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Abstract: Accurate estimation of canopy chlorophyll content (CCC) is critically important for agri-
cultural production management. However, vegetation indices derived from canopy reflectance are
influenced by canopy structure, which limits their application across species and seasonality. For
horizontally homogenous canopies such as field crops, LAI and leaf inclination angle distribution or
leaf mean tilt angle (MTA) are two biophysical characteristics determining canopy structure. Since
CCC is relevant to LAI, MTA is the only structural parameter affecting the correlation between CCC
and vegetation indices. To date, there are few vegetation indices designed to minimize MTA effects
for CCC estimation. Herein, in this study, CCC-sensitive and MTA-insensitive satellite broadband
vegetation indices are developed for crop canopy chlorophyll content estimation. The most efficient
broadband vegetation indices for four satellite sensors (Sentinel-2, RapidEye, WorldView-2 and
GaoFen-6) with red edge channels were identified (in the context of various vegetation index types)
using simulated satellite broadband reflectance based on field measurements and validated with
PROSAIL model simulations. The results indicate that developed vegetation indices present strong
correlations with CCC and weak correlations with MTA, with overall R? of 0.76-0.80 and 0.84-0.95
for CCC and R? of 0.00 and 0.00~0.04 in the field measured data and model simulations, respectively.
The best vegetation indices identified in this study are the soil-adjusted index type index SAI (B6,
B7) for Sentinel-2, Verrelts’s three-band spectral index type index BSI-V (NIR1, Red, Red Edge) for
WorldView-2, Tian's three-band spectral index type index BSI-T (Red Edge, Green, NIR) for RapidEye
and difference index type index DI (B6, B4) for GaoFen-6. The identified indices can potentially be
used for crop CCC estimation across species and seasonality. However, real satellite datasets and
more crop species need to be tested in further studies.

Keywords: broadband vegetation indices; chlorophyll content; leaf angle distribution; Sentinel-2;
WorldView-2; RapidEye; GaoFen-6

1. Introduction

Foliar chlorophyll content is a very important photosynthetic pigment that governs
light absorption and conversion to chemical energy [1,2]. Canopy chlorophyll content
(CCQ), defined as the total amount of chlorophyll in plant leaves per unit ground area [3,4],
is related to plant photosynthetic productivity and light use efficiency [5], and contributes
to the vegetation response to the environment [6,7]. It is usually calculated as the product
of leaf chlorophyll content (C,p,) and leaf area index (LAI) [8,9], defined as the total of the
single-sided leaf area per area unit of horizontal ground [10]. From the perspective of
agricultural applications, the instantaneous value and dynamics of CCC indicate the crop
growth potential and actual development [11-13]. CCC is also strongly correlated with
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plant nutritional status and crop yield [8,14-17], so it needs to be accurately determined for
precision agriculture.

CCC drives visible light absorption and transmission within a canopy and hence
it can be detected by optical remote sensing technology [8]. Instead of laborious time-
consuming regional scale in situ measurements, spatially and temporally resolved CCC
can be determined from remote sensing data. The numerous approaches developed for
this [18,19] can be categorized into two general types, physically- and empirically-based
methods. Physically-based CCC estimation approaches mainly rely on canopy radiative
transfer models to determine the relationship between CCC and radiometric signals [20,21].
The empirical approach is to establish a statistical relationship between the measured CCC
and observed spectral features [4,22]. One of the commonly used empirical approaches is
via the use of spectral vegetation indices, mathematical combinations of remote sensing
instrument band readings designed to enhance the sensitivity of the outcome to variables
of interest and to minimize the impact of other factors [23-25].

Due to its simplicity, adaptability and computational efficiency, many vegetation in-
dices have been designed to estimate CCC [26], such as the MERIS terrestrial chlorophyll
index (MTCI) [27], normalized difference red edge index (NDRE) [28] and red edge chloro-
phyll index (Clied.edge) [3]. CCC is related to specific spectral features making it easier
to detect using narrow-band indices [2,11,29,30]. Specifically, chlorophyll is visible in the
reflectance spectrum between 680 and 760 nm (known as the red edge) [31,32], which can
be efficiently utilized for estimating CCC [33]. For large-scale practical applications, the use
of low-cost (or in many cases, free for the end user) spatially and temporally continuous
multispectral satellite data simplify the design of the vegetation index and makes estima-
tion of CCC feasible regionally or globally [9]. Fortunately, modern multispectral satellite
sensors are equipped with red edge bands, such as Sentinel-2, RapidEye, World View-2
and GaoFen-6. Sentinel-2-based vegetation indices have been assessed for CCC estimation
for several crop species, including potato, soybean, maize and winter wheat [33-35], but
RapidEye, WorldView-2 and GaoFen-6 have received little attention in the estimation of
crop CCC.

In addition to leaf optical properties, affected strongly by chlorophyll absorption in
the visible part of the spectrum, remotely sensed canopy reflectance is affected by ground
(soil) and canopy structure [36—40]. The canopy of field crops is usually assumed to be
horizontally uniform, which means that its architecture can be simply characterized by the
amount of leaves and their orientations within a canopy. These can be characterized using
two physical parameters—LAI and leaf inclination angle distribution or leaf mean tilt angle
(MTA), the leaf area-weighted average of all the leaf inclination angles in a canopy. To a
large extent, MTA is a species-specific characteristic, and it has been reported to have more
variation among species than within species [41-44]. In addition, MTA is affected by biome,
genotype and growth conditions. As LAl is included in the computation of CCC, MTA is
the only independent canopy structure parameter affecting the relationship between CCC
and canopy reflectance in horizontally homogeneous canopies.

There are only a few studies on the removal or minimization of the influence of MTA
on CCC estimation from satellite remote sensing data [45], mainly because of a lack of
measured MTA and corresponding spectral observations, either true satellite measurements
or the equivalent hyperspectral data resampled to simulate satellite spectral bands. To
address this shortcoming, the objectives of this study are to (1) evaluate the performance of
four multispectral satellites with red edge channels for CCC estimation of field crops with
diverse canopy architectures using vegetation indices and (2) develop CCC-sensitive and
MTA-insensitive vegetation indices for CCC estimation.

