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Abstract: Change detection in urban areas can be helpful for urban resource management and
smart city planning. The effects of human activities on the environment and ground have gained
momentum over the past decades, causing remote sensing data sources analysis (such as satellite
images) to become an option for swift change detection in the environment and urban areas. We
proposed a semi-transfer learning method of EfficientNetV2 T-Unet (EffV2 T-Unet) that combines the
effectiveness of composite scaled EfficientNetV2 T as the first path or encoder for feature extraction
and convolutional layers of Unet as the second path or decoder for reconstructing the binary change
map. In the encoder path, we use EfficientNetV2 T, which was trained by the ImageNet dataset.
In this research, we employ two datasets to evaluate the performance of our proposed method for
binary change detection. The first dataset is Sentinel-2 satellite images which were captured in 2017
and 2021 in urban areas of northern Iran. The second one is the Onera Satellite Change Detection
dataset (OSCD). The performance of the proposed method is compared with YoloX-Unet families,
ResNest-Unet families, and other well-known methods. The results demonstrated our proposed
method’s effectiveness compared to other methods. The final change map reached an overall accuracy
of 97.66%.

Keywords: change detection; deep learning; EffIcientNetV2 T-Unet; semi transfer learning; Senteinel-2

1. Introduction

Remote sensing data are used in the detection of the changes unfolding in an area over
a period of time [1]. This procedure, which is named change detection, has the capability to
capture worthwhile information for environmental research, particularly research that is
concentrated on urban development and smart cities, hydrological cycles, climate change,
city management, and deforestation; therefore, it can be an essential factor for local and
global development project plans [2]. In recent decades, human activities in the world
have caused huge changes on the earth, causing remote sensing resources such as satellite
images to become an important tool for simple, swift, and accurate change detection over
vast areas. The methods which are used to gain information and detect changes through
remote sensing data are categorized into two parts: semi-automatic and automatic [2].

The change detection techniques in images which are known as two-dimensional re-
mote sensing data are generally grouped into two categories: supervised and unsupervised
methods. The supervised methods are identified to be resistant to atmospheric condition
changes, brightness, and weak sensor calibration during data capturing, which means that
the supervised methods are not sensitive to radiometric correction but have a significant
weakness when used on terrestrial reference data because collecting the reference data is
time-consuming, costly, and complicated [2]. The unsupervised methods do not require
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terrestrial reference data as they compare between pixels directly; however, they are sensi-
tive to radiometric correction [2]. Table 1 briefly summarizes traditional change detection
approaches and their advantages and limitations [3-6].

Table 1. Summary of the literature on traditional change detection approaches.

Category Subcategory Definition Mode Advantages Limitations Applications
Difficult to update, for
Visual Generate a change map b . Highly reliable large applications Used in different
& p by Supervised sy &€ abp
Analysis - visual interpretation results time-consuming, fields before [3]
labor-intensive
& f%mage_ Difficult to choose the
Hierencing Simplle and easydto Péopf'; t}tl;eSh}?ld to
i t
Image regression change map is generated m;r?t:;;ferls airt1 ' nir;}i %iffeicclﬂfl;f ¢ Urban land
Algeb:ﬁ—l‘:;sed Image rationing by perform;'ng algebraic Unsupervised decreases the choose appropriate 1;;;31 5731,5321;131
methods Chang vector . opejfa 1on:_ or impact of image bands, there is cover [8]
analysis ranstormations. sunglasses’ no “from-to” change
topography shadow. information, and the
Vegetation index Distribution of results
differencing is not normal.
Principle
component A change map is produced Reduce the
analysis (PCA) by using transformation redundancy Detailed change Rural-urban land
Transformation Tasseled C methods; these methods Unsupervised between bands, information cover [9], Land
asseled Lap are utilized to suppress emphasize different cannot extract cover [10]
Chi-Square correlated information and information in
highlight variance. taken components
Gramm-Schmidt
Post-
classification
comparison
Spectral-
Temporal
combined
analysis
Provide change Land cover [11],
EM- transformed S ised . ) 8¢ . ..
Classification (Expectation A change map is generated un:s;?g/siie d information matrix, Selec'tmg training data  Urban land cover
methods Maximization) by a classification method hybrid do not ﬁeefi is challenging (121, Urbezrfgl]and
atmospheric cover [13],
Unsupervised correction Forest change
change detection detection [14]
methods
Hybrid change
detection
Artificial Neural
Networks
Li-Strahler
reflectance model rai hl:/flore at
straightforward to .
Spectral mixture transform the spec‘tral comprehend than C omplicated an d
Advanced model reflectance values into hybrid the spectral time-consuming,
Method ' ' physically based signatsre. Can developing the proper Land cover [3]
Blophystcal parameters derive vegetation mode is challenging.
pz:trﬂg;r information
Integrate GIS and Land use The quality of the
GIS technique RS methods Use different data sources hybrid information can result change map Forest'char}ge
for change detection Y update directly in depends on different detection [15]
GIS method the GIS database data type

