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Abstract: Generative adversarial networks (GANs) can synthesize abundant photo-realistic synthetic
aperture radar (SAR) images. Some modified GANs (e.g., InfoGAN) are even able to edit specific
properties of the synthesized images by introducing latent codes. It is crucial for SAR image synthesis
since the targets in real SAR images have different properties due to the imaging mechanism. Despite
the success of the InfoGAN in manipulating properties, there still lacks a clear explanation of how
these latent codes affect synthesized properties; thus, editing specific properties usually relies on
empirical trials, which are unreliable and time-consuming. In this paper, we show that latent
codes are almost disentangled to affect the properties of SAR images in a nonlinear manner. By
introducing some property estimators for latent codes, we are able to decompose the complex causality
between latent codes and different properties. Both qualitative and quantitative experimental results
demonstrate that the property value can be computed by the property estimators; inversely, the
required latent codes can be computed given the desired properties. Unlike the original InfoGAN,
which only provides the visual trend between properties and latent codes, the properties of SAR
images can be manipulated numerically by latent codes as users expect.

Keywords: interpreting neural networks; InfoGAN; SAR image synthesis

1. Introduction

Synthetic aperture radar (SAR) is considered a well-established technology for pro-
viding day-and-night and weather-independent remote sensing images. Therefore, it is
widely used in geological exploration, ocean research, disaster monitoring, the military, en-
vironmental and earth system monitoring, etc. [1–6]. However, SAR is always an expensive
means of imaging because the expenditure for airplane flights or satellites launch is much
higher than other optical or infrared imaging devices [7,8]. Hence, the cost of obtaining
abundant SAR images is quite high.

To obtain SAR images in an efficient, effective, and economic manner, numerous
generative models are utilized to synthesize images, such as variational auto-encoder
(VAE) [9–11], generative adversarial network (GAN) [12–16], and diffusion models [17–21].
The VAE takes an image from a target distribution and compresses it into a low-dimensional
latent space [9,10]. Then, the decoder’s mission is to take that latent space representation
and reproduce the original image [9]. The GAN’s generator directly samples from a rela-
tively low-dimensional random variable and produces an image. Then, the discriminator
predicts whether the produced image belongs to a target distribution or not [12]. Diffusion
models are inspired by nonequilibrium thermodynamics. They define a Markov chain of
diffusion steps to slowly add random noise to data and then learn to reverse the diffusion
process to construct desired data samples from the noise [17,18]. In this paper, we will
focus on the Information Maximization GAN (InfoGAN).
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The GAN was proposed by Goodfellow et al., containing a generator network, G, and a
discriminator network, D [12,22]. The generator manages to approximate the real data
distribution from a random distribution, and the discriminator estimates the probability
that the input sample is a real image or synthesized by the generator. Such optimization
is achieved by a mini-max two-player game, thus, it is termed “adversarial”. It should be
noted that the GAN only adopts a simple noise vector as the input to G without imposing
any restrictions on how the generator uses this noise [22]. In this case, the direction of
image generation can hardly be controlled as we expect since the noise is used by the
generator in a highly entangled way [23]. However, SAR images naturally include some
semantically meaningful properties due to the imaging mechanism. For instance, some
rotation, translation, and scaling of the target usually emerge with different view angles
between the radar and the target [13]. To further control the generation direction of the GAN,
X. Chen et al. proposed the InfoGAN to further disentangle the input noise by introducing
latent codes [24]. A strong correlation between latent codes and those properties will be
established by maximizing their mutual information during the InfoGAN’s training.

Although the InfoGAN can generate SAR images with semantically meaningful prop-
erties by latent codes, the relation between properties and latent codes still lacks clear
interpretation [23,25]. It brings in two problems: (1) How is the property value obtained
given a set of latent codes? (2) How are satisfying latent codes obtained given a desired
property value? In this paper, we introduce several property estimators to interpret the
relation between properties and latent codes in different cases. The results show that a
single latent code retains an approximately tanh relation with a certain property while
multiple latent codes are combined to edit different properties in a complex nonlinear
manner. The main contribution of this paper is that a clear interpretation is provided of the
relation between properties and latent codes, providing the possibility to edit the properties
analytically by manipulating latent codes as users expect.

This paper aims to provide a numerical interpretation of the relation between some
properties of generated SAR images and latent codes in the InfoGAN. The highlight of this
work is that users can control those properties by manipulating latent codes. In the original
InfoGAN, the relation between properties and latent codes is observed only empirically.
The rest of this paper is organized as follows. Section 2 introduces how these properties
emerge in SAR imaging and the mechanism of the InfoGAN. Section 3 describes how to
quantify the relation between properties and latent codes. In Section 4, experimental results
are provided and analyzed with fully simulated, semi-simulated, and real SAR images
(with/without a background) in various cases. Section 5 provides some discussion on the
experiments. Section 6 concludes this paper.

2. Background Knowledge and Motivation
2.1. Basic SAR Principles

A radar image is obtained by transmitting repeated pulses and processing the echoes
returned from the target [26–32]. A common choice for the pulse is a linear-frequency-
modulated continuous-wave (LFM-CW) signal, transmitted in the form of a series of chirps.
The received signal, which is scattered from a target, is delayed and changed in amplitude
as compared to the transmitted signal, containing in that way the information about the
target position and reflectivity. The received signal from an elementary (a point) scatter,
after an appropriate mixing with the transmitted signal, demodulation, compensation,
and residual video phase filtering is of the form [1]

S(m, t) = σ exp
(

jω0
2d(t)

c

)
exp

(
−j2π

B(t−mTr)
Tr

2d(t)
c

)
(1)

where σ is the reflection coefficient of the scattering point, ω0 is the radar operating
frequency, exp(jω0

2d(t)
c ) is the scattering phase, and exp(−j2π B

Tr
(t−mTr)

2d(t)
c ) describes

the phase variation due to the varying distance. The transmission and receiving procedure
is repeated every Tr second (the pulse repetition interval—PRI).
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In SAR imaging, the radar platform movement is crucial in producing a high-resolution
image. Therefore, SAR systems are based on a pulsed radar installed on a platform with a
forward movement. The distance between the radar moving at a constant velocity v and a
point target on the ground can be described as [2]

d(t) =
√

d2
0 + (vt)2 (2)

where t = 0 is the time of closest approach when the distance is minimum as d(0) = d0.
Assume M pulses are transmitted and N range cells are inside a pulse interval, t = nTs.
The received echo signal can form an M× N data matrix of complex samples. The column
dimension corresponds to the range direction. Note, the radar acquires a range line in
each PRI thus forming the row dimension of the data matrix, termed the azimuth direction.
In the case of multi-point targets, the superposition principle applies. Therefore, the raw
SAR data are the echoes from the illuminated scene (of multiple points or even continuous
targets) sampled both in the range direction and azimuth direction.

Different from optical sensors, however, raw SAR data do not provide any visible
information on the scene [1]. It is only after basic SAR processing steps that an image is
obtained. In a very simplified way, the complete processing can be understood as two
separate matched filter operations along with the range and azimuth dimensions; instead
of performing a convolution in the time domain, multiplication in the frequency domain
is adopted due to the much lower computational load. The first step is to compress the
transmitted chirp signals to a short pulse. Azimuth compression follows the same basic
reasoning; that is, the signal is convolved with its reference function, which is the complex
conjugate of the response expected from a point target on the ground. The SAR image is
efficiently calculated using, for example, the two-dimensional fast Fourier transform (FFT)
codes [33].

To know a target or scene for analysis, detection, or classification, it is desirable to
have its SAR image acquired from different positions [34,35]. Different relative viewing
angles (resulting from changes in flight direction or target movement in different revisits)
result in a kind of target rotation in SAR images. The radar revisits could be also conducted
from different distances to the target or the target could move between revisits resulting in
a kind of target shifting and/or scaling in the SAR image. These kinds of target changes
in radar images will be referred to as properties of the target, as illustrated in Figure 1.
In some cases, numerous revisits or observations may be expensive or in some hostile or
unique environments even not possible. Then, it would be of interest to use the available
set of data and try to synthesize new possible images, preferably with controlled properties,
defined by, for example, different rotations, translation, and scaling that would at the same
time fully correspond to the existing data. To this aim, we will present and apply the GAN
and InfoGAN.
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Figure 1. Synthetic aperture radar setup with various relative positions of the radar and the target.
The mechanism of SAR imaging (left). The emergence of scaling of the target in a SAR image
(middle). The emergence of rotation and translation of the target in a SAR image (right).

2.2. GAN and InfoGAN

The main task of a generative adversarial network is to train a transposed neural
network to produce images that match real images xn from a set P [12,36]. It means that the
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GAN learns a generator (transposed convolution neural network), denoted by G, to synthe-
size images close to P by feeding the generator with a noise vector z, commonly Gaussian
or uniformly distributed. G(z) denotes an image from a set of generated images, PG.
The generator is trained against an adversarial discriminator network, D, whose structure
corresponds to a convolution neural network with the aim to distinguish (discriminate
the cases) if the sample image as the input to the discriminator is from the true dataset of
images, P, or from the generator-produced set of images, PG. The basic structure of a GAN
is included in Figure 2.

𝒛 𝒄

Generator
𝑮 𝒛, 𝒄  𝐺,     𝑦 = 0

𝑦 = 1

𝑦 = 0

Discriminator

Classifier

𝐺

𝐷

𝑄

𝒙 , 𝑦 = 1

𝐷(𝑮 𝒛, 𝒄 )
𝐷(𝒙)

𝑄(𝑮(𝒛, 𝒄))

𝑄(𝒙)

training

𝐷

training

Figure 2. The architecture of GAN and InfoGAN. The basic GAN is obtained by excluding the red
blocks and latent codes c.

After both networks, the generator and the discriminator, are initialized by random
weights, the training process is defined based on the loss function. First, we will consider
the discriminator only. At its input, we have an image (as is common for a convolutional
neural network), either a sample image x from the set of real data, P, or a synthesized
image, G(z), produced by the generator with a random input noise, z. The output of
the discriminator is a scalar denoted by D(·). It is either D(x) or D(G(z)). The output
value of the discriminator is normalized such that 0 ≤ D(x), D(G(z)) ≤ 1. The aim of
the discriminator is to discriminate the cases when the input is (i) a real image from P(x)
or (ii) a generated “fake” (synthesized) image G(z), by learning to produce the output
values D(x) close to 1 and the values D(G(z)) close to 0. The target signal, which will be
used during the supervised learning, will be denoted by yx. It assumes that the values are
as follows:

1. yx = 1 if the input to the discriminator is a real image x from the set P(x);
2. yx = 0 if the input to the discriminator is a synthesized image, G(z), being output

from the generator.

The value of the target signal, yx, is provided at the output of the discriminator as a reference
signal for the loss function calculation during the training process. A simple loss function
could be in a quadratic form

L(D) = yxD2(x) + (1− yx)(1− D(G(z)))2. (3)

This function assumes only one of two values L ∈ {D2(x), (1− D(G(z))2}. Since
0 ≤ D(x), D(G(z)) ≤ 1, the loss function will reach its maximum value L(D) = 1 for
any input to the discriminator, either x or G(x), if D(x) = 1 and D(G(z)) = 0. Therefore,
by maximizing the loss function L(D), we can achieve the ideal discriminator performance.

In a vanilla GAN, the cross-entropy form of the loss function is used (with the same
aim and the same qualitative analysis as in the quadratic loss function) [37]. The cross-
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entropy form of the loss function is defined by yx log D(x) + (1− yx) log(1− D(G(z)),
with the learning process for the discriminator neural network defined as

max
D
L(D) = max

D
{yx log D(x) + (1− yx) log(1− D(G(z))}. (4)

It is easy to conclude that, for 0 ≤ D(x), D(G(z)) ≤ 1, this loss function achieves its
maximum L(D) = 0 when D(x) = 1 and D(G(z)) = 0.

The maximization of the cross-entropy loss function is commonly conducted over a
set (mini-batch) of input real images, x1, x2, . . . , xm, and generated images, G(z1), G(z2), . . . ,
G(zm). The expression for the cross-entropy loss function will also be simplified by omitting
yxi . Namely, it will be assumed that the input to the discriminator is fed by alternating x1
and G(z1), then x2 and G(z2), and so on in succession until xm and G(zm). In this way, we
may write two loss function terms: (i) log D(xi) for xi and (ii) log(1− D(G(zi))) for G(zi)
as log D(xi) + log(1− D(G(zi))), for each i = 1, 2, . . . , m. The mean value over 2m images
(m real images and m generated images) is then defined by

max
D
L(D) = max

D

1
m

m

∑
i=1

(log D(xi) + log(1− D(G(zi)))). (5)

After the discriminator is trained (in the first cycle) based on the loss function (5),
its weights are frozen and the generator network is now trained for this cycle. Since
the generator does not have any knowledge about the real images, the part log D(x) is
not used in the loss function for the generator weight training (only generated images
are used, when yxi = 0). The aim of the generator is to produce images as similar to
those from the set P(x) as possible. Within the loss function framework, this aim will
be achieved if the generator can close the gap between the discriminator output values
D(x) and D(G(x)) as much as possible. Since it can not change D(x), this should be
conducted by increasing the value of D(G(x)) toward 1 or, in other words, by making the
new loss function L(G) = log(1− D(G(z))) as small as possible, that is (within the same
mini-batch), find

min
G
{ 1

m

m

∑
i=1

log(1− D(G(zi)))}. (6)

After the generator is trained in this way (in the first cycle), its weights are frozen
and the discriminator network is trained again within the second cycle. These cycles
are continued for a defined number of echoes when the GAN is assumed to be fully
trained. In the ideal case, after the training is finished, the discriminator will not be able
to discriminate the real and the synthesized images from the generator, meaning it will
produce the output D(x) = D(G(z)) = 1/2 and the loss function value of form (5) will be
L(D) = 2 log(1/2) = −4.

The combined loss function of GAN for both the discriminator and the generator can
be summarized by the following expression:

min
G

max
D
L(G, D) = Ex{log D(x)}

+Ez{log(1− D(G(z)))}.
(7)

It is clear from (7) that no restrictions are imposed on the input noise data; thus, the
properties are highly entangled in generated images. To generate images with semantically
meaningful properties, the InfoGAN introduces latent codes, c = [c1, c2, . . . , cn], and a clas-
sifier, Q, with the same architecture sharing the trainable parameters with the discriminator.
The purpose of classifier is to maximize the mutual information I(c; G(z, c)) between c and
G(z, c), defined as follows:

I(c; G(z, c)) = H(c)− H(c|(z, c)) (8)



Remote Sens. 2023, 15, 1254 6 of 24

where H(c) = −∑i p(ci) log(p(ci)) is the entropy of c = [c1, c2, . . . , cn]. The mutual
information I(c; G(z, c)) means that if c and G(z, c) are independent, then I(c; G(z, c)) = 0,
because knowing c reveals nothing about the G(z, c) (degraded to the classic GAN); by
contrast, if c and G(z, c) are strongly related, then maximal mutual information is attained.
It means that the information in the latent code c should not be lost in the generation
process. Hence, the information-regularized loss function is as follows:

min
G

max
D
LI(G, D) = Ex{log D(x)}+Ez{log(1− D(G(z)))}

+ λI(c; G(z, c)).
(9)

Figure 2 shows the architecture of an InfoGAN. To show the difference between the
GAN and InfoGAN vividly, we particularly provide some generated images from two
networks in Figure 3. Here, we set one latent code, c1, in the InfoGAN and show the
generated images corresponding to 25 values of c1 uniformly distributed within [−1, 1]. We
further utilize a commonly used quantitative measurement, i.e., Fréchet Inception Distance
(FID) [38,39], to evaluate the quality of generated SAR images produced by the GAN and
InfoGAN, respectively. The FID measures similarity between two sets of images (z1 and z2),
and it is defined as follows:

FID(z1, z2) = ‖µz1 − µz2‖2
2 + Tr[Ψz1 + Ψz2 − 2(Ψz1 Ψz2)

1
2 ], (10)

where ‖‖2
2 denotes the squared L2 norm, µ is the mean of a dataset, Tr denotes the trace

of a matrix, Ψz1 and Ψz2 refer to the covariance matrices of z1 and z2, respectively. Hence,
a small value of FID means a high similarity between two datasets (FID = 0 only when
z1 is completely the same as z2). We computed the FID between SAR images generated
by two GAN models and training SAR images, as shown in Table 1. It is clear that the
images generated by two GANs are almost equally similar to the training images (slightly
favoring the InfoGAN), while only the InfoGAN focuses on property manipulation using
latent codes.

Table 1. The FID of images generated by two GANs and training images.

Model FID

GAN 18.74
InfoGAN 17.59

Figure 3. The comparison of generated SAR images between GAN and InfoGAN. The rotation angles
are not controllable in GAN (left). The rotation angles are highly related to the latent code, c1 (right).

3. Methodology

Next, we will consider SAR images of the target taken with various setups and relate
them to the latent codes in the InfoGAN. The aim is to train the InfoGAN to synthesize
available images with various target properties and to produce new ones by changing
latent codes. This process could be controlled by relating the latent codes to the SAR image
transformations. Cases with one and two properties will be considered. In the analysis of
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one property, we will use one or two latent codes, while in the case of two-properties two
latent codes are used.

3.1. Property Measurement

When the radar illuminates a target (for example, a vehicle, a ship, or any other object
of interest) in two different visits, SAR images may differ due to different viewing angles,
target maneuvering, or different distances between the radar and the target in these two
illuminations. The changes in the radar image can be described by a rotation (with possible
changes in the reflectivity or visibility of some scatters in the target). Other possible change
in the SAR image results from the possible distance change between the radar and the target
and may be described by a scaling of the target in SAR images (with possible changes in the
radar image structures due to the fusing or separation of close scatters due to the resolution
values). This will be referred to as the scaling property. In addition, the target relative
position can be changed in two different illuminations, causing shifts in the radar image.

To quantify these properties of radar images, we should introduce their relative
measures with respect to one SAR image, assumed to be the reference image. To this aim,
we will use the cross-correlation function to evaluate the similarity between two images [40].
Assume X and Y are two images of the same size, N × N. The cross-correlation between
these two images, r(X, Y), is defined as

r(X, Y) =
∑i ∑j(X(i, j)− X̄)∑i ∑j(Y(i, j)− Ȳ)√

∑i ∑j(X(i, j)− X̄)2
√

∑i ∑j(Y(i, j)− Ȳ)2
(11)

X̄ =
1

N2 ∑
i

∑
j

X(i, j), Ȳ =
1

N2 ∑
i

∑
j

Y(i, j) (12)

where X̄ and Ȳ denote the mean of images X and Y, and the denominator normalizes the
cross-correlation to the range from 0 to 1. The summation range is from 1 to N for all sums
in (11) and (12). It can be observed that r(X, Y) will be 1 if X = Y, and r(X, Y) will assume
a value smaller than 1 if X is becoming more different from Y.

If we want to use cross-correlation to measure the translation of a target Ij with respect
to the reference image I0, then we will perform the translation operation of the reference
image I0 for different dx with steps ∆dx and dy with steps ∆dy, denoted by Tδ{I0}, and find
the resulting translation parameter as the position dx, dy when the maximum of the function
r(Tδ{I0}, Ij) is found

δS(j) = arg max
δ
{r(Tδ{I0}, Ij)}, (13)

where δS is, in general, a vector, with corresponding shifts in the direction of the range and
cross-range [6].

Similarly, we say that the original image is rotated for δR when the maximum of the
cross-correlation between the reference image, rotated for an angle δR, and the considered
image Ij is found, that is

δR(j) = arg max
δ
{r(Rδ{I0}, Ij)}, (14)

where now Rδ{I0} denotes the reference image rotated for an angle δR(j). The rotated
and reference image may differ in reflectivity, meaning that the maximum value of the
cross-correlation will not be equal to one. To reduce the influence of the variations in the
reflectivity during the rotations, we can introduce a threshold (limiting) or even consider
only the support functions (the support function of an image assumes value 0 where the
image is 0 or close to 0 and 1 otherwise) of the considered objects. The rotation parameter
is then calculated as
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δR(j) = arg max
δ
{r(Rδ{HT{I0}}, HT{Ij})}, (15)

where HT{I} denotes the limited version of the image I, with a threshold T, that is

HT{I(i, j)} =
{

I(i, j) for I(i, j) ≤ T
T for I(i, j) > T.

(16)

Finally, the scaling property is defined in the same way, as the position of the maximum
correlation between the considered image Ij and the scaled reference image Sδ{I0} for a
scaling parameter δ, that is

δA(j) = arg max
δ
{r(Sδ{I0}, Ij)}. (17)

After we introduced measures of various mage transformations, we are now ready to
relate them with latent codes in the InfoGAN.

3.2. Relation of the Properties and Latent Codes

As mentioned above, we have three collocations of property–latent code pairs, i.e., one
property—one latent code, one property—two latent codes, and two properties—two latent
codes. It is necessary to clarify that the cross-correlation will not be sensitive enough to
gauge each individual property if we combine three properties together. To simplify the
issue and avoid entanglement among latent codes, we only consider one latent code and
two latent codes. It is the reason why such three collocations are set in our experiments.

One property—one latent code: Next, we assume that the InfoGAN is trained with P
real SAR images when one of the considered properties (for example, the relative angle of a
target with respect to the radar direction) changes. After the learning process, the InfoGAN
is able to synthesize the corresponding SAR images, in an ideal case the same as the
real original images, with the latent code c1, being related to the property change in the
particular SAR images. After the learning process has finished, we generate a new set of K
latent code values c1 = [c1(1), c1(2), . . . , c1(K)]T . Then, a set of images is generated using
the values c1(k), k = 1, 2, . . . , K, and random input noises zk. The obtained images are
denoted by

Ik = G(zk, c1(k)), k = 1, 2, . . . , K. (18)

Then, we use one of the measures (13), (15), or (17) to calculate the measure of proper-
ties for each synthesized SAR image from the set. The relative measure of the rotation with
respect to the reference image I0 is calculated using

δR(1) = arg max{r(Rδ{HT{I0}}, HT{I1})}
δR(2) = arg max{r(Rδ{HT{I0}}, HT{I2})}

· · ·
δR(K) = arg max{r(Rδ{HT{I0}}, HT{IK})}

(19)

(a) Linear model: For the rough analysis, we consider a linear model for the ap-
proximation of the obtained measure of rotation and the latent code used to produce the
corresponding image

δ̂R(k) = v1c1(k) + v0, , k = 1, 2, . . . , K. (20)
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where v0 and v1 are two unknown parameters. To estimate them, we can write a matrix
form of these equations

δ̂R =


δ̂R(1)
δ̂R(2)

...
δ̂R(K)

 =


c1(1) 1
c1(2) 1

...
c1(K) 1


[

v1
v0

]
= AV, (21)

where A is a matrix with a column of latent code and a column of 1, and V = [v1, v0]
T.

Now, we can obtain the optimal parameters v0 and v1 by optimizing the following equation:

V = arg min ‖δR − δ̂R‖2
2 (22)

where δR represents the vector column of the values obtained from (19) and δ̂R is given
by (21). The solution is

V = (ATA)−1AT δ̂R. (23)

After the relation between the considered property (rotation) and latent code is estab-
lished, we can now use it to calculate a satisfying value of the latent code c1 to produce a
SAR image, Id, for any desired rotation angle δRd,

c1 =
δRd − v0

v1
, (24)

as Id = G(z, c1).
The linear model is very simple; however, as will be seen from the experiments, it can

be used as a rough model only. Namely, the true relation between rotation and latent code
is nonlinear, governed by the nonlinearity in the InfoGAN.

(b) Nonlinear model: From the experiments, we concluded that a general form of a
function (following the sigmoid function at the output of the neural network) is quite an
appropriate model for the relation between the physical properties of the SAR image and
the latent codes. The sigmoid follows the tanh function. A nonlinear model of, for example,
rotation, with one latent code c1 could be written as follows:

δ̂R(k) = v3 tanh(v1c1(k) + v2) + v0, k = 1, 2, . . . , K. (25)

The solution to the minimization problem (22) cannot be obtained in an analytic
form in this case. However, the tools for numerical solutions to this problem are well
developed in all programming environments. Therefore, we may say that the values of
V = [v0, v1, v2, v3]

T can be obtained from a set of k nonlinear equations in (25). After the
model coefficients, V, are found, we can again easily find a latent code c1 to generate a SAR
image, Id, with a desired parameter δRd, as

c1 =
1
v1

tanh−1
( δRd

v3
− v0

)
− v2. (26)

as Id = G(z, c1).
One property—two latent codes: In SAR images, after the basic property change, we

can expect other changes to occur as well (such as changes in the reflectivity and visibility
of scatters). This means that, even with one geometric property change, we may still use
more than one latent code. Now, we extend the analysis to two latent codes c1 and c2.
The linear model for a two-latent-code space can be expressed as

δ̂R(k1, k2) = v2c2(k2) + v1c1(k1) + v0, k1, k2 = 1, 2, . . . , K.
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If we form a stacked column vector δ̂R with K2 elements δ̂R(k1, k2), a K2× 3 matrix A with
rows [c2(k2), c1(k1), 1], and the column vector of unknown coefficients V = [v2, v1, v0]

T, then
the solution is again obtained in the form V = (ATA)−1ATδ̂R.

In this case, the latent code values for a given property, for example, rotation δRd, are
not unique since all combinations of the latent codes are along the line

v2c2 + v1c1 = v0 − δRd (27)

in the c1-c2 plane, which will produce the same desired rotation δRd. The desired rota-
tion can be obtained by fixing one latent code, c1 or c2, and calculating the other latent
code value.

For two latent codes, the nonlinear model is of the form

δ̂R(k1, k2) = v4 tanh(v1c1(k1) + v2c2(k2) + v3) + v0,
k1, k2 = 1, 2, . . . , K

(28)

The optimization of parameters v4, v3, v2, v1, and v0 is conducted using common
nonlinear fitting tools. The line for a desired δRd is obtained in the form

v1c1 + v2c2 = tanh−1
( δRd − v0

v4

)
. (29)

Again, a desired δRd can be achieved with all pairs of (c1, c2) on the previous line.
In the nonlinear model, we further introduce a quadratic term in the argument of the

tanh function as
δR(k1, k2) = v7 tanh(PR(c1(k), c2(k2)) + v0,

k1, k2 = 1, 2, . . . , K.
(30)

where PR(c1(k), c2(k2)) = v1c2
1(k1) + v2c2

2(k2) + v3c1(k1)c2(k2) + v4c1(k),+v5c2(k) + v6,
k1, k2 = 1, 2, . . . , K. For a desired δRd, (c1, c2) should be satisfied by the following relation

PR(c1, c2) = tanh−1
(

δRd−v0

v7

)
(31)

meaning all combinations of the latent codes are along a quadratic form line. Namely, (31) is
a general quadratic equation, producing conic sections (circles, ellipses, parabolas, and hy-
perbolas) in the c1-c2 plane, depending on the specific parameter v0, v1, v2, . . . , v7 values.

Two properties—two latent codes: For a simultaneous change in two properties, we
will use two codes and a nonlinear model. In the nonlinear model, we will use a linear
argument form of the tanh function and a quadratic argument of this function. In the case
of the linear argument, we will use the model

δR(k1, k2) = v4 tanh(v1c1(k1) + v2c2(k2) + v3) + v0,

δS(k1, k2) = v9 tanh(v6c1(k1) + v7c2(k2) + v8) + v5,
(32)

The quadratic argument model is of the form

δR(k1, k2) = v7 tanh(PR(c1(k), c2(k2)) + v0, (33)

δS(k1, k2) = v15 tanh(PS(c1(k), c2(k2)) + v8, (34)

k1, k2 = 1, 2, . . . , K,
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where the polynomial arguments for the two properties are defined by

PR(c1(k1), c2(k2)) = v1c2
1(k1) + v2c2

2(k2) + v3c1(k1)c2(k2)

+ v4c1(k1) + v5(c(k2)) + v6, (35)

PS(c1(k1), c2(k2)) = v9c2
1(k1) + v10c2

2(k2) + v11c1(k1)c2(k2)

+ v12c1(k1) + v13(c(k2)) + v14, (36)

for k1, k2 = 1, 2, . . . , K. These two systems are independently solved for the corresponding
sets of coefficients in the model.

In this case, the desired SAR image is generated at the intersection of the lines producing
the desired rotation, δRd, and scaling, δSd, since for each of them we get the corresponding
lines as in (29) and (31).

All the previous setups will be illustrated and explained in detail in the next section
dealing with experimental results. It is worth noting that motion error is a key problem
in the practical application of SAR image formation [41]. Specifically, SAR images will
be unfocused or blurred if there are motion errors. Here, we clarify that the relation
between motion error and latent codes is beyond the scope of this paper because (1) motion
error is a complex issue that could be too difficult for one or two latent codes to capture
its physical regulation; (2) motion error is also difficult to gauge numerically while the
objective of this paper is to provide a numerical interpretation of the relation between
properties (i.e., the properties should be gauged numerically and easily) and latent codes.
Nonetheless, it is still an important issue worth studying in the future and could be feasible
to interpret by introducing more smart estimators and regularization.

4. Experiments

Dataset: In our experiments, four kinds of datasets are utilized as shown in Figure 4
and Table 2:

• Simulated SAR images: This dataset contains SAR images produced by a simulation
model, retaining the scattering characteristics with rotation, translation, and scaling.

• Semi-simulated SAR images: In this dataset, real images are manually rotated, trans-
lated, and scaled; thus, it is termed semi-simulated SAR images. It is worth noting the
purpose of this dataset without scattering characteristics is to demonstrate the validity
of our method in a clear and intuitive manner. The conclusions are also applicable to
other datasets.

• Real SAR images without background: This dataset concludes SAR images from
MSTAR that is a popular and open-access dataset of SAR images. The background of
SAR images is removed by self-matching CAM.

• Real SAR images with background: This dataset is the same as the above except for
the maintained background.

Table 2. The detailed information of each dataset.

Dataset Property Spatial Size Number of Samples

simulated rotation 28× 28 13/121
semi-simulated rotation 28× 28 601
semi-simulated translation 28× 28 151
semi-simulated scaling 28× 28 301

semi-simulated rotation and
translation 28× 28 3721

semi-simulated rotation and scaling 28× 28 1891

semi-simulated translation and
scaling 28× 28 3751

real without
background rotation 28× 28 60

real with background rotation 28× 28 60
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Figure 4. Illustration of SAR image samples from four datasets considered in the experimental setup:
simulated SAR images with different viewing angles (top row); a radar image from the MSTAR
dataset, with suppressed background, rotated for various angles (second row); SAR images from
MSTAR dataset corresponding to different viewing angles of the same target, with suppressed
background (third row); SAR images from MSTAR dataset corresponding to different viewing angles
with a background (bottom row).

The above four datasets have their specific purposes in the following experiments.
The simulated data are used to comprehensively demonstrate the validity of the numerical
relation computed by the property estimators because the properties of these images are a
priori known. The semi-simulated data provide the images of real objects with precisely
defined properties. The third dataset and the fourth dataset are used to test the performance
of property estimators on realistic SAR images without property annotations (the estimation
of ground-truth property is illustrated in the following contents).

InfoGAN architecture: The generator G contains one fully connected layer and four
transposed convolutional layers. The input z to the generator is a one-dimensional vector
concatenating pure noise and latent codes in the length of Nz (Nz = NN + NC), where
NN and NC denote the length of noise and latent codes. Unless specified, Nz = 62 in this
paper. NC equals the number of classes and latent codes. The discriminator D contains
four convolutional layers and one fully connected layer. The classifier Q contains four
convolutional layers and two fully connected layers. D and Q share the parameters for
all convolutional layers. In our experiments, there are two latent codes at most; thus,
two single neurons are set in the output layer of Q. Tables 3 and 4 show the details of G,
D, and Q, respectively. To avoid modifying the InfoGAN’s architecture, we assign a 0
weight to the loss function of the second one of two latent codes when only one latent code
is required.

In the following experiments, the simulated images are of size 28× 28 pixels, while
the real data images are downsampled to this size. The learning process for the InfoGAN
lasted about 10 minutes with 10,000 iterations on a laptop computer with a CPU of 3.2 GHz,
RAM of 32 GB, and GPU NVIDIA Geforce RTX 3070. Larger images can be processed in
the same way with some increase in the computation time. It should be pointed out that
10,000 iterations are set from an empirical observation on the generated SAR images in
the training process, as shown in Figure 5. It shows that, in the early stages of training
(50 and 500 iterations), the generated images are quite rough even in the basic shape of the
object. When the number of iterations reaches 5000, some details are captured but still
not perfect. For 10,000 iterations, the details are further completed; thus, we chose 10,000
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as the number of iterations. It is worth pointing out that overfitting is an important and
challenging problem in the GAN’s training, whereas there are few trustworthy and robust
overfitting check algorithms. Generally, it is recognized as an acceptable GAN when the
generator can produce visually satisfactory images and the discriminator is not completely
fooled by the generator. The InfoGANs in the following experiments are also checked in
this manner.

Table 3. The architecture of the generator, G.

Layer Input Shape Output Shape Activation

Fully connected Nz 6272
Reshape 6272 7× 7× 128

BatchNormalize 7× 7× 128 7× 7× 128 Sigmoid
TransposedConv2D 7× 7× 128 14× 14× 128

BatchNormalize 14× 14× 128 14× 14× 128 Sigmoid
TransposedConv2D 14× 14× 128 28× 28× 64

BatchNormalize 28× 28× 64 28× 28× 64 Sigmoid
TransposedConv2D 28× 28× 64 28× 28× 32

BatchNormalize 28× 28× 32 28× 28× 32 Sigmoid
TransposedConv2D 28× 28× 32 28× 28× 1 Sigmoid

Table 4. The architecture of the discriminator D and the classifier, Q.

Layer Input Shape Output Shape Activation

Conv2D 28× 28× 1 14× 14× 32 Leaky ReLU
Conv2D 14× 14× 32 7× 7× 64 Leaky ReLU
Conv2D 7× 7× 64 4× 4× 128 Leaky ReLU
Conv2D 4× 4× 128 4× 4× 256 Leaky ReLU
Flatten 4× 4× 256 4096

D: Fully connected 4096 1 Sigmoid

Q: Fully connected 4096 128
Fully connected 128 NC Sigmoid

Figure 5. Some images generated by InfoGAN with different numbers of iterations in the training
process: 50 iterations (first); 500 iterations (second); 5000 iterations (third); 10,000 iterations (fourth).

4.1. Simulated SAR Images

The SAR images of a ship are simulated in this experiment. The radar operating
frequency f0 = 157 GHz, Tr = 93.75 µs, with 28 pulses and 28 range cells inside a pulse.
The target is illuminated from different angles (or the target is rotated) with an angle from
10◦ to 70◦ with respect to the line of flight. For the first experiment, only the rotation is
considered since it is the most complex property for simulated SAR images as discussed in
Section 2.

The InfoGAN described above (Tables 3 and 4) was trained with only one latent code,
c1, activated. For the beginning, only 13 training images (5◦ step) were used to train the
InfoGAN. The reason why we set 13 is to demonstrate that the InfoGAN’s continuous
latent code can capture the trend of how properties change with a limited number of
training images. In fact, we started from thousands of training samples and succeeded in
manipulating the properties. Then, we gradually reduced the number of training images
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to seek the minimum number of training images for obtaining acceptable results. Finally,
we found about 13 is basically enough for this rotation range in this dataset. Using a
small number of images to train the InfoGAN increases the practical value of this method.
Therefore, we first set only a few samples (13 SAR images) for training to show that the
InfoGAN can learn the relation between properties and latent codes from a limited number
of training samples. After the InfoGan was trained, we tested various values of c1 and
generated new SAR images. The resulting images covered almost the whole rotation angle
range. This means that some rotation angles not appearing in training can be synthesized
by manipulating the latent code c1 values with examples as shown in Figure 6.

10.0∘

c1 = − 0.8

18.5∘

c1 = − 0.6

30.0∘ 45.0∘

c1 = 0.3

51.5∘

c1 = 0.5

58.0∘ 70.0∘

Figure 6. Real and synthesized SAR images for various rotation angles. The first, fourth, and seventh
images (marked by red squares) are SAR images used for the training of the InfoGAN, while the
second, third, fifth, and sixth images are the SAR images synthesized by the InfoGAN with the latent
code values c1 = −0.8,−0.6, 0.3, 0.5, respectively.

For a detailed analysis of the relation between the rotation angle, δR, and the latent
code, c1, the number of training images was increased to 121 within the same range from
10◦ to 70◦ with respect to the line of flight.

After the InfoGAN was trained, we generated a set of images corresponding to the
various values of the latent code, c1(1), · · · , c1(K), K = 30, uniformly sampled from
the interval [−1.5, 1.5]. After the SAR images were synthesized using these latent code
values, the rotation angles, δR(k), k = 1, 2, . . . , K, were measured for the obtained SAR
images with each latent code, using (19), and the parameters V of a linear and nonlinear
model were calculated by Equation (23) or solving the system (25), respectively. The liner
model solution is shown in the Figure 7 (top-left) with a green line, while the measured
angles δR(k) are given by dots. This panel shows that the rotation angle changes in an
approximately linear way with respect to c1. A direct comparison of the measured angle,
δR(k), and the estimated angle by a linear model, δ̂R(k), is shown in Figure 7 (bottom-left).
The procedure was repeated with the nonlinear model (25) and the corresponding results
are shown Figure 7 (top-right) and Figure 7 (bottom-right). It is clear that the nonlinear
model performs better than the linear model, which will be even more evident in the
next experiments.

Finally, the model was tested with four desired rotation angles, δRd = 21.67◦, 33.33◦,
45.33◦, and 56.67◦. The latent code values, c1, for these rotations were calculated using (26).
Then, the InfoGAN produced the synthesized SAR images, shown in Figure 7 (bottom row).
The estimated rotations δR(k) were obtained from (19). They are within a few degrees of
margin with respect to the desired ones.

4.2. Real Object from a SAR Image with Simulated Properties

After the simulated SAR examples, before a real data example, as an intermediate
step, we shall consider a SAR image from the real dataset MSTAR [42] (a popular public
SAR image dataset, which will be elaborated in the next subsection), but to fully control
the transformations, we will produce new images by rotating, scaling, and shifting the
assumed real SAR image. Unless otherwise specified, the background in each SAR image
has been removed before all experiments by using self-matching CAM [43,44]. Recall that
geometrical transformations will be, in general, referred to the properties. As in Section 3,
we set three cases for the considered images and the InfoGAN: (1) one property—one latent
code; (2) one property—two latent codes; (3) two properties—two latent codes. Here, we
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particularly clarify that this kind of manual rotation/translation/scaling is different in
scattering properties in real scenarios. The purpose for which we set this toy data is to show
how latent codes affect geometric properties in a clear and intuitive manner. The results of
real properties in real SAR images are analyzed in the next subsection.
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c1 = − 0.18
δRd = 45.33∘

δR = 47.0∘
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Figure 7. The results for the estimated and modeled rotation angle for the SAR images synthesized
by the InfoGAN trained with simulated SAR images. The rotation angles in SAR images as a function
of the latent code, c1, measured by cross-correlation (black dots) and the estimated values with a
linear model (green line) (top-left). The rotation angles in SAR images as a function of the latent
code, c1, measured by cross-correlation (black dots) and the estimated values with a nonlinear model
(yellow line) (top-right). Comparison of the measured angle values by cross-correlation with the
ones obtained using the linear model (blue dots), where the red line denotes the ideal case that
δ̂R(k) = δR(k) for all k (middle-left). Comparison of the estimated angle values with the ones
obtained using the nonlinear model (blue dots) (middle-right). The synthesized SAR images using
c1 calculated by (26) for four desired rotation angles, δRd = 21.67◦, 33.33◦, 45.33◦, 56.67◦ (bottom
row). The estimated rotations of the synthesized SAR images, δR(k) are calculated using (19). They
are close to the desired ones.

4.2.1. One Property—One Latent Code

All three properties were considered separately: for rotation, a real SAR image was
analytically rotated from −30 to 30 degrees to obtain 601 images; for translation, the target
in a real image was translated from −6 to 6 pixels from the original position to obtain
151 images; for scaling, the target in a real image was scaled from 0.5 to 2 times of the
original size to obtain 301 images. After the InfoGAN was trained independently with
three datasets, respectively (in three separate experiments), we synthesized the new images
corresponding to the various values of the latent code, c1(1), · · · , c1(K), K = 30, uniformly
sampled from the interval [−1.0, 1.0] for each property. Then, the properties, δR, δS, and
δA can be measured by (19) and the estimated properties, δ̂R, δ̂S, and δ̂A, can be calculated
using (20) and (25). The comparison of the measured properties and estimated properties
shows that the nonlinear estimator performs better than the linear estimator in all cases,
especially for rotation (top-right) and scaling (bottom-right), as shown in Figure 8. For each
case, we synthesized SAR images for four desired δRd, δSd, and δAd, respectively, using c1
calculated by (26). The estimated properties of the synthesized SAR images, δR, δS, and δA,
are measured by (19). We can see that the agreement is good in all considered cases.
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Figure 8. The results for the measured and modeled rotation (top), translation (middle), and scaling
(bottom) for the SAR images synthesized by the InfoGAN trained with the second dataset. In each
case, we show the relation between c1 and the considered property (dots), approximations using linear
(green line in left subplots) and nonlinear models (yellow line in right subplots), and synthesized
SAR images using c1 calculated by (26) for four desired δRd, δSd, and δAd. The estimated properties of
the synthesized SAR images, δR, δS, and δA, are measured by (19). They are close to the desired ones.
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4.2.2. One Property—Two Latent Codes

Now, we introduce two latent codes c1 and c2 to train the InfoGAN with input images
exhibiting one-property variations in order to check whether one property will remain
within one latent code or will propagate to the other latent code as well. We use completely
the same data as in Section 4.2.1, i.e., the only difference is that two latent codes are
considered here. Taking rotation, for instance, we have generated 900 images with δR(k1, k2),
k1, k2 = 1, 2, . . . , 30, from the InfoGAN trained with both c1 and c2 activated. Figure 9
reveals that the value of a specific property is spread over the available latent codes and
therefore is determined by multiple pairs of c1 and c2, because the solution to (31) is not
unique, as discussed in Section 3.
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Figure 9. The relation between each property and two latent codes. The relation between rotation
angle δR and c1, c2 (top-left). The relation between translation pixels δS and c1, c2 (top-right).
The relation between scaling δA and c1, c2 (bottom-left). The synthesized SAR images corresponding
to (c1, c2) labeled below each image except for the original image (marked by red square) (bottom-
right). In this panel (bottom-right), the first two images in the top row exhibit the same rotation
angle δR with different c1 and c2, i.e., c1 = 0.0, c2 = −1.0 and c1 = 0.5, c2 = −0.5, both resulting in
−20◦ rotation. The third one in the top row shows δR = 25◦ with c1 = −0.5 and c2 = 0.0. These
figures further demonstrate the solution to (31) is not unique; thus, it is possible to retain or change
property by manipulating c1 and c2. This conclusion is also applicable to translation δS and scaling
δA, as shown in the second and the third rows (bottom-right).
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To show this relation vividly, we generated several SAR images by using some selected
values of c1 and c2, as shown in Figure 9 (bottom-right). In this panel, consisting of 3× 3
images, the first and the second image in the top row are with different c1 and c2 but both
result in the same δR = −20◦. In comparison, the third one in the top row shows δR = 25◦

with c1 = −0.5 and c2 = 0.0. This comparison further demonstrates the solution to (27)
is not unique. This conclusion is also applicable to δS and δA as shown in the second and
the third row; thus, it is feasible to retain or change any property by manipulating c1 and
c2. Finally, the properties measured by (19) and the estimated properties using (30) are
compared in Figure 10 to validate the performance of the estimator (only the nonlinear
model is considered because the relation between one property and two latent codes is
obviously much more complex than the linear model). The results show that δ̂R, δ̂S, and δ̂A,
calculated by (30), basically match the δR, δS, and δA, respectively, even though the accuracy
is slightly lower than in Figure 9.
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Figure 10. The comparison of three estimated properties δ̂R, δ̂S, and δ̂A, using (30), and the measured
ones, δR, δS, and δA, using (19). The relation with δR (dots) and two latent codes, c1 and c2 (different
colors denote different values of c2) (top-left). The δ̂R is shown with blue lines. They are close to the
δR. The comparison of δR and δ̂R (top-right). The results of δS and δ̂S are shown in the middle-right
and middle-left images, respectively. The results of δA and δ̂A are shown in the bottom-right and
bottom-left images, respectively.

4.2.3. Two Properties—Two Latent Codes

In this experiment, we consider two entangled properties emerging in each training
SAR image simultaneously. Firstly, we generate three combinations of training data:
rotation–translation, rotation–scaling, and translation–scaling. For rotation–translation,
there are 3721 training images with 61 rotation angles uniformly dividing [−60◦, 60◦] and
61 translation pixels uniformly dividing [−6, 6]. For rotation–scaling, there are 1891 training
images with 31 scaling uniformly dividing [0.5, 2] and 61 rotation angles uniformly dividing
[−60◦, 60◦]. For translation–scaling, there are 3751 training images with 121 translation
pixels uniformly dividing [−6, 6] and 31 scaling uniformly dividing [0.5, 2]. We have
generated 900 images for each property using different combinations of c1 and c2 and
show their relation in Figures 11 and 12. Next, we conduct an experiment to visualize
how to edit the entangled properties by manipulating c1 and c2. In each case, we select
9 combinations of c1 and c2 in intersections of two contour lines (green dots in the bottom-
left of Figures 11 and 12). The synthesized SAR images, by using these (c1, c2) in the
bottom-right, show that if c1 and c2 are along one curve only the property corresponding
to this curve will be changed while the other property remains still. Furthermore, given
two desired properties, for example, δRd and δSd, the satisfying combination of c1 and c2 is



