sample from the PS-Fault category as belonging to the normal (no-fault)
category, and six data samples from the D-Fault category as belonging to the normal (no-
fault) category. The 182 data samples from the OC-Fault category belong to the OC-Fault
category. The 182 data samples from the SC-Fault category belong to the SC-Fault category.
The 182 data samples from the B-Fault category belong to the B-Fault category. The 177 data
samples from the PS-Fault category belong to the PS-Fault category; one sample from the
normal (no-fault) category belongs to the PS-Fault category. Finally, the 176 data samples
from the D-Fault category belong to the D-The fault category, 3 data samples from the
normal (no-fault) category belong to the D- Fault category, and 4 data samples from the
PS-Fault category belong to the D-Fault category. Taking into consideration the indications,
Figure 12a demonstrates that the fault-diagnosis accuracy of the proposed DSEL algorithm
for Normal, OC-Fault, SC-Fault, B-Fault, PS-Fault, and D-Fault is 97.79%, 100%, 100%, 100%,
97.26%, and 96.7%, respectively. The overall accuracy of the proposed DSEL methodology
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is approximately around 98.625%. The proposed method leads to accurately identifying
observations with minor misclassification errors. The suggested DSEL approach has an
outstanding classification impact and can greatly enhance the fault-diagnosis capabilities
of PV arrays.

Figure 12. Cont.



Remote Sens. 2023, 15, 1277 19 of 26

Figure 12. Confusion matrix of different algorithms under noiseless dataset. (a) Proposed DSEL
approach. (b) Bi-LSTM. (c) LSTM. (d) PNN. (e) DNN. (f) ANN. (g) Gradient boost. (h) Adaboost.
(i) SVM.

In addition, the fault-diagnostic results obtained using the suggested DSEL algorithm
are compared to other AI-based fault-diagnosis techniques using the abovementioned
metrics. Table 4 also depicts the accuracy, precision, sensitivity (recall), and F1-score
achieved by various fault-diagnostic algorithms. Similarly, the confusion matrix obtained
by utilizing the Bi-LSTM and LSTM algorithms is presented in Figure 12b,c. The accuracy
achieved using Bi-LSTM and LSTM algorithms are around 95.66% and 93.35%, respectively,
as mentioned in Table 4. Furthermore, the confusion matrices shown in Figure 12d,e
provide insight into the efficacy of PNN and DNN algorithms. According to Table 4,
the accuracy achieved by the PNN and DNN algorithms is approximately 92.11 percent
and 91.89 percent, respectively. Similarly, the performance of ANN and Gradient Boost
algorithms is depicted in the confusion matrix that is shown in Figure 12f,g. Table 4 shows
that the accuracy of the ANN and Gradient Boost algorithms is about 90.37% and 87.83%,
respectively. Correspondingly, Figure 12h,i depicts a confusion matrix that sums up the
results of AdaBoost and SVM algorithms. As shown in Table 4, the accuracy attained using
the AdaBoost and SVM algorithms is approximately 85.26% and 82.75%, respectively. In
addition, a bar chart depicting performance metrics, such as accuracy, precision, recall,
and F1-score for several fault-diagnostic algorithms, is provided in Figure 13. The SVM
algorithm has demonstrated the lowest percentage of performance across all metrics.
However, the proposed DSEL approach outperforms all metrics and has exceptional fault-
diagnosis capabilities in PV arrays with a noiseless dataset.

Table 4. Comparative analysis of different fault-diagnosis algorithms under noiseless dataset.

Algorithms Accuracy Precision Sensitivity F1-Score

DSEL Algorithm 98.62% 98.52% 98.66% 98.50%
BI-LSTM 95.66% 95.83% 95.66% 95.61%

LSTM 93.35% 94.01% 93.33% 93.21%
PNN 92.11% 92.63% 92.33% 92.04%
DNN 91.89% 91.97% 92.01% 91.89%
ANN 90.37% 90.16% 89.98% 89.83%

Gradient Boost 87.83% 87.83% 87.83% 87.16%
AdaBoost 85.26% 86.88% 85.29% 84.83%

SVM 82. 75% 82.66% 82.83% 82.33%

To further extend the validity of the proposed DSEL fault-diagnosis algorithm, a
comparison can be made regarding precision among different fault-diagnosis algorithms
(Bi-LSTM, LSTM, PNN, and DNN) with the help of a radar plot. As illustrated in Figure 14,
the precision of the proposed DSEL methodology for normal, OC-Fault, SC-Fault, B-Fault,
PS-Fault, and D-Fault is 96.12%, 100%, 100%, 100%, 99.27%, and 96.04%, respectively. Under
the noiseless dataset, the suggested DSEL methodology’s overall precision is approximately
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98.57%. Compared to other fault-diagnosis algorithms, Bi-LSTM, LSTM, PNN, and DNN
achieve overall precisions of about 95.83%, 94.01%, 92.63%, and 91.97%, respectively.
Consequently, it can be observed from radar plot analysis in Figure 14 that the proposed
DSEL approach outperforms other strategies regarding PV-fault detection precision under
a noiseless dataset.
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4.2. Performance Measurements Based on Noisy Dataset