Given the merits and demerits of traditional change detection methods outlined in
Table 1, it would be ideal to find a method which uses the features contained in images
for change detection and thus improve on the drawbacks of these methods. In recent
years, automatic deep learning networks have been highly effective in extracting high-level
features from images for change detection purposes. Generally, deep learning methods
for change detection include five categories: Convolutional Neural Networks (CNNs),
Autoencoders (AEs) or stack Autoencoders (SAEs), Recurrent Neural Networks (RNNs),
Generative Adversarial Networks (GANSs), and Deep Belief Networks (DBNs) [16]. This
study focuses on urban change detection of multispectral satellite images. The previous
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research on deep learning change detection methods and their advantages and limitations
of multispectral remote sensing datasets are investigated briefly in Table 2.

Table 2. Literature review of deep learning change detection approaches.
Category Sub-Category Mode Data Advantages Limitations Applications
Multispectral
SPOT-5 and Time of Urban land use
CNN Deep brief network Supervised Landsat images, High accuracy . and
processing .
google earth vegetation [17]
images
Multispectral
Fully convolutional . Onera Sentinel-2 . Huge amount of Urban land
CNN Siamese network Supervised Satellite images Trained end to end training data use [18]
(OSCD)
Spectral, spatial Multispectral
CNN joint learning Supervised Taizhou and High performance Hug.e amount of Urban land
training data use [19]
network Kunshan dataset
Siamese deep
network with . Could not Urban
hybrid Multispectral Extraction robust separate pixel rural-urban
CNN yor Supervised ZY-3 and GF-2 rate |
convolutional o deep features from its neighbor non-urban land
. satellite images i O
feature extraction for classification use [20]
module
Bilinear Multispectral Generating label River and
CNN convolutional Supervised Lansat-8 satellite ~ End-to-end training data is Waterland
neural network images challenging use [21]
Multidimensional . . . Urban land use
CNN CNN Unsupervised OSCD End to end Time-consuming land cover [22]
Multispectral .
Feature difference Worldview-3, Powerful Require huge
. . . robustness and amount of Urban land
CNN convolutional Pre-trained QuickBird and R .
. generalization pixel-level use [23]
neural network Ziyuan-3 1. L
L ability training samples
satellite images
Deep Siamese Poor performance
CNN semantic Supervised RGB building Decrease training in detecting the Urb.an /
segmentation images sample issue exact boundary of  construction [24]
network the building
S? mi-supervised Haiti earthquake
Siamese network . L Decrease Urban land
CNN Pre-trained QuickBird . Error map
based on transfer o computational cost cover [25]
. satellite images
learning
mec}?at;ei?rtrllc—);ased Multispectral Urban land
CNN d . Supervised LEVIR CD High performance mode complex
eep supervision cover [27]
dataset [26]
network
Mu‘ltl-Attentlon . LEVIRCD [26], Enhance deep A large number Building change
CNN guided feature Supervised feature extraction ¢
. WHUCD [28] . of parameters detection [29]
fusion network and fusion
AE Multispectral Unet Supervised OSCD End to end Low performance UrE::[lj]nd
Combination of
Unet and robust
AE and RNN Recurrent Supervised OSCD End to end A large Iamount of Urban land
training data use [30]
Networks such as
LSTM
Multispectral .
AE Unet Supervised KompSAT-3 Splve 'spegtral Computatl.onal Urban land use
o distortion issue complexity and forest [31]
satellite images
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Table 2. Cont.
Category Sub-Category Mode Data Advantages Limitations Applications
Deep self-attention Google Earth
AE fully efﬁglent Supervised multlspechﬁal End to end Complexity of Urban land
convolutional season varying model use [32]
Siamese network dataset
Multispectral 2D and 3D
AE Bfl‘zlggdedségg Supervised Wuhan dataset End to end A lt?‘;%ziim((:ll:tz of building change
from IKONOS & detection [33]
Intensely
supervised . Extract deep . . Building change
AE attention-guided Supervised LEVIRCD [26] features efficiently Time-consuming detection [34]
network
Hierarchical
AE self-attention Supervised ngl_"es satellite Extracting deep Complex model Urban land
augmented the images features use [4]
Laplacian pyramid
Feature regularized . LEVIRCD [.26]’ Cannot detect Building change
AE Supervised GEF-1 satellite End to end :
mask DeepLab . edge properly detection [35]
images
Boundary-aware . End to end, sharp Urban land
AE Siamese network Supervised LEVIRCD [26] boundary Complex model use [36]
Minimize
- . LEVIRCD [26], . . . Urban land
AE Efficient Unet++ Supervised CD dataset [37] computational Time-consuming use [38]
parameters
Solve the A poor
. . illumination performance,
AE Multitask learning Supervised OSCD differences especially in Urban_change
framework L-Unet : detection [39]
problem and preserving
registration error object shape
. Simple model, easy ~ Cannot recognize Urban change
AE Unet Supervised OSCD to implement small changes detection [40]
Recurrent .
RNN convolutional Supervised Multlspectral End to end Cannot extract all Urban land
Taizhou dataset deep feature use [41]
Neural Network
Generative Multispectral
i . Worldview-2 Decrease training Complexity of Urban land use
GAN discriminatory Supervised . )
e and GF-1 sample issue model and water [42]
classified network o
satellite images
Deep GAN with OSCD, Landsat-8,
. . . Huge amount of Urban land
GAN improved Unsupervised and google earth high performance training dat [43]
DeepLabV3+ satellite images atmmng data usel®
Self-supervised Semi- Multispectral Extract features at Urban land
GAN o - Worldview-2 . . Model complexity
conditional GAN supervised o multiple resolutions use [44]
satellite images
GAN Cpecedul Supervised  LEVIRDDOL - RTRELrametas aand  Bullding change
pace dua upervis WHUCD [28] pro P s detection [45]
alignment pseudo changes {3 are issue
Deep joint . Mulitlspectral Any labgled. . . Urban land
DBN . Unsupervised Sentinel-2 and training pixel is Time-consuming
segmentation use [46]