Remote Sens. 2023, 15, 1254 19 of 24

unique in a certain range (the green dots). Thus, it is feasible to precisely edit either a single
property or two properties simultaneously by manipulating c1 and c2 as we expected.
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Figure 11. The relation between rotation–translation and two latent codes. The relation between
rotation angle δR and c1, c2 (top-left). The relation between translation δS and c1, c2 (top-right).
The overlapped curves of the above two contours as well as some selected intersections (green dots)
(bottom-left). The synthesized SAR images with (c1, c2) corresponding to the coordinates of the
green dots in the former contour (bottom-right). Here nine collocations of c1 and c2 are selected and
labeled as a, b, c, d, e, f, g, h, and i in contour maps.
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Figure 12. The relation between translation–scaling and two latent codes. The relation between
translation angle δS and c1, c2 (top-left). The relation between scaling δA and c1, c2 (top-right).
The overlapped curves of the above two contours as well as some selected intersections (green dots)
(bottom-left). The synthesized SAR images with (c1, c2) corresponding to the coordinates of the
green dots in the former contour (bottom-right).

4.3. Real SAR Images with Suppressed Background

The real-measured dataset is a MSTAR dataset with SAR images of ground stationary
targets released by the MSTAR program supported by the Defense Advanced Research
Projects Agency (DARPA) of the United States [42]. The MSTAR dataset includes 2536 SAR
images for training and 2636 for testing with 10 classes of vehicles. We chose 60 images of
2S1 (self-propelled artillery) with rotation angles (with respect to one called the reference
SAR image) from [−34◦, 44◦]. The images are downsampled to the size of 28× 28 pixels.

After the InfoGAN was trained with only c1 activated, the same experiments as for
simulated SAR images were conducted, as shown in Figure 13. We can see that the latent
code c1, after the training process, is associated with the SAR image rotation. The modeling
of the rotation angle and the latent code was performed using the linear and nonlinear
model (Figure 13, top row). While the linear model is simple, the nonlinear model fits the
data better. Finally, the model was used to synthesize new SAR images for a given desired
rotation angle, δRd. The obtained images are shown in the bottom row of Figure 13 for four
desired angles. The estimated rotation angles, δ̂R, of the SAR images synthesized with c1
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calculated by (26), are given in this panel as well, and we can see that they are close to the
desired ones, δRd.
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Figure 13. The results for the estimated and modeled rotation angle for the SAR images synthesized
by the InfoGAN trained with real SAR images. The rotation angles in SAR images as a function of
the latent code, c1, measured by cross-correlation (black dots) and the estimated values with a linear
model (green line) (top-left). The rotation angles in SAR images as a function of the latent code, c1,
measured by cross-correlation (black dots) and the estimated values with a nonlinear model (yellow
line) (top-right). The synthesized SAR images using c1 calculated by (26) for four desired rotation
angles, δRd = −20◦, −10◦, 5◦, 10◦ (bottom row). The estimated rotations of the synthesized SAR
images, δR(k), are calculated using (19).

4.4. SAR Images with Background

Furthermore, we conducted the same experiments with real SAR images, but not
removing the background, and the results are similar to the previous experiment, as shown
in Figure 13, where the measured and modeled rotation angle is shown (with respect
to the reference SAR image). Four synthesized SAR images with the desired rotation,
controlled by the latent code values, are given in Figure 13 (bottom). The experiment
with the included background was repeated with two latent codes in the InfoGAN. Some
synthesized SAR images are shown in Figure 14. As can be seen from this figure, the latent
code c1 controls the rotation, while the latent code c2, in this case, takes control over the
background intensity. Thus, if we want to obtain images with suppressed backgrounds, we
can use high values of c2.

4.5. Robustness and Generalization Analysis on Other SAR Datasets

Here, we introduce another dataset, AIR-SARShip-1.0 (released by the Chinese Academy of
Sciences and University of Chinese Academy of Sciences), to further demonstrate the robustness
and generalization of the proposed method. AIR-SARShip-1.0 comprises 31 images from
Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different
conditions. The backgrounds include various scenarios, such as the nearshore and open sea. We
selected a SAR image indexed as 05_8_21 from the AIR-SARShip-1.0 and cropped a slice of a
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ship target as a baseline image, shown in Figure 15. Then we manually imposed three properties
to the baseline image, as in Section 4. Specifically, there are 30 images uniformly dividing the
rotation range (from 1◦ to 30◦), 15 images uniformly dividing the translation range (from 1
to 15 pixels), and 15 images uniformly dividing the scaling range (from 1 to 1.8), as shown in
Figure 15.
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Figure 14. The synthesized SAR images (with background). Two latent codes are used.

Figure 15. Some samples from AIR-SARShip-1.0 dataset. A large-scale SAR image indexed as 05_8_21
in AIR-SARShip-1.0 (left). A slice of one ship (marked by a green box in left subfigure) with three
properties manually manipulated (right).

Next, we implemented the same experiments on these three groups of SAR images to
interpret the relation between each property and the latent code, c1. Figure 16 presents the
synthesized SAR images and estimated values of the properties. A similar conclusion can be
drawn to the previous experiments, which further proves the robustness and generalization
of our method on different datasets.
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Figure 16. Some experimental results of AIR-SARShip-1.0 dataset. The first, second, and third rows
are SAR images produced by InfoGAN with one latent code, c1 ∈ [−1, 1], corresponding to rotation,
translation, and scaling, respectively. The fourth row shows the comparison between measured
rotation (left), translation (middle), and scaling (right) by blue dots and corresponding estimated
properties (red curve).

5. Discussion

The experiments were carried out with four datasets: simulated images, real objects
from SAR images with simulated properties, SAR images with suppressed backgrounds,
and SAR images with backgrounds. In the first experimental setup, the results demonstrate
that the relation between a single latent code and one property matches a sigmoid function.
In the second case, the results show that quadratic terms in the argument are required to
cater to more complex relations when two latent codes are considered. The third and fourth
experimental setups further demonstrate such a conclusion is applicable to real SAR images.
Therefore, it is possible to synthesize SAR images of these properties by manipulating
latent codes according to such a relation interpreted by our proposed method.

6. Conclusions

This paper sheds some light on interpreting the relation between different properties
of SAR images and latent codes in the InfoGAN. In general, the unclear relation between
properties and latent codes is modeled in a numerical manner by proposing property
estimators. Specifically, the trend of how properties vary with latent codes can be measured
mathematically, i.e., the corresponding property can be computed regarding a specific
collocation of latent codes and the latent codes can also be computed provided some
desired properties. In this case, it is feasible to produce a large scale of photo-realistic SAR
images with numerical properties by manipulating the latent codes in the InfoGAN, which
could alleviate the shortage of data for deep learning techniques with SAR images.
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