2. Materials and Methods
2.1. Study Area and Field Measurements

The empirical datasets acquired in this study include airborne imaging spectroscopy
data acquisitions and field measurements at Viikki Experimental Farm (60.224°N, 25.021°E),
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Helsinki, Finland (Figure 1). The experimental area is located in southern Finland with
a mean annual temperature of 6 °C. The study site area is approximately 4 km x 4 km
with an altitude no more than 10 m above sea level. The study site encompasses six crop
species, faba bean, narrow-leafed lupin, turnip rape, wheat, barley and oat. Three crop
biophysical and biochemical parameters were collected including LAI, C,, and MTA from
162 plots. The maximum plot size is 50 m x 12 m and the minimum is 2m x 10 m. A
detailed description of the field plots is given in [46].
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Figure 1. A map of the field site and aerial imagery of field plots.

Canopy MTA was measured using the photographic method developed by [47] and
validated and extended to field crops [46,48]. Leaf inclination angle measurements were
taken on 6th July 2012. The photographs of leaves were acquired outside of the field plot
approximately one meter away from the plot edge with a Nikon D1X digital camera. The
photograph of the canopy was acquired using the camera attached and leveled on a tripod
during acquisitions under windless conditions. The camera height was adjusted depending
on crop height, ranging from 30 cm to 50 cm to cover the whole plant vertically. With the
help of Image] software, leaf angles were visually measured from photographs for each
species. Leaf inclination is defined so that increasing MTA indicates more vertical leaves.
As suggested in [49], 75-100 leaves are sufficient to represent the leaf inclination angle
distribution. This method keeps the MTA measurement error within 4° [48]. Full details of
the method are given by [46].

The leaf area index of field crops was indirectly measured using a SunScan SS1 probe
(Delta-T Devices). The 1 m long SunScan probe with 64 radiation microsensors was inserted
below the crop canopy from the plot edge orthogonally to plant rows to minimize the
row effects. An additional beam fraction sensor recorded the incident direct and diffuse
downwelling irradiances simultaneously outside of field plots. The leaf area index was
calculated through a canopy radiative transfer (RT) model implemented in the SunScan
device. A one-parameter ellipsoidal leaf angle distribution model was assumed in this RT
model, and the leaf clumping effect was not considered for this instrument. The ellipsoidal
LAD model input parameter x can be derived using Equation (16) in [50] as:

—0.6061
_ 4. (MIA 1)
553

MTA was assumed to be a species-specific characteristic. The details of the LAI
calculation algorithm are fully described in SunScan user manual version 2.0.

The C,, of leaves was measured with a portable SPAD-502 device in the field. Based on
the size of the field plot, 15-30 leaves were randomly sampled. This device acquired dimen-
sionless readings that were converted into absolute C,, values using the formula [51,52]:

b (ug cm’z) — 0.0893 (1051’AD°'625) @)
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which has achieved a strong correlation between laboratory-determined C,p, and SPAD-502
readings for field crops (soybean, maize and barley). After the LAl and Cy}, were acquired,
the canopy CCC was calculated as:

CCC (ug em2) = Cy, x LAI (3)

Airborne imaging spectroscopy data of the study plots were acquired using an AISA
Eagle II spectrometer on 25 July 2011 under cloudless conditions between 09:36 and 10:00
local time. The instrument provided data in 64 spectral bands covering the spectral range
between 400 and 1000 nm, and the resolution of the spectra was between 9 and 10 nm.
The average flight altitude was 600 m and achieved a ground spatial resolution of ap-
proximately 0.4 m. Radiometric correction of the raw image was completed using Specim
CaliGeo software. The radiometrically calibrated imagery was georectified using Parge
(ReSe Applications Schldpfer) by means of ground control points and the navigation data
acquired during the flight. Atmospheric correction was carried out with ATCOR-4 (ReSe
Applications Schlapfer). The plot scale spectra were visually extracted from each plot and
averaged. A detailed description of imaging spectroscopy data acquisition is given in [46].

2.2. Validation Datasets from the PROSAIL Model Simulation

Canopy reflectance was simulated with the widely used PROSAIL model, which is
a coupled model of the leaf reflectance model PROSPECT-5 [53] and canopy reflectance
model SAILH [54,55]. In the PROSAIL model, homogeneous randomly distributed leaves
are presumed to form a one-dimensional turbid medium [54], which is suitable for sim-
ulating the canopy reflectance of field crops. PROSPECT-5 simulates leaf reflectance and
transmittance from 400 nm to 2500 nm as a function of six input parameters: Cy,, the meso-
phyll structure parameter (N), carotenoid content (Ccar), brown pigment content (Cprown),
equivalent water thickness (Cy,), and dry matter content (C,). In addition to leaf optical
properties, eight canopy structural parameters were used as inputs for PROSAIL: LA, MTA
(assuming an ellipsoidal distribution), solar zenith angle (¢5), observer zenith angle (t,),
relative azimuth angle (¢), soil reflectance, fraction of diffuse radiation (skyl) and hot spot
size parameter. The PROSAIL model inputs, summarized in Table 1, were set in accordance
with in-situ measurement conditions and scientific literature: C,,, was set between 20 and
90 ug cm 2, in steps of 5 ug cm 2, Cear was set to 20% of the C,, value based on the
LOPEX93 dataset [56], Cy, was fixed to 0.001, N was fixed to 1.55—a mean value for various
crops [57], Cm was set to 0.005 g cm—2—the mean value of the six crop species [58-61],
Chrown Was fixed to 0 assuming no senescent leaves during the measurements. LAl was
set between 1 and 5 with a 0.1 interval, and MTA ranged from 20 to 70 with a 2-degree
interval. Based on the conditions of airborne imaging spectroscopy data acquisition, the
three illumination and view geometry parameters 5, t, and ¢ were set to 49.4°, 9.0° and
90.0°, respectively. The 6S atmosphere radiative transfer model was used to calculate the
parameter skyl [62]. The hot spot parameter was fixed to 0.01 and the soil reference was
measured using a handheld Analytical Spectral Devices spectroradiometer (ASD). In total,
15,990 canopy spectra between 400 nm and 1000 nm were simulated and resampled to
satellite broadband reflectance.
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Table 1. The variable settings of the PROSAIL model.