Pleiades images

not required

Regarding Table 2, most studies have focused on AEs and CNNs for the change

detection of multispectral remote sensing data. CNNs have some advantages for change
detection purposes such as high accuracy, high performance, extract robust features, and
end-to-end training; however, they have limitations such as requiring a time-consuming
and huge amount of training data. One of the main networks in this category is the Siamese
network. CNNs change detection networks are used for urban land cover or land use,
building change detection, and water land use. AEs are simple models and employ end-
to-end training which extracts deep features efficiently. AEs have some limitations such
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as computational complexity, a requirement for a large amount of training data, and poor
performance in boundary detection. Unet is one of the main AE networks for change
detection. AEs are usually applied to urban, land cover, land use, forest, and building
change detection. GANSs are usually used for training data generation and can significantly
improve the performance of deep learning networks, depending on the amount of training
data. According to Table 2, the main limitations of previous deep learning methods include
model complexity, time-consuming networks, poor performance in detecting the shape and
boundary of objects, and small changes. Considering the limitations of previous studies,
we propose a method based on semi-transfer learning. This method uses a pre-trained
EfficientNetV2 T network [47] with faster training speed and efficient parameters as an
encoder part for feature extraction and convolutional layers of Unet as a decoder part
for the reconstruction binary change map. The Semi Transfer Learning Change Detection
EfficientNetV2 T-Unet (STCD-EffV2T Unet) method not only has less complexity but also
has a faster training speed. Besides, most previous studies have concentrated on urban and
building change detection datasets with less complexity and diversity, while the area in
our study was selected from northern Iran, in which the urban areas are highly complex.
This area consists of three parts: the first part is the coastline and urban area near water or
wetland, the second part is the urban area which is located on foothills and mountainous
terrain, and the last part is the urban areas which are covered mainly by vegetation or are
surrounded by forest and agricultural land. Our proposed method can detect changes
with high precision in these complex urban areas. Furthermore, the performance of the
proposed method is evaluated using OSCD, which is one of the most famous datasets for
urban change detection.

The main purpose of this study is to detect changes in these three kinds of areas that
have always been challenging, using our proposed method to overcome this challenge. In
comparison with other studies, our proposed method is not time-consuming or complex.
Moreover, even using a focal loss function that is not effective in terms of change detection
results, its performance will be adequate. The advantages of using transfer learning with
different inputs make our method stronger than the others.

The rest of this study is organized as follows. The Section 2 contains the datasets
that are used in this research and the properties of the study areas. In the Section 3, our
proposed method is investigated in detail and the results are demonstrated in the Section 4.
The comparisons between the performances of the methods are collected in Section 5. The
conclusion is included in the Section 6.

2. Materials and Datasets
2.1. Sentinel-2 Satellite Image of the Northern Iran Dataset

The Sentinel-2 satellite images from northern Iran’s urban areas, especially located
in the Gilan and Mazandaran provinces, are used in this study. The urban areas in these
provinces are chiefly located on the margins of forests and farmlands as well as on the
coastline, near water or wetland, and also on mountainous terrains or foothