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Abstract: In the field of object detection, deep learning models have achieved great success in recent
years. Despite these advances, detecting small objects remains difficult. Most objects in aerial
images have features that are a challenge for traditional object detection techniques, including small
size, high density, high variability, and varying orientation. Previous approaches have used slicing
methods on high-resolution images or feature maps to improve performance. However, existing
slicing methods inevitably lead to redundant computation. Therefore, in this article we present a
novel adaptive slicing method named ASAHI (Adaptive Slicing Aided Hyper Inference), which can
dramatically reduce redundant computation using an adaptive slicing size. Specifically, ASAHI
focuses on the number of slices rather than the slicing size, that is, it adaptively adjusts the slicing
size to control the number of slices according to the image resolution. Additionally, we replace
the standard non-maximum suppression technique with Cluster-DIoU-NMS due to its improved
accuracy and inference speed in the post-processing stage. In extensive experiments, ASAHI achieves
competitive performance on the VisDrone and xView datasets. The results show that the mAP50 is
increased by 0.9% and the computation time is reduced by 20–25% compared with state-of-the-art
slicing methods on the TPH-YOLOV5 pretrained model. On the VisDrone2019-DET-val dataset, our
mAP50 result is 56.4% higher, demonstrating the superiority of our approach.

Keywords: object detection; small object detection; sliced inference; VisDrone; xView

1. Introduction

In recent years, object detection has received much attention due to its widespread
applications in various fields. When applied to images from nature, traditional object
detectors such as RetinaNet [1], YOLOV5, and Fast-RCNN [2] have achieved impressive
results. However, their results are not satisfactory for drone-captured and remote sensing
images. For example, Faster R-CNN [3], a classical two-stage object detection algorithm,
achieves 38.0 mAP on objects from the VisDrone2019 evaluation set with various sizes,
but only 6.2 and 20.0 mAP, respectively, on objects with tiny and small sizes. This limitation
is mainly caused by three factors: (1) low-resolution features in the deeper layer may not
match the diverse size of small objects; (2) qualities such as high densities, large numbers
of objects, variable scales, and small occupied areas cause significant challenges; and
(3) detecting small objects is more difficult compared with large objects, as the Intersection
over Union (IoU) metric can fail to account for situations such as overlapping objects, close
proximity between objects, and diverse aerial perspectives.

To tackle these problems, specialized small object detection algorithms have been de-
veloped. With the appearance of 4K cameras and civilian drones and the fast development
of deep learning and remote sensing technologies, the performance of small object detection
using convolutional neural networks (CNNs) has substantially improved. Several methods,
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such as TPH-YOLOV5, TOOD [4], PP-YOLOE [5], UAVs, and SODNet [6] have obtained
impressive results and are widely employed in tasks such as geographical surveys [7],
person identification [8], flow monitoring [9], and traffic control. Most of these tasks require
processing of high-resolution images. Hence, a number of researchers have attempted to in-
crease the upsampling rate to maintain high-resolution features, for example, in algorithms
such as TPH-YOLOV5 [10] and QueryDet [11]. Meanwhile, adding penalty terms in the
post-processing stage can help to tackle problems associated with high densities. Several
post-processing methods, such as Soft-NMS [12], WBF [13], and DIoU-NMS [14], have
shown effectiveness in terms of improved performance. In addition, the slicing method [15]
and the shifted window-based self-attention mechanism [16] have been proposed; these
approaches slice images into smaller patches to amplify their local features. Both of these
slicing methods have been widely used in small object detection algorithms to achieve
better performance [10,11,15]. However, the redundant computations of the traditional
slicing method remain, increasing computational costs and reducing detection speed. Thus,
in this work our approach focuses on alleviating redundant problems to obtain better
accuracy and faster detection speed when employing a small object detection algorithm on
remote sensing images.