Model Variable Value or Range
Leaf structure parameter (N) 1.55
Leaf chlorophyll content (Cyp) 20:5:90 pg cm 2
Equivalent water thickness (Cw) 0.001 cm
PROSPECT Dry matter content (Cp) 0.005 g cm 2
Brown pigment content (Cbp) 0 ug cm™2
Carotenoid content (Ccar) Linked to Cy}, (0.2 X Cyp,) Ug cm 2
Leaf area index (LAI) 1,11,...,5.0
Leaf mean tilt angle (MTA) 20,22,...,70°
Hot spot size 0.01
SAIL Solar zenith angle (ts) 49.4°
Observer zenith angle (t,) 9°
90°

Azimuth angle (¢)
Fraction of diffuse radiation (skyl)
Soil reflectance

6S model (Wm~2 nm~1)
ASD measurement

23.5

atellite Broadband Reflectance Simulations

The airborne imaging spectroscopy data and PROSAIL model-simulated canopy
reflectance in Visible to NIR spectral region (VNIR) were resampled to the broadband
resolution of selected satellite sensors that had red edge channels: Sentinel-2, RapidEye,
WorldView 2 and GaoFen-6. The MultiSpectral Instrument (MSI) of Sentinel-2 has 10 bands
with three different spatial resolutions (10-60 m) in VNIR, including two red edge channels.
RapidEye is a commercial Earth observation mission that offers high spatial resolution
(6.5 m) imagery in five bands. The WorldView-2 satellite acquires very high spatial res-
olution (1.84 m) imagery in eight bands. The GaoFen-6 satellite, launched in 2018, has a
multispectral sensor with 16 m spatial resolution in eight bands. The spectral response
functions (SRFs, Figure A1 and Table A1) of the four multispectral instruments were used to
convolve the modeled and measured narrow-band reflectance. The resampled four satellite
broadband reflectance from the mean spectra of six crop species are presented in Figure 2.

05 Barley 05 Faba bean AT
4 04 e 504 ;
503 / 503
8 / 8
Fo02 / 502 /
0.1 0.1 /
%/ _ S
= i 0.0 ;
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Wavelength (nm) Wavelength (nm)
0 Oat s Turnip rape ',,/’f%‘7
4 04 o 04 1
5 /) 503
503 S0
302 . T2
" /l
0.1 0.1 /'.?\: """."L/ﬂ:‘
o -G/ 5 i

0.0—25 =
400 500 600 700 800 900 1000

0.0—
400 500 600 700 800 900 1000

Wavelength (nm) Wavelength (nm)

—— AISA->— Sentinel-2—/— RapidEye—</

WorldView-2

i Narrow-leafed lupin
3 0.4 y-- ¥
g 1,
s 0.3 f
=
3 /
4 02 A
0.1 '

7 i
— A

0.0
400 500 600 700 800 900 1000
Wavelength (nm)

e
n

Wheat

S o 2
SRRV
1

Reflectance

.O
=

o= -
400 500 600 700 800 900 1000
Wavelength (nm)

GaoFen-6

Figure 2. Mean reflectance spectra of the six crop species used in the study: the four simulated

satellite broadband spectra and AISA spectra.
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2.4. Tested Vegetation Indices

A wide range of vegetation indices has been used to estimate vegetation canopy
chlorophyll content, a product of LAI and C,,. In this study, twelve widely used vegetation
indices that have been used to estimate chlorophyll content or LAI were evaluated (Table 2).
Some of these use reflectance in VNIR: the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI) and its two-band version (EVI2), optimized soil-adjusted
vegetation index (OSAVI), renormalized difference vegetation index (RDVI), pigment-
specific normalized difference index (PSND) and transformed chlorophyll absorption
reflectance index/OSAVI (TCARI/OSAVI). These indices are used to extract one or more
vegetation parameters, such as LAI, canopy cover fraction, biomass and pigment content.
Other indices have been formulated with the red edge bands: the red-edge transformed
chlorophyll absorption reflectance index/OSAVI (TCARI/OSAVl g edge), which has a red
edge band instead of the NIR band, the MERIS terrestrial chlorophyll index (MTCI), two
versions of normalized difference red-edge vegetation indices (NDRE1 and NDRE2, see
Table 2 for details) and the red-edge chlorophyll index (Clyeg edge) (rows 1-12 in Table 2).
These indices were used to extract chlorophyll content in previous studies. To identify the
CCC-sensitive and MTA-insensitive band combinations, eleven general index types were
selected from the literature next, including six two-band and five three-band formulations
(Table 2): ratio index (RI), normalized difference index (NDI), difference index (DI), soil
adjusted index (SAI), modified simple ratio (MSR) and modified soil adjusted index (MSAI),
triangular index (TI), Gitelson three-band index (Git), Tian’s three-band index (BSI-T),
Verrelts’s three-band index (BSI-V) and Wang’s three-band index (BSI-W) (rows 13-23
in Table 2). When calculating TI, the central wavelength of the broadband was used to
calculate the wavelength difference.

Table 2. The vegetation indices used in this study: indices 1-12 are existing indices with fixed
wavelengths; 13-23 are general indices with wavelengths found by optimization.