Performance measurements are necessary to determine how well a classifier works
and analyze its effectiveness under different conditions. Due to the absence of noise
(i.e., disturbance), the dataset depicted in Section 4.1 is considered noiseless. Any data
collected by sensing and measuring instruments in real-world circumstances will likely
have some background noise. For this reason, an effort has been put into generating noisy
data by adding noise to previously noiseless data to approximate real-world situations as
closely as possible. The approach to noise signal creation adopted in [34] is represented in
Equation (18).

D = Ai + Bi ∗ random(1, N) (18)

where Ai and Bi denote the mean and intensity of the disturbing pulse, random is the
noisy default function, and N represents the size of the disturbing signal. The distribution
of noise generated for data samples of irradiance, temperature, voltage, current, and
power is based on the following range of random noise amplitudes: Bir = (0.25− 2);
Bt = (0.25− 2); Bv = (2− 5); Bi = (0.2− 1.5); and Bp = (0.4− 7.5).Figure 15 displays a
confusion matrix that evaluates the various PV-fault-diagnostic techniques in the context of
a noisy dataset. The number of entries across a row of the confusion matrix represents the
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number of samples from a specific class in the tested dataset. Figure 15a demonstrates that
the proposed DSEL fault-diagnosis algorithm under a noisy dataset classified 181 testing
data samples from the normal (no-fault) category as belonging to the normal (no-fault)
category, the 162 data samples from the OC-Fault category as belonging to the OC-Fault
category, 21 data samples from the SC-Fault category as belonging to the OC-Fault category,
three data samples from the PS-Fault category as belonging to the OC-Fault category,
the 154 data samples from the SC-Fault category as belonging to the SC-Fault category,
19 data samples from the OC-Fault category as belonging to the SC-Fault category, three
data samples from the B-Fault category as belonging to the SC-Fault category, two data
samples from the PS-Fault category as belonging to SC-Fault category. The 179 data
samples from the B-Fault category belong to the B-Fault category, and six from the SC-
Fault category belong to the B-Fault category. The 177 data samples from the PS-Fault
category belong to the PS-Fault category, one from the OC-Fault category belongs to the
PS-Fault category, and one from the SC-Fault category belongs to the PS-Fault category.
Lastly, the 182 data samples from the D-Fault category belong to the D-Fault category.
Taking into consideration the indications, Figure 15a demonstrates that the fault-diagnosis
accuracy of the proposed DSEL approach technique under noisy dataset conditions for
Normal, OC-Fault, SC-Fault, B-Fault, PS-Fault, and D-Fault is 100%, 89.01%, 84.61%, 98.35%,
97.25%, and 100%, respectively. The proposed DSEL algorithm’s overall accuracy is around
94.87% under noisy datasets, as depicted in Table 4. The proposed DSEL approach has an
outstanding classification impact under noisy dataset conditions and can greatly enhance
the fault-diagnosis capabilities of PV arrays.

The performance of the proposed DSEL algorithm is compared to that of other PV-
fault classification AI-based algorithms by using the metrics mentioned above. Table 5
also depicts the accuracy, precision, sensitivity (recall), and F1-score achieved by various
fault-diagnostic algorithms under noisy dataset conditions. Similarly, the confusion matrix
obtained by utilizing the Bi-LSTM and LSTM algorithms is presented in Figure 15b,c. The
accuracy achieved using Bi-LSTM and LSTM algorithms are around 89.18% and 86.15%, re-
spectively, as mentioned in Table 5. Likewise, the confusion matrices shown in Figure 15d,e
depicts the efficacy of PNN and DNN. According to Table 5, the accuracy achieved by the
DNN and ANN algorithms is approximately 86.53 percent and 85.88 percent, respectively.
Similarly, the performance of ANN and Gradient Boost is depicted in the confusion matrix
that is shown in Figure 15f,g, respectively. Table 5 shows that the accuracy of the ANN and
Gradient Boost algorithms is about 84.98% and 82.58%, respectively. Similarly, Figure 15h,i
depict a confusion matrix that sums up the results of the AdaBoost and SVM. As shown in
Table 5, the accuracy attained using the AdaBoost and SVM algorithms is approximately
80.84% and 74.87%, respectively. Furthermore, Figure 16 compares the performance of
several PV-fault-diagnostic algorithms under noisy dataset conditions using a bar chart
depicting accuracy, precision, recall, and F1-score results. The SVM classifier has shown the
least performance in all metrics. However, the proposed DSEL algorithm shows remarkable
results in all metrics and has outstanding fault-diagnosis capabilities in PV arrays under a
noisy dataset.

Table 5. Comparative analysis of Different fault-diagnosis algorithms under noisy dataset.

Algorithms Accuracy Precision Sensitivity F1-Score

DSEL Algorithm 94.87% 95.10% 94.87% 95.06%
BI-LSTM 89.18% 90.11% 89.33% 89.33%

LSTM 86.15% 89.08% 86.16% 85.57%
PNN 86.53% 87.03% 86.53% 86.72%
DNN 85.88% 86.50% 85.83% 85.89%
ANN 84.98% 86.16% 85.88% 86.17%

Gradient Boost 82.58% 82.19% 82.94% 82.16%
AdaBoost 80.84% 81.68% 80.81% 80.66%

SVM 74.87% 76.95% 74.86% 72.50%
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Figure 15. Confusion matrix of different algorithms under noisy dataset. (a) Proposed DSEL approach.
(b) Bi-LSTM. (c) LSTM. (d) PNN. (e) DNN. (f) ANN. (g) Gradient boost. (h) AdaBoost. (i) SVM.
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To further enhance the applicability of the suggested fault-diagnostic technique on
noisy datasets, a comparison of other techniques’ precision can be made, including Bi-
LSTM, LSTM, PNN, and DNN. In this case, the radar plot is used to create a precision
comparison. Figure 17 shows that the proposed DSEL method achieves 100% accuracy for
normal, 87.43% for OC-Fault, 97.13% for SC-Fault, 97.07% for B-Fault, 99.02% for PS-Fault,
and 100% accuracy for D-Fault conditions. The average precision of the proposed DSEL
methodology is roughly 95.10% when using the noiseless dataset. Bi-LSTM, LSTM, PNN,
and DNN obtain average precisions of 90.11%, 89.08%, 87.03%, and 86.50%, respectively,
compared to other fault-diagnostic techniques. As a result, radar plot analysis shows
that the proposed approach supersedes other competing strategies in terms of precision-
detecting PV faults under noisy dataset conditions.
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5. Conclusions

This article presents the deep stack-based ensemble learning (DSEL) approach, which
comprises DNN, LSTM, and Bi-LSTM deep-learning models. Due to the inclusion of
strong base learner models, the proposed DSEL approach significantly outperforms the
individual deep-learning techniques. Multinomial logistic regression is used as a meta-
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learner to combine the predictions of base models, leading to improved PV array diagnosis.
The meta-learner model also decreases bias and variance by fixing the flaws in the base
learner models and selecting their best features for the final prediction. The PV array
model is designed to examine faults. The proposed DSEL algorithm pertained to a PV
system’s correlation dataset. The dataset is typically nine parameters extracted as data
attributes, directly or indirectly affected by PV faults, which serve as a representative
dataset. This research study is the first thorough, significant, and useful comparison of
PV-fault detection that considers six different scenarios (five faulty scenarios along with
the no-fault scenario) and a consistent dataset for comparing the proposed approach with
those of prior researchers. The suggested DSEL approach has even been benchmarked
using Bi-LSTM, LSTM, PNN DNN, ANN, Gradient Boost, AdaBoost, and SVM algorithms.
Observations illustrate that the suggested method exceeds prior techniques, achieving
detection accuracy of 98.62% fault for noiseless and 94.87% for noisy datasets. The results
demonstrate that the proposed DSEL methodology enhances classification accuracy, thus
keeping the dominant generalization potential for detecting PV faults. Therefore, the
proposed DSEL technique approach performs admirably and detects PV array system
faults more effectively. This research work might guide future studies to enhance reliability
and fault-diagnostics capabilities in PV systems.

To summarize, some limitations and directions for future study of fault diagnosis
in PV systems are listed as follows: (i) The arc faults are not considered in this research
analysis. The arc faults can be investigated in future research to improve the efficiency of
the proposed approach; (ii) More research is needed in this seminal domain to thoroughly
determine the upsides and downsides of deep-learning paradigms. This is because deep-
learning models come in various forms (CNN, RBM, DBP, AE, and so on) utilized to
select better efficient methods for fault diagnosis; (iii) Another factor to consider when
selecting the base models is the possibility of a trade-off between prediction accuracy and
computational time; (iv) Experimental trials are also planned on actual PV systems to gather
the dataset for faulty and non-faulty conditions and further investigate the validity of the
proposed approach in the near future; (v) Furthermore, it plans to establish an intelligent
remote sensing-based monitoring framework for fault diagnostics in PV systems.
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