In this paper, we propose a novel slicing method, ASAHI (Adaptive Slicing-Aided
Hyper Inference), which adaptively slices images into a fixed number of patches rather
than using a fixed slicing size. By automatically controlling the number of slices, our
method greatly reduces redundant computation. In the post-processing stage, we substi-
tute non-maximum suppression (NMS) with Cluster-DIoU-NMS, which reduces the time
consumption while maintaining the quality of the results. This approach was motivated
by two key observations. First, in SAHI [15], we found that a fixed slice size leads to
different degrees of redundant calculation for images with different resolutions. In par-
ticular, at the edge of the image, the redundant calculation rate exceeds the overlapping
rate. By contrast, adaptive slicing size is preferable. Second, small object detection most
contend with the difficulties posed by close proximity, overlap, and occlusion. NMS is
a mainstream post-processing method that is widely used for object detection; however,
it does not perform well for high-density objects due to its reliance on a single metric,
namely, IoU. This limitation is evident in small object detection. Therefore, combining
Cluster-NMS [17] and DIoU-NMS [14] is a good scheme.

We evaluated ASAHI on a challenging dataset, VisDrone2019 [18], which contains
a large quantity of small objects in different resolutions. In addition, we tested it on the
xView [19] dataset, which is annotated with bounding boxes and contains large amounts
of aerial imagery and complex scenes from around the world. Large-scale experiments
show that our method accelerates the inference and post-processing stages by 20–25%,
while improving the detection performance by 2.1% compared with the baseline SAHI
method [15]. Figure 1 shows the improved results obtained by ASAHI.

The main contributions of this paper are as follows:

1. We propose a novel slicing method, ASAHI, which can improve detection performance
for images of various resolutions and targets at a range of scales by solving the
redundancy problems in the previous SAHI method [15].

2. We combine ASAHI with the TPH-YOLOV5 framework [10] to strengthen its sensitiv-
ity to the lower features in deeper layers.

3. We design an adaptive slicing-aided fine-tuning scheme called ASAF for data augmen-
tation, which is more suitable for ASAHI than other traditional fine-tuning strategies.

4. We integrate Cluster-DIoU-NMS, a faster Cluster-NMS method with DIoU penalty,
in the post-processing stage to improve the accuracy and detection speed of inferences
in high-density scenarios.
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Figure 1. Inference results for (a) YOLOV5, (b) TPH-YOLOV5, (c) TPH-YOLOV5+SAHI, and (d) TPH-
YOLOV5+ASAHI (our algorithm). As shown in the magenta boxes, in (c,d) more bounding boxes are
detected compared with (a,b). In addition, while the slicing method from [15] performs well when
detecting small objects, ASAHI is superior when detecting even smaller objects. This is evident in the
green closeups, where ASAHI is able to detect more tiny objects.

2. Related Work

Object Detection. The recent CNN-based object detectors can be divided into two main
types, namely, single-stage detectors and two-stage detectors. Single-stage detectors, such as
YOLOv3 [20], SSD [21], RetinaNet [1], EfficientDet [22], and YOLOV4 [23], directly predict
the location of the targets; single-stage detection can be regarded as a regression problem.
Two-stage detection tends to use the RoIAlign operation [24] to align an object’s features
explicitly. Several typical frameworks, such as R-CNN [25], SPPNet [26], DetectoRS [27],
and FPN [28], utilize a region proposal stage to generate candidate objects and selectively
search those parts of an image that have a high probability of belonging to an object. Typi-
cally, single-stage detectors are less computationally expensive, while two-stage detectors
achieve higher accuracy. However, the performance gap between these two approaches
has narrowed recently. For example, YOLOV5 is a classical single-stage detector that uses
the CSPDarknet53 architecture, with an SPP layer as the backbone and PANet as the neck.
During inference, large numbers of bounding boxes are obtained and then aggregated by
CIoU in the post-processing stage. This approach has attracted the attention of researchers
because of its convenience and good performance.

Small Object Detection. Small object detection is a challenging task in computer vision
due to the difficulties posed by low resolution, high density, variable scales, and small
occupation areas. A number of researchers have modified the traditional object detection al-
gorithms with self-attention mechanism such as CBAM [29], SPANet [30] and RTANet [31]
to accommodate small object detection. An excellent work is TPH-YOLOV5 [10]; a state-
of-the-art small object detection framework based on YOLOV5, it integrates an additional
prediction head for small object detection, a CBAM [29] framework in the neck, and re-
places the original CSP bottleneck blocks with transformer encoder blocks. This increases
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the detection accuracy for small objects while preserving the speed of inference. Hence,
in this work we utilize TPH-YOLOV5 [10] as our backbone and propose ASAHI to achieve
better results.

Postprocessing in Small Object Detection. Post-processing is a crucial part of small
object detection. During the inference process, a large number of bounding boxes are
generated; however, many of them represent detections of the same target, and a post-
processing method must be used to suppress these false detections. In recent years,
the DETR method [32] has replaced the traditional post-processing process; however, the
development of this technology is not yet complete. In this paper, we maintain the use
of post-processing. NMS is one of the most popular post-processing methods. Several
well-known frameworks, such as TPH-YOLOV5 [10] and SAHI [15], use NMS in the post-
processing stage. Although, NMS is competitive, it has a number of shortcomings due
to IoU being the only influence factor in NMS. Thus, adding penalty terms is an efficient
way to improve performance or reduce time consumption. For example, GIoU, DIoU,
and CIoU add penalties based on the weight of non-overlapping areas, the center point
distance between bounding boxes, and the aspect ratio, respectively, to improve detection
performance. In addition, several methods have been combined with NMS to achieve better
performance in the post-processing stage, such as IBS [33], a state-of-the-art two-stage
algorithm with excellent performance, Soft-NMS [12], a soft improvement based on NMS
with Gaussian algorithm, and Cascade R-CNN + NWD [34], a classical improved algorithm
based on the normalized Wasserstein distance. Our method, ASAHI, focuses on better
performance and faster inference. Inspired by LD [35], we employed a combination of the
Cluster-NMS and DIoU-NMS [14] algorithms to meet our goals.

3. The Proposed Method

In this paper, with the aim of enhancing small object detection accuracy, we propose a
novel slicing method called ASAHI, an overview of which is shown in Figure 2. The overall
process can be simplified as follows: two strategies, full inference (FI) and ASAHI, are
applied to the original images simultaneously. In FI, the full images are sent to the inference
stage. By contrast, ASAHI adaptively changes the slicing size to control the number of slices
according to the image resolution. In the inference stage, the full image and sliced image
are processed by TPH-YOLOV5 [10] to obtain the corresponding bounding boxes. Next,
the bounding boxes are resized by the aspect ratio and merged using Cluster-DIoU-NMS
to remove the repeatedly identified pre-selected boxes in the post-processing stage. In the
remainder of this section, we introduce ASAHI, Cluster-DIoU-NMS, and Adaptive Slicing
Aided Fine-tuning (ASAF) in detail.

3.1. Overview of TPH-YOLOV5

TPH-YOLOV5 [10] provides two pre-trained models, yolov5l-xs-1 and yolov5l-xs-2,
which were trained at different sizes after resizing. TPH-YOLOV5 [10] uses the architecture
of CSPDarknet53, with three transformer encoder blocks as the backbone, PANet with
CBAM [29] as the neck, and four transformer prediction heads. Considering its excellent
performance, ranking fifth in the VisDrone 2021 competition, we selected it as our backbone.
Thanks to the code provided by the authors of the study [10], we used a slight modification
in the neck, as shown in Figure 3, in which the number of CBAM blocks [29] is reduced
by one.



Remote Sens. 2023, 15, 1249 5 of 18

Figure 2. The overall flow chart of ASAHI. (1) Based on LS (the threshold image resolution for
different slicing methods), images with different resolutions are sliced into 6 and 12 patches, as shown
in (A). (2) During the inference stage, the original image and the sliced image are sent to TPH-
YOLOV5 [10] to extract the image features, as shown in (B), and to infer the bounding boxes. (3) The
original image and sliced image are joined together by TPH-YOLOV5 [10] to infer the bounding
boxes. Finally, all bounding boxes are aggregated by Cluster-DIoU-NMS to suppress redundant
bounding boxes, as shown in (C).

Figure 3. The architecture of TPH-YOLOV5 [10] with slight changes made for this study. (1) The
backbone is based on CSPDarknet, with three added transformer encoder blocks, each of which
contains two main blocks, a multi-head attention block, and a feed forward neural network at the
end. (2) The neck uses the structure of the PANet and is optimized by using CBAM [29]. The entire
model diagram is based on TPH-YOLOV5 [10].
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3.2. Adaptive Slicing-Aided Hyper Inference (ASAHI)

By investigating a range of slicing methods, we found that fixed slice sizes inevitably
lead to redundant computation in images with different resolutions. When a fixed slice
size cannot be used exactly, part of the information from the previous image is included
to ensure that the slice is complete; this strategy causes redundant computation, and can
pose a problem for merging during post-processing. Our ASAHI approach, as an improved
version of the SAHI slicing algorithm, greatly reduces this redundant computation by
adaptively changing the slicing size.

During the inference step, as detailed in Figure 4, the original image is sliced into 6 or
12 overlapping patches according to the image size. Then, each patch is resized, preserving
the aspect ratio. After that, the patches are transferred to the merge stage. However, as this
form of slicing results in clear defects in the detection of large objects, we use FI to detect
the larger objects. Finally, Cluster-DIoU-NMS is used to merge the FI results in order to
return them to their original size.

Figure 4. In the inference stage, the image is divided into two parts, namely, FI and ASAHI. These
processes can be carried out simultaneously or sequentially. In ASAHI, the image is divided into
several small patches according to the image resolution, and predictions are generated from these
resized patches. Next, the results from ASAHI and FI are merged by Cluster-DIoU-NMS and
converted back into the original image.

The redundancy in the inference process is shown in Figure 5, in which W and H are
the length and width of the input image, respectively, and l represents the overlapping ratio.
In our experiments, we noticed that the performance, as measured by the mAP, decreases if
the slice sizes are different in length and width. Hence, our method maintains the same
slice size in terms of length and width.

In ASAHI, we set a differentiation threshold as LS: if the length or width of the image
is larger than this threshold, then the image is cut into 12 patches; otherwise, it is cut into
6 patches. LS can be calculated according to Equation (1) below. We define the restricted
slice size, denoted as restrict_size, to guarantee the slice size fluctuation within restrict_size;
here we set it to 512.

LS = restrict_size · (4− 3l) + 1. (1)

After setting the value of LS, we make sure that our image will be divided into exactly 6
and 12 patches by calculating two extreme cases and taking the maximum value:

p =

{
max(W/(3− 2l) + 1, H/(2− l) + 1) max(W, H) ≤ LS
max(W/(4− 3l) + 1, H/(3− 2l) + 1) max(W, H) ≥ LS

(2)

Then, we let a be the number of slices on the horizontal axis and b the number of slices
on the vertical axis. They can be calculated as follows:
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a =

⌈(
W − pl

p ∗ (1− l)

)⌉
, (3)

b =

⌈(
H − pl
p(1− l)

)⌉
. (4)

We can then calculate the redundant areas in Figure 5 from the three known values of
W, H, l, and p in Equation (2), as follows:

Sarea = WH (5)

Redundancy_x = pa− pl(a− 1)−W, (6)

Redundancy_y = pb− pl(b− 1)− H, (7)

Sredundancy = Redundancy_x · H + Redundancy_y ·W − Redundancy_x · Redundancy_y. (8)

After calculating the redundancy of the ASAHI method, we can derive the reduction
in redundant computational area compared to the SAHI [15] method as follows:

SASAHI
redundancy =


W(p(2− l)− H) W

(3−2l) ≥
H

(2−l) & max(W, H) ≤ LS

H(p(3− 2l)−W) W
(3−2l) <

H
(2−l) & max(W, H) ≤ LS

W(p(3− 2l)− H) W
(4−3l) ≥

H
(3−2l) & max(W, H) > LS

H(p(4− 3l)−W) W
(4−3l) <

H
(3−2l) & max(W, H) > LS

(9)

STime
Reduction = 1− (SASAHI

redundancy + Sarea)/(Sredundancy + Sarea) (10)

The redundant computation generated by SAHI [15] is decreased through our method.
The proportions of the reduced redundant computation for images of various resolutions
are shown in Table 1. As a result of this reduction, ASAHI is able to achieve improved
processing speed.

Figure 5. The redundant computation problem addressed by SAHI [15].
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Table 1. Reduction in the redundancy of the computed area with ASAHI as compared to SAHI [15]
at different resolutions. All image resolutions are from the VisDrone and xView [19] datasets.

Image Resolution Redundant Calculation Reduction (%)

960× 540 38.72

1360× 765 2.56

1400× 1050 25.61

1920× 1080 25.92

2000× 1500 24.13

2913× 2428 6.99

3.3. Cluster-DIoU-NMS

Post-processing is a crucial part of small object detection. Inspired by LD [35], we em-
ployed Cluster-DIoU-NMS in the post-processing stage due to the outstanding performance
of Cluster-NMS [17] and DIoU-NMS [14]. Briefly, Cluster-DIoU-NMS is a combination of
DIoU-NMS [14] and Cluster-NMS [17]. We used the structure of Cluster-NMS in order to
speed up the detection speed, and replaced the IOU metric with DIoU to improve perfor-
mance in overlapping scenarios. In other words, the oversuppression issue is addressed by
Cluster-NMS and the DIoU parameters are employed to strengthen the accuracy.

DIoU-NMS: In the traditional NMS algorithm, IoU is the only factor considered.
However, in practical applications it is difficult to distinguish objects by IoU alone when the
distance between two objects is small. Therefore, the overlapping area of the two bounding
boxes and the distance of the center point should be considered simultaneously in post-
processing; despite this, traditional IoU only takes the overlapping area into account,
ignoring the centroid distance. To address this issue, DIoU-NMS [14] incorporates the
distance between the center points of the two boxes as a penalty term. If the IoU between
two boxes is relatively large and the distance between the centers is relatively small,
the boxes are deemed to be separate objects and are not filtered out. In DIoU, c2 denotes
the diagonal distance of the smallest wrapped box overlaying the two bounding boxes,
while ρ2(x, xgt) represents the Euclidean distance between the centroids of the two boxes.
DIoU is defined as

DIoU = IoU− ρ2(x, xgt)

c2 (11)

Cluster-NMS: In traditional NMS, as shown in the left of Figure 6, the matrix X consists
of i rows and j columns, which are sorted by score and upper triangulation, and each
element Xij represents the computed IoU of the ith bbox and the jth bbox. Then, the
maximum value is taken for each column and binarized to obtain the resulting sequence b.
However, in the blue part of Figure 6, 0.6 is calculated from the first and second bbox; the
IoU exceeds the threshold, and should be suppressed. The first bbox and the second
bbox should be considered as one box. Therefore, the bbox in the fourth column of the
second row should be excluded, which is computed by the second and fourth bbox. This
means that 0.8 should not appear. In contrast, Cluster-NMS employs a simple and effective
alteration. Before binarization, XCluster multiplies b to the left by X, which can solve the
over-inhibition problem, as shown in the right of Figure 6.
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Figure 6. Schematic diagram of traditional NMS and Cluster-NMS. In traditional NMS, b is obtained
from X that has been processed after the maximization, then the binarization operation is conducted
according to NMS threshold, as shown on the left. Based on the Traditional NMS, Cluster-NMS
tackles the oversuppression problem by left-multiplying b, as shown on the right.

3.4. Adaptive Slicing-Aided Fine Tuning

In ASAF, the widely used TPH-YOLOv5 object detection framework [10] provides
pre-trained weights on datasets such as VisDrone. This allows the model to be fine-tuned
using smaller datasets with shorter training times, rather than training from scratch with
large datasets. These pre-trained models provide successful detection performance for
similar inputs. In ASAF, as shown in Figure 7, I1, I2, . . . , Ij are sliced into overlapping
patches P1, P2, . . . , Pj by ASAHI to form the sliced dataset. Together with the original
pre-trained dataset, we set up our complete fine-tuned dataset. Considering the large
number of images after slicing, which imposes a large burden on the training process, we
have not used other data augmentation techniques such as rotation, geometric distortions,
or photometric distortions.
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Figure 7. Flowchart of ASAF. The pre-training dataset is sliced to form the slicing dataset using
ASAHI, then the fine-tuned dataset is set up together with the pre-training dataset.

4. Experiments
4.1. Datasets and Settings

We used two datasets, VisDrone2019 and xView [19], to evaluate our model, and
we report our results using the metrics of mAP50 (the average of all ten IoU thresholds
with a range of 0.5), mAP50_s (area < 322), mAP50_m (322 ≤ area ≤ 962), and mAP50_l
(area > 962). Here, the VisDrone2019-DET dataset is the same as the VisDrone2021-DET
dataset and the VisDrone2022-DET dataset.

VisDrone2019-DET [18] is an object detection dataset consisting of 8599 UAV aerial
images taken at different locations and altitudes. It includes 6471 images in the training
set, 1580 in the test set, and 548 in the validation set. Most of the images in this dataset
have the following characteristics: (1) objects occupying small areas are densely distributed,
(2) certain objects are obscured, and (3) reflections, photometric shifts, viewpoint shifts,
and similar phenomena are present. The bounding boxes of more than 540,000 objects
are annotated using ten predefined categories: pedestrian, person, bicycle, car, van, truck,
tricycle, awning-tricycle, bus, and motor.

xView [19] is a large dataset for object detection from remote sensing images. It
contains a large number of remote sensing images taken around the world, all of which
have high resolutions, i.e., 3093× 2931. xView [19] includes more than one million object
instances from 60 different categories. During the experiment, we randomly selected 90%
and 10% of the images to form the training and validation sets, respectively.

4.2. Implementation Details

The training and testing of our model used a single NVIDIA RTX3080 GPU, and others
were tested on a single NVIDIA RTX2080 Ti GPU. In the training phase, we used a pre-
trained TPH-YOLOv5 model [10] with dataset fine-tuning for training and evaluation of the
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ASAHI algorithm. After using ASAF, the training set of the fine-tuning dataset contained
50,708 slicing images and 6471 original images. The sliced images were smaller than the
original images. Next, we set the long side of the images to 416 pixels and the batch size
to 32. We trained the model for 120 epochs, with the first two epochs used for warm-up.
The Adam optimizer was used in the training process, and we used 3× 10−3 as our initial
learning rate, with the last epoch decaying to 0.12 of the initial learning rate. During
inference, the overlapping was set to 0.15, the Cluster-DIoU-NMS matching threshold to
0.5, and the LS to 1818.

4.3. Ablation Studies

VisDrone2019-DET-test is a challenging dataset, containing dark scenes, multi-view
shots, and varying resolutions. We illustrated the universality of our slicing method
through validation on the test dataset, as detailed in Table 2. Considering the aspect ratio
of the image, we tested several numbers of slices; maintaining the number of slices at
12 achieved the highest mAP50 result. However, 12 slices led to a higher computation
time than a smaller number of slices. In SAHI [15], the slicing size is fixed to 512. While
this results in a better performance than other sizes, a fixed slice size inevitably causes
various degrees of redundant computation problems when using images with different
resolutions. As shown in Table 2, we experimented with slices having a fixed size of 512 as
well as fixed numbers of 4, 6, 12, and 15 slices, and found that our TPH+ASAHI (Adaptive)
slicing method obtained the highest mAP50 score (45.6) and a fast inference speed (4.88),
with 6 slices achieving faster computation and 12 slices showing better accuracy. In order
to keep 6 and 12 patches, we set the LS (discussed in Section 3.2) to constrain the slicing
number based on the image resolution. The mAP performance of ASAHI, with the specific
impact of each component, is provided in Table 3. The results indicate that the proposed
approach leads to improved detection performance for both small and medium objects.

Table 2. Results of testing the proposed ASAHI method with different slice sizes and the baseline
SAHI method with a fixed slice size of 512 on the VisDrone2019-DET-test dataset. The best results are
indicated in bold.

Set Up img/s mAP50 mAP50_s mAP50_m mAP50_l

TPH + ASAHI (4 slice) 5.19 38.7 24.9 56.5 68.8
TPH + ASAHI (6 slice) 4.98 41.6 28.8 58.5 65.3

TPH + ASAHI (12 slice) 2.98 41.9 30.5 56.4 64.3
TPH + ASAHI (15 slice) 2.39 40.9 29.9 55.1 62.9

TPH + SAHI (512) (baseline) 3.69 42.2 29.8 58.5 65.6
TPH + ASAHI (Adaptive) 4.88 (↑1.19) 45.6 (↑3.4) 33.8 (↑4.0) 59.7 (↑1.2) 60.7

Table 3. The importance of each proposed component validated on VisDrone2019-DET-val. Here, PO
and CDN stand for overlapping patches and Cluster-DIoU-NMS, respectively. The best results are
indicated in bold.

Model mAP50 mAP50_s mAP50_m mAP50_l

TPH + FI 34.2 21.4 53.3 74.4
TPH + ASAHI 54.4 46.6 66.1 58.9

TPH + ASAHI + FI 55.5 46.7 68.1 76.5
TPH + ASAHI + FI + PO 55.5 46.8 68.6 77.6

TPH + ASAHI + FI + PO + ASAF + CDN 56.8 48.4 68.6 72.9

4.4. Comparisons with the State of the Art

We conducted comparison experiments with the current state-of-the-art small object
target detection algorithms [11,36–38] as well as several classical object detection algo-
rithms [2,34]. The details are shown in Table 4. Our method reached a mAP result of
35.4 and mAP50 of 56.8. Moreover, the corresponding image processing times per second
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(img/s) of each components tested on VisDrone2019-DET-test are presented in Figure 8,
and the discrepancy between the results and processing times of different post-processing
methods, when tested on VisDrone2019-DET-val, are shown in Table 5. CDN obtained the
highest mAP50 result of 48.4 and 68.6 for small and medium objects, and maintained the
fastest detection speed of 5.25. The comparisons of each proposed component combined
with SAHI [15] and ASAHI validated on the VisDrone2019-DET-val dataset are shown in
Table 6. ASAHI performed very well on each component, especially detecting small objects,
for which it obtained an mAP50 result of 56.8 and an mAP50_s result of 48.4.

Table 4. Comparison of our method with other state-of-the-art object detection methods on
VisDrone2019-DET-val. Certain results are taken from other studies, as indicated. The best results are
indicated in bold.

Model mAP mAP50 img/s

Fast-RCNN [2] - 38.5 -

Cascade R-CNN + NWD [34] - 40.3 -

DMNet [39] 28.2 49.3 -

YOLO-UAV [40] 30.5 - -

HIT-UAV [38] - 55.8 -

CRENet 33.7 54.3 1.10

GLSAN [36] 30.7 55.4 -

QueryDet [11] 33.9 56.1 2.75

ClusDet [37] 32.4 56.2 1.29

Focus-And-Detect [33] 42.0 66.1 0.73

TPH + SAHI 34.9 55.1 5.01

TPH + ASAHI(ours) 35.4 56.8 4.88

Figure 8. Comparison of image processing speeds between SAHI [15] and ASAHI under different
component conditions. The corresponding colors are used to represent comparison of the same com-
ponent. After calculating the average image processing speed over five experiments on VisDrone2019-
DET-test, we found that it increased by 0.48 img/s with ASAHI, 0.97 img/s with ASAHI and PO,
and 1.19 img/s with ASAHI, PO, and CDN. Although FI and ASAF cannot significantly improve
detection speed, they can enhance detection performance.
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Table 5. The mAP and time consumption results obtained with different post-processing methods
under ASAHI on VisDrone2019-DET-val. The best results are indicated in bold.

Model mAP50 mAP50_s mAP50_m mAP50_l img/s

NMS 55.8 47.4 68.3 72.9 3.06
SOFT-NMS [12] 52.6 44.3 65.8 70.0 2.72

WBF [13] 55.1 46.7 67.5 73.3 2.88
Cluster-GIoU-NMS 56.3 48.0 68.5 72.9 5.17
Cluster-CIoU-NMS 56.8 48.4 68.6 72.9 4.87

Cluster-DIoU-NMS [35] 56.8 48.4 68.6 72.9 5.26

Table 6. The importance of each component as validated on VisDrone2019-DET-val. The best results
are indicated in bold.

Model mAP50 mAP50_s mAP50_m mAP50_l

TPH + FI 34.2 21.4 53.3 74.4
TPH + SAHI 54.2 45.7 66.8 69.0

TPH + SAHI + PO 54.8 46.2 67.8 67.2
TPH + SAHI + FI 54.6 45.7 68.3 75.2

TPH + SAHI + FI + PO 55.1 46.1 68.8 74.6
TPH + SAHI + FI + PO + ASAF + CDN 56.5 48.1 69.0 72.7

TPH + ASAHI 54.4 46.6 66.1 58.9
TPH + ASAHI + FI 55.5 46.7 68.1 76.5

TPH + ASAHI + FI + PO 55.5 46.8 68.6 77.6
TPH + ASAHI + FI + PO + ASAF + CDN 56.8 48.4 68.6 72.9

5. Results and Limitations

Overall, ASAHI achieved good performance and fast inference speed on both the
VisDrone2019-DET [18] and xView [19] datasets. It is worth noting that the performance on
xView [19] was outstanding; this is notable because the resolution of most images in the
xView [19] dataset is large, which causes significant problems for existing feature extraction
algorithms. ASAHI can significantly improve this situation thanks to the proposed adaptive
slicing method.

In Figures 9 and 10, we exhibit a portion of the detection results of ASAHI on VisDrone
and xView for small objects. As can be seen in Figure 9, ASAHI performs well in various
challenging scenes, such as dark scenes (as shown in the third example), scenes with
reflections and different shooting angles, and scenes with high density (as shown in the
seventh example). Moreover, as shown in Figure 10, ASAHI performs equally well on
remote sensing scenes, such as those with extremely large image resolutions, numerous
interference factors (as shown in the first example), and multiple detection categories (as
shown in the fourth example).

However, this approach has two notable shortcomings: (1) improving the detection
accuracy for small objects inevitably leads to a reduction in the detection accuracy for large
objects, and (2) a number of error cases remain, such as location and category confusion.
The error analysis results of ASAHI on VisDrone and xView are presented on the left and
right of Figure 11, respectively. Among these results, C75 (IoU threshold of 0.75), C50 (IoU
threshold of 0.5), Loc (ignore location error), Sim (ignore super-category false positives),
Oth (ignore category confusions), BG (ignore all false positives), and FN (ignore all false
negatives) in Figure 11 clearly show that there is room to improve the error in terms of
super-category false positives, category confusion, false positives, and false negatives.
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Figure 9. Example detection results of ASAHI on the VisDrone2019-DET-val dataset.
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Figure 10. Example detection results of ASAHI on the xView-val dataset.
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Figure 11. Error analysis curve for ASAHI testing on all classes in the VisDrone2019-DET-val set
(left) and error analysis bar plot for ASAHI testing on the vehicles class in the xView-val set (right).
In the error analysis curve (left), category confusion is the main cause of errors, at 11.4 (Oth minus
C50). In contrast, in the error analysis bar plot (right) location errors are the main source of error,
occurring in 14% of cases.

6. Conclusions

In this study, we addressed the redundant computation problem of the generic SAHI
slicing method [15]. We proposed a novel adaptive slicing framework, ASAHI, which
slices images into a corresponding number of slices rather than using a fixed slice size.
This substantially alleviates the problem of redundant computation. TPH-YOLOv5 [10]
was used as the backbone to conduct relevant test experiments on the xView [19] and
VisDrone2019 [18] datasets. In the post-processing stage, we replaced the traditional NMS
with Cluster-NMS to improve the detection speed. Our model realizes improvements in
mAP and reduces the time consumption by about 25% compared to SAHI [15] (baseline).
Our method is equally applicable to other YOLO-based models. In future work, we plan to
use coordinate attention [41] and CSWin Transformer [42] to improve the sensitivity of the
proposed method to small objects.
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The following abbreviations are used in this manuscript:
IoU Intersection over Union
mAP mean Average Precision
SAHI Slicing-Aided Hyper Inference
NMS Non-Maximum Suppression
CDN Cluster-DIoU-NMS
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