No Index Abbreviation Formulation Reference
1 Normalized difference vegetation index NDVI % [63]
2 Enhanced vegetation index EVI RNIR2f6(I§II{\Ie ;R_}IE-RIQ‘;;M = [64]
3 Two-band enhanced vegetation index EVI2 %m [65]
4 Optimized soil-adjusted vegetation index OSAVI W [66]

H 3 1 3 NIR —NRed
5 Renormalized difference vegetation index RDVI R R [67]
Pigment-specific normalized Ruir—Rpiue
6 difference index PSND RNIR+RBiue [68]
” Transformed chlorophyll absorption TCARI/OSAVI 3 [(RNIR*RM ) ~02(RN1R ~Rreen) 515 } [66,69]
reflectance index/OSAVI RNIR—RRed ’
(1+0.16) RNIR +RRoq +016
Red-edge Transformed chlorophyll 3] (Rre1 = Rged) —0.2( R — Rpeen ) RREL
8 absorption reflectance index/OSAVI TCARI/OSAVIeq edge { RNIR—RRod fo ] [70]
(1+0.16) RNIR +RReq +0.16
9 MERIS terrestrialchlorophyll index MTCI % [27]
RE1 Red
10 Normalized difference red-edge version 1 NDRE1 W [28]
RE2 RE1
11 Normalized difference red-edge version 2 NDRE2 W [71]
. éﬁEfﬁ RE1
12 Red-edge chlorophyll index Clied edge g — [72]
13 Ratio index RI ﬁ—;; [57]
14 Normalized difference index NDI ﬁ"ljrll%” [73]
Al A2
15 Difference index DI Ra1 — R [74]
. . 1.5 (Rai—Rn2)
16 Soil adjusted index SAI m 1 [75]
17 Modified simple ratio index MSR [%\é — 1} % [ % + 1} [57]
18 Modified soil adjusted index MSAI 2Ry 41—/ <2RA12+1)2—8<RM —Rn) [76]
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Table 2. Cont.

No Index Abbreviation Formulation Reference
: . 0.5 [(A2 — A1) (Rys — Ran)-

19 Triangular index TI 77

& (A3 = A)Rx2 — Ran)] [77]
20 Gitelson’s three-band Git <R%1 — R%Q) *R3 [78]
21 Tian’s three-band spectral index BSI-T ﬁﬁ;ﬁim [79]
22 Verrelts’s three-band spectral index BSI-V % [80]

A2 A3

23 Wang's three-band spectral index BSI-W % [81]

0.60
0.50
80.40
=
2030
%
& 020
0.10
0.00

0.60

Sentinel-2

The bands used for the test vegetation index calculations for Sentinel-2 are Rg.4 (B4), RGreen (B3), Rpue (B2), RrE1
(B5), Rre2 (B6), Rres (B7) and Ryjr (B8); for GaoFen-6 Rreq (B3), RGreen (B2), Rpiye (B1), Rrg1 (B5), Rre2 (B6) and
Rnir (B4).

2.5. Statistical Analysis

The relationships between the CCC, MTA and vegetation indices were evaluated
using the coefficients of determination (R?). The R? between vegetation indices and CCC is
indicated as R2ccc and that relationship with MTA is indicated as R2yta. The difference
between R?>ccc and R?yra is used for the quantitative assessment of the CCC-sensitive
and MTA-insensitive vegetation indices. The correlations between the CCC, MTA and
individual band reflectance were also calculated.

3. Results
3.1. Responses of Satellite Broadband Reflectance to MTA

For illustration, the responses of individual broadband reflectance bands to MTA
from PROSAIL model simulations are presented at four combinations of high and low
LAI and Cab in Figure 3. At two low LAI conditions (LAI = 1), reflectance in the NIR
region had a strong negative correlation with MTA for all the satellites. At the same time,
MTA presented a medium to strong negative correlation with reflectance in the red edge
depending on the satellite sensors. In the visible region, MTA had little effect on reflectance
when Cab was high (Cab = 90). At two high LAI conditions (LAI = 5), MTA presented
strong negative correlations with reflectance in NIR, and this correlation was enhanced
when MTA varied between 60 and 70°. The determination coefficients between CCC, MTA
and individual band reflectance using field-measured and model-simulated datasets were
presented in Table Al. Generally, the bands with the strongest correlation to CCC appeared
in visible regions, and those with the strongest correlations to MTA appeared in red edge
and NIR regions.
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Figure 3. Cont.



Remote Sens. 2023, 15, 1234

8 of 22

0.60 RapidEye 0.60 RapidEye 0.60 — RapidEye 0.60 RapidEye
LAI=1 LAI=1 LAI=S LAI=5
0.50 Cab=20 0.50 Cab=90 0.50 NZO 0.50 WO
3 0.40 § 0.40 § 0.40 o § 0.40 s— Blue(475nm)
2020 2020 &o20 2020 ~ Red Edge(710nm)
e ——NITR(805nm)
0.10 ”'*“*“*‘*“%u»www 0.10 0.10 ”"‘*“"‘W»««&»*&ﬂ% 0.10
0.00 Eons 0.00 L rEeeeeess e 0.00 e 0
20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70
MTA(°) MTA() MTA() MTA(°)
GaoFen-6 GaoFen-6 GaoFen-6 GaoFen-6
b LAI-I s * LAI=1 o e, LAT=5 ) ° LAI=S
0.50 Cab=20 0.50 Cab=90 0.50 T Cab=20 0.50 Ve Cab=90 | —— B1(485nm)
3040 5040 3040 = 8040 : :Eﬁﬁzggﬁfg;
g s Pibtanc £ s —=— B4(830nm|
= . 203 \‘*\N“v 20% 2030 gsgmnmg
& 0.20 & 0.20 Mand & 0.20 & 020 B6(750nm)
0.10 0104 0.10 0.10 . i BRI
0.00 00 L 0.00 0.00 =
20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70
MTA() MTAE) MTA() MTA(°)
Figure 3. Responses of satellite broadband reflectance to leaf mean tilt angle (MTA) from PROSAIL
model simulation for four combinations of high and low LAI and Cab: low LAI and low Cab (left
column), low LAI and high Cab (second column), high LAI and low Cab (third column) and high
LAI and high Cab (right column) for Sentinel-2 (top row), WorldView-2 (second row), RapidEye
(third row), and GeoFen-6 (bottom row).
3.2. Performance of Existing Vegetation Indices
The relationships between CCC, MTA and the tested vegetation indices derived from
four broadband satellites are presented in Table 3, including both the field-measured dataset
and model simulations. In general, model-simulated dataset-derived VIs had stronger
correlations with CCC than those of the field-measured dataset.
Table 3. Coefficient of determination (R?) between canopy chlorophyll content (CCC), leaf mean tilt
angle (MTA) and tested vegetation indices.
Sentinel-2 WorldView2 RapidEye GaoFen-6
Dataset Index > 2 > 2 > 2 > 2
R*ccc Rmta R%ccc Rmta R%ccc Rmta R*ccc R*mta
NDVI 0.46 0.24 0.47 0.23 0.46 0.24 0.47 0.23
EVI 0.16 0.65 0.18 061 0.17 0.63 0.17 0.62
EVI2 0.19 0.63 0.19 0.60 0.18 0.62 0.19 0.60
OSAVI 0.32 0.46 0.32 0.43 0.31 0.45 0.32 0.43
RDVI 0.22 0.56 0.23 0.55 0.22 0.57 0.23 0.55
M ¢ PSND 0.52 0.17 0.50 0.18 0.49 0.19 0.52 0.17
casuremen TCARI/OSAVI 031 0.40 0.32 0.38 0.29 041 033 0.37
TCARI/OSAVLeq edge 031 0.18 0.20 0.48 0.27 031 0.36 0.08
MTCI 0.12 0.14 — — — — 0.48 0.21
NDRE1 0.41 0.30 — — — — 0.49 0.21
NDRE2 0.64 0.07 — — — — — —
Clred edge 0.68 0.05 — — — — — —
NDVI 0.50 0.01 0.57 0.01 0.56 0.01 0.56 0.01
EVI 0.26 0.33 0.37 0.31 0.36 0.32 0.31 0.33
EVI2 0.36 0.28 0.39 0.28 0.38 0.28 0.39 0.28
OSAVI 041 0.18 0.46 0.17 0.45 0.17 0.46 0.17
RDVI 0.37 0.26 0.40 0.26 0.39 0.26 0.40 0.26
Model PSND 0.67 0.00 0.57 0.01 0.56 0.01 0.68 0.00
ode TCARI/OSAVI 0.82 0.01 0.88 0.01 0.87 0.01 0.87 0.01
TCARI/OSAVI, ¢ edge 0.51 0.05 0.35 0.04 042 0.00 0.54 0.03
MTCI 0.76 0.00 — — — — 0.82 0.00
NDRE1 0.76 0.00 — — — — 0.79 0.00
NDRE2 0.76 0.00 — — — — — —
Clred edge 0.90 0.00 — — — — — —

The transverse line (“—

") denotes the sensor without band to calculate corresponding vegetation index.
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In field measurements, for the tested VIs calculated using Sentinel-2 bands, the
Clyed edge had the strongest correlation with CCC (R?ccc = 0.68) and the smallest influence
from MTA (R?*\ita = 0.05). In model simulations, the Cl,og edge had the strongest correla-
tion with CCC (R%ccc = 0.90) and a weak correlation with MTA (R%pra = 0.00). For the
other three satellite sensors, in the field-measured dataset analysis, PSND produced the
strongest correlations with CCC (R*ccc = 0.49-0.52) and the weakest correlation with MTA
(R%\rra = 0.17-0.19). Model-simulated PSND presented a medium-strong correlation with
CCC (R%ccc = 0.57-0.67) and a weak correlation with MTA (R%yra = 0.00-0.01). In model
simulations, TCARI/OSAVI had the strongest correlation with CCC (R%ccc = 0.87-0.88)
and the weakest correlation with MTA (R?*yira = 0.01). This index had medium-strong
correlations with both CCC (R%ccc = 0.29-0.33) and MTA (R%ya = 0.37-0.41). MTA had
the largest effect on EVI in both the field-measured dataset (R%\i7a = 0.61-0.64) and model
simulations (R%yrra = 0.31-0.36).

3.3. Identification of New Indices

In addition to the twelve tested vegetation indices, the potential of six two-band and
five three-band new vegetation indices of predefined type were investigated for CCC
estimation using the four satellite bands. In Figures A2 and A3, for the six two-band
types of indices, the matrices of determinations of coefficients between CCC (R%ccc), MTA
(R%yrra) and vegetation indices using all possible combinations of field-measured datasets
based on RI, NDVI, DI, SAI, MSR, MSAI formulations are presented. The corresponding
difference matrices between R?>ccc and R%yira based on the six formulations are presented
in Figure 4. The three best band sets for the three-band indices identified using simulated
satellite bands in the field-measured dataset are presented in Table 4. These identified best
bands for the two-band and three-band indices and the corresponding R%ccc and R?pita
using the field-measured data are presented in Tables 4 and 5, respectively. The identified
best indices were validated with PROSAIL model simulations, and the results are presented
in Table 6.
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Table 4. Three best band configurations for the new three-band vegetation indices in the field measured dataset for each simulated satellite.

Sentinel-2 WorldView-2 RapidEye GaoFen-6
Index
B1, B2, B3 R%cce, RPvta B1, B2, B3 R%ccce, R%wmra B1, B2, B3 R%cce, RPyvta B1, B2, B3 R%cce, R?mta
1 B7, B4, B5 0.79, 0.05 NIR1, Green, Red Edge 0.77,0.02 Blue, Green, Red Edge 0.22,0.32 B1, B3, B8 0.14, 0.02
TI 2 B2, B6, B7 0.78, 0.06 NIR1, Blue, Red Edge 0.72,0.03 Blue, Green, NIR 0.26, 0.45 B5, B1, B2 0.24, 0.20
3 B3, B6, B7 0.66, 0.27 Red, Blue, Yellow 0.13,0.06 Red Edge, Blue, NIR 0.25,0.52 B4, B5, B8 0.31,0.39
1 B5, B8, BSA 0.76, 0.00 Green, Red Edge, NIR1 0.58, 0.10 Green, Red Edge, NIR 0.55,0.11 B5, B6, B4 0.66, 0.07
Git 2 B5, BSA, B8 0.75,0.00 Yellow, Red Edge, Red 0.46,0.02 Green, Red Edge, Blue 0.38,0.00 B2, B5, B8 0.55, 0.06
3 B5, B7, BSA 0.74,0.01 Green, Red Edge, Blue 0.33,0.00 Green, NIR, Red Edge 0.48,0.17 B2, B6, B4 0.58,0.10
1 B7, B6, B2 0.78, 0.00 NIR1, Blue, Red Edge 0.76, 0.00 Red Edge, Green, NIR 0.76, 0.00 B5, B3, B4 0.78,0.01
BSI-T 2 B7, B5, B6 0.77,0.00 NIR1, Green, Red Edge 0.73, 0.00 Red Edge, Blue, NIR 0.74, 0.00 B5, B4, B8 0.77,0.00
3 B8, B6, B4 0.76, 0.00 NIR1, Yellow, Red Edge 0.70, 0.02 Red Edge, Red, NIR 0.76,0.09 B4, B3, B6 0.74, 0.00
1 B8, B6, B2 0.78, 0.02 NIR1, Red, Red Edge 0.78, 0.00 NIR, Blue, Red Edge 0.72,0.03 B4, B6, B1 0.77,0.01
BSI-V 2 B8, B6, B5 0.78,0.01 NIR1, Yellow, Red Edge 0.78,0.01 NIR, Green, Red Edge 0.71,0.03 B4, B6, B5 0.77,0.00
3 B2, B6, B8 0.76, 0.01 Red Edge, Red, NIR1 0.76, 0.00 Red Edge, Green, NIR 0.67,0.04 B1, B6, B4 0.75,0.00
1 B6, B8, B2 0.74, 0.01 Red Edge, Blue, NIR1 0.74, 0.03 Red Edge, Blue, NIR 0.64, 0.04 B6, B4, B1 0.72, 0.00
BSI-W 2 B6, B5, B7 0.73,0.01 Red Edge, Green, NIR1 0.72,0.01 Red Edge, Green, NIR 0.62, 0.04 B5, B6, B4 0.68, 0.00
3 B6, B3, B7 0.73,0.01 Red Edge, NIR1, Blue 0.71,0.00 Red Edge, NIR, Blue 0.62,0.07 B6, B4, B2 0.65, 0.01
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Table 5. Best band configurations for the two-band indices in the field measured dataset for each
simulated satellite.

Sentinel-2 World View-2 RapidEye GaoFen-6
Index
B1, B2 R%cce, RPmta B1, B2 R%cce, R¥ma B1, B2 R%cce, RPwta B1, B2 R%cce, R¥mta
RI B5, BSA 0.77,0.00 NIR1, Red Edge 0.73,0.10 Red Edge, NIR 0.74,0.01 B5, B4 0.73,0.02
NDVI B5, BSA 0.73,0.00 Red Edge, NIR1 0.74,0.11 Red Edge, NIR 0.71,0.02 B5, B4 0.69, 0.03
DI B6, BSA 0.76, 0.00 Blue, Yellow 0.36,0.03 Blue, Red 0.40,0.18 B6, B4 0.78, 0.00
SAI B6, B7 0.80, 0.00 Red Edge, NIR1 0.65,0.09 Blue, Red 0.39,0.19 BS, Bl 0.36,0.05
MSR B5, BSA 0.75, 0.00 NIR1, Red Edge 0.74,0.11 Red Edge, NIR 0.73,0.01 B5, B4 0.72,0.02
MSAI B6, B7 0.78, 0.00 Red Edge, NIR1 0.56,0.17 Blue, Red 0.40,0.18 B4, B6 0.69,0.23
Table 6. Performance of the best new indices of each type for the four simulated satellite sensors in
model simulations.
Sentinel-2 World View-2 RapidEye GaoFen-6
Index
Bands R%ccc, RPmma Bands R%cce, R¥*mta Bands R%cce, RPmma Bands R%cce, R¥*mta
RI B5, BSA 0.89, 0.00 NIR1, Red Edge 0.80, 0.00 Red Edge, NIR 0.90, 0.00 B5, B4 0.90, 0.00
NDVI B5, BSA 0.76,0.00 Red Edge, NIR1 0.83,0.01 Red Edge, NIR 0.80, 0.00 B5, B4 0.79, 0.00
DI B6, BSA 0.93, 0.04 Blue, Yellow 0.51, 0.00 Blue, Red 0.61,0.05 B6, B4 0.94, 0.04
SAI B6, B7 0.95, 0.00 Red Edge, NIR1 0.90, 0.02 Blue, Red 0.62, 0.06 B8,B1 0.57,0.00
MSR B5, BSA 0.87,0.00 NIR1, Red Edge 0.82,0.00 Red Edge, NIR 0.87,0.00 B5, B4 0.88,0.00
MSAI B6, B7 0.96,0.01 Red Edge, NIR1 0.90, 0.04 Blue, Red 0.61, 0.06 B4, B6 0.95,0.00
TI BY7, B4, B5 0.82,0.05 NIR1, Green, Red 0.92, 0.02 Blue, Green, Red 0.43,0.05 B1, B3, B8 0.36,0.01
Edge Edge
Git B5, BS, BSA 0.89, 0.00 Green, Red Edge, 0.88, 0.00 Green, Red Edge, 0.88, 0.00 B5, B6, B4 0.91, 0.00
NIR1 NIR

BSI-T B7, B6, B2 0.90, 0.01 NIR1, Blue, Red Edge 0.85,0.01 Red Ecﬁfﬁcreen' 0.84,0.00 B5, B3, B4 0.79, 0.00
BSL-V BS, B6, B2 0.90, 0.01 NIR1, Red, Red Edge 0.90, 0.01 NIR'S;;’ Red 0.91,0.01 B4, B6, B1 0.87,0.02
BSI-W B6, B8, B2 0.87,0.01 Red Edge, Blue, NIR1 0.76, 0.00 Red E;%g Blue, 0.72,0.00 B6, B4, B1 0.83,0.01

In the Sentinel-2 bands, all the best new indices presented strong correlations with
CCC (R%ccc = 0.74-0.80) and no correlation with MTA (R?\ta = 0.00-0.02). SAI (B6, B7),
was identified as the best (R2ccc = 0.80 and R?yjra = 0.00) among all the new indices in the
field-measured dataset (Figure 5). This combination was found to have a strong correlation
with CCC (R?ccc = 0.95) and a weak correlation with MTA (R?yta = 0.00) in the model-
simulated dataset (Figure 6), as shown in Table 6. In the simulated WorldView-2 data, the
R2ccc varied between 0.44 and 0.78 and R%\sa varied between 0.00 and 0.11. The identified
new three-band of indices performed better (R%ccc = 0.58-0.78 and R%pra = 0.0-0.10) than
the two-band indices (R2ccc = 0.44-0.74 and R%ya = 0.02-0.11). BSI-V (NIR1, Red, Red
Edge) was identified as the best new index (R?>ccc = 0.78 and R?yta = 0.00). In the model-
simulated dataset, this combination was found to have a strong correlation with CCC
(R%2ccc = 0.90) and no correlation with MTA (R%pra = 0.01). In the simulated RapidEye
data, large variations on correlation were identified among the best new indices for CCC
(R?>ccc = 0.22-0.76) and MTA (R%yra = 0.00-0.32). BSI-T (red edge, green, NIR) was the
best-performing index (R%ccc = 0.76 and R%*yra = 0.00) and was found to have a strong
correlation with CCC (R%2ccc = 0.84) and no correlation with MTA (R%yra = 0.00) in the
model-simulated dataset. In the simulated GaoFen-6 data, the best new indices presented
large variations in correlations with CCC (R%ccc = 0.14-0.78) and MTA (R?\ia = 0.00-0.23).
DI (B6, B4) was identified as the best index (R%ccc = 0.78 and R%yra = 0.00) and was found
to have a strong correlation with CCC (R?ccc = 0.94) and almost no correlation with MTA
(R%\r7a = 0.04) in the model-simulated dataset.
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GaoFen-6 (right column) in the field measured dataset.
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Figure 6. Correlation between the best vegetation indices, and CCC (top row) and MTA (bottom
row) for Sentinel—2 (left column), WorldView—2 (second column), RapidEye (third column) and
GaoFen-6 (right column) in model simulations.

4. Discussion

Potential CCC-sensitive but MTA-insensitive satellite broadband vegetation indices
were developed. To our knowledge, this is among the few studies that have focused on
specifically designing this type of vegetation index. The vegetation indices were calibrated
with field measurements and validated with widely used PROSAIL model simulations. The
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canopy reflectance model can be used to accurately simulate the actual reflectance spectra
without the inherent bias caused by the specific growth conditions at any study sites.

Actual field-measured datasets have limited ranges of variables of interest and spe-
cific data distributions (with possibly site-specific) internal correlations. This limits their
generality for calibrating vegetation indices. While model-based fits are universal, they
inevitably include simplifications, such as the absence of material other than leaves. Before
application, all theoretical models need to be validated in the field. A compromise is to
link an existing field-measured dataset with model simulations as suggested in a previous
study [82]. An efficient vegetation index should be supported both by field measurements
and model simulations. In this study, the identified best indices for each satellite presented
a good match between measurements and simulations.

The newly developed indices performed better than the tested existing vegetation
indices and are recommended to remotely estimate crop CCC from satellites across species
and seasonality. Theoretically, three-band vegetation indices have a larger information
content and flexibility than two-band combinations. However, in our study, the three-band
vegetation indices did not show a great advantage over the simpler two-band formulations.
For the simulated Sentinel-2 and GaoFen-6 bands, the best indices were two-band, while
for the WorldView-2 and RapidEye, the identified best indices were three-band.

Regardless of the number of bands, all the best indices for each satellite were con-
structed from NIR and red edge bands. This agreed with previous studies performed
by [33], who demonstrated that these two band combinations are minimally affected by
crop phenology and can potentially be used as generic algorithms to crop CCC estimation.
Red edge reflectance is strongly negatively correlated with MTA [44,46], and the addition of
this channel can attenuate the sensitivity of vegetation indices to leaf angles [83]. Sentinel-2
MSI performed better than the other evaluated satellite sensors in both field-measured data
and model simulations, indicating a more optimal spectral band combination. Similarly,
in all tested vegetation indices, the Clied eqge computed with Sentinel-2 data was the best
vegetation index strongly correlated with CCC (R%ccc = 0.68 in field measured data and
R2ccc = 0.90 in model simulated data) and no correlation with MTA (R%\ra = 0.05 in field
measured data and R?yra = 0.00 in model simulated data). In previous studies, the perfor-
mance of Clyeq edge has been evaluated for single crop species either from real Sentinel-2
imagery or resampled from field canopy reflectance. The following relationships have been
reported in the literature for Clieq eqge and CCC: R%ccc = 0.58 for potato [34], R?>ccc = 0.86
and 0.94 for maize and soybean, respectively [33], and R2ccc = 0.74 for wheat [35]. These
relationships agree with the results in this study, which can be explained by the fact that
the Clied edge Was suitable for crop CCC estimation under a mixed pixel scenario [3].

For the other vegetation indices derived from Sentinel-2 bands, such as NDVI, NDRE1,
NDRE2, MTCI, TCARI/OSAVI and TCARI/OSAV] 4 edge. R?ccc varied between 0.12 and
0.64 for field measured data and between 0.50 and 0.82 for model simulations. In a previous
study, these correlations were between 0.66 and 0.78 for single wheat species [35], which
are larger than that found in the field-measured data but within the range of our model
simulations. Especially for the MTCI, which is specifically designed for the MERIS spec-
trometer, the correlation between CCC and real MERIS data-derived MTCI is R2ccc = 0.24
for soybean [26]. The value is better than that from Sentinel-2 data (R%ccc = 0.12) but
lower than that from GaoFen-6 data (R2ccc = 0.48). The model-simulated MERIS-based
MTCI presented a stronger correlation with CCC (R%2ccc = 0.69) than real MERIS data [26],
but this value is lower than the model simulation based on Sentinel-2 (R*ccc = 0.76) and
GanFen-6 (R%ccc = 0.82) data in this study and even lower than that of proximal spectra-
simulated Sentinel-2 data (R?>ccc = 0.89) for maize and soybean [33].

Except for Sentinel-2, the three other satellites (WorldView?2, RapidEye and GaoFen-6)
have been widely used for remote sensing of vegetation. Surprisingly, there are few reports
on their use for the estimation of CCC for field crops. In all tested vegetation indices, PSND
had the strongest correlations with CCC in the field-measured data (R%ccc = 0.49-0.52),
and similar results were found in PROSAIL model simulations (R%ccc = 0.56-0.68). TCARI/
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OSAVI presented the best correlation with CCC in PROSAIL model simulations
(R%*ccc =0.82-0.88) and no correlation with MTA (R?yta = 0.01), but this good performance
was not consistent in field measurements. The matrices of difference between RZccc and
R?p\pra for the three two-band RI and NDI are similar (Figure 4), and identical bands were
identified for the best vegetation indices of both types. This can be explained by their math-
ematical similarity [84]. However, comparing the four satellite sensors, large differences
in performance were found among the best vegetation indices of each type in both field
measurements (Tables 4 and 5) and model simulations (Table 6). Thus, finding the right
type is also very important for optimizing vegetation indices.

For CCC estimation, it is essential to use band combinations. CCC effects on the
responses of MTA to individual broadband reflectance varied with the combination of
LAI and Cab. Even at similar CCC levels (CCC = 90-100 in Figure 3 in the second and
third columns), this relationship can vary greatly. This is mainly because LAI and Cab
determine the reflectance of different broadband separately. Generally, the MTA responses
to NIR reflectance were determined by LAI and those to visible reflectance were determined
by Cab.

Although the identified vegetation indices for the four satellite spectral configurations
in this study produced good results in both field-measured and model-simulated data
and are recommended for crop CCC estimation, there are some limitations in this study.
First, the derived vegetation indices were not validated with real satellite imagery. Satellite
sensor imaging needs to consider the atmospheric radiation and transmittance, geometric
characteristics, spatial resolutions and signal-to-noise ratio, which limit the transferability
of the vegetation indices developed in this study. Unfortunately, real satellite imagery could
not be acquired simultaneously for the particular study area over a given time. In the future,
more effort needs to be put into vegetation index evaluations using real satellite imagery.

The potential CCC-sensitive but MTA-insensitive satellite broadband vegetation in-
dices developed in this study may provide a convenient method for accurately estimating
crop CCC with diverse canopy architectures using satellite remote sensing data.

5. Conclusions

This research attempted to investigate the potential of satellite broadband vegetation
indices for crop canopy chlorophyll content estimation with minimum effects from leaf
inclination angle distribution. The broadband vegetation indices of four satellites (Sentinel-
2, RapidEye, WorldView-2 and GaoFen-6) were resampled from canopy airborne imaging
spectroscopy data of six crop species with various canopy structures. To obtain generic
and robust crop CCC indices, both field-measured datasets and model simulations were
used in this study. The best vegetation indices identified in this study are the soil-adjusted
index type index SAI (B6, B7) for Sentinel-2, Verrelts’s three-band spectral index type
index BSI-V (NIR1, Red, Red Edge) for WorldView-2, Tian’s three-band spectral index
type index BSI-T (Red Edge, Green, NIR) for RapidEye and difference index type index DI
(B6, B4) for GaoFen-6. The recommended indices produced strong correlations with CCC
(R%2ccc = 0.76-0.80 in field-measured data and R2ccc = 0.84-0.95 in model simulations)
and no correlation with MTA (R?yrra = 0.00 for field-measured data and R?yrra = 0.00-0.04
for model simulations) and maintained consistent performance in both the field-measured
dataset and model simulations. Thus, it is anticipated that more generic vegetation indices
for crop CCC estimation can be derived from satellite broadband data. However, this is
only a case study, and further studies are required to examine the suitability across more
crop species and growth stages using real satellite imagery.
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Appendix A

Table Al. The central wavelength, bandwidth and spatial resolution and R? values from field
measured dataset between CCC, MTA and individual band reflectance of four satellite sensors.

Sensor Central Band/Band Bandwidth (nm) Spatial Measurements Model
Wavelength (nm) Number Resolution (m) R2CCC Rlzm_ . chcc R12v1 -
490 2 65 10 0.58 0.00 0.39 0.25
560 3 50 10 0.44 0.05 0.42 0.08
665 4 30 10 0.53 0.08 0.54 0.07
Sentinel-2 705 5 15 20 0.07 0.77 0.43 0.10
entinel- 740 6 15 20 0.00 0.87 0.00 0.45
783 7 20 20 0.04 0.78 0.27 0.39
842 8 115 10 0.04 0.77 0.26 0.39
865 8A 20 20 0.04 0.76 0.26 0.40
478 Blue 60 1.8 0.60 0.00 0.29 0.45
546 Green 70 1.8 0.45 0.05 0.41 0.08
Worldview-2 608 Yellow 40 1.8 0.49 0.01 0.51 0.05
oridview= 659 Red 60 1.8 0.54 0.05 0.57 0.06
724 Red Edge 40 1.8 0.00 0.87 0.10 0.33
831 NIR1 125 1.8 0.04 0.77 0.26 0.39
475 Blue 70 5 0.60 0.00 0.29 0.47
555 Green 70 5 0.45 0.04 0.42 0.08
RapidEye 657.5 Red 55 5 0.53 0.07 0.57 0.07
710 Red Edge 40 5 0.03 0.83 0.31 0.19
805 NIR 90 5 0.04 0.78 0.26 0.39
485 1 70 16 0.58 0.01 0.39 0.26
555 2 70 16 0.46 0.03 0.42 0.08
660 3 60 16 0.55 0.05 0.57 0.06
GaoFen-6 830 4 120 16 0.04 0.77 0.26 0.39
710 5 40 16 0.08 0.76 0.39 0.15
750 6 40 16 0.01 0.85 0.08 0.44
610 8 40 16 0.49 0.01 0.51 0.05
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Figure A1. Spectral response functions of satellite sensors used for simulation of broadband reflectance.
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Figure A2. Map of the coefficient of determination between the CCC (R%2ccc) and vegetation indices
using all two band combinations based on the RI, NDVI, DI, SAI, MSR and MSAI formulations. The
color indicates different R? values.
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Figure A3. Map of the coefficient of determination between MTA (R%\ra) and vegetation indices
using all two band combinations based on RI, NDVI, DI, SAI, MSR and MSAI formulations. The
color indicates different R? values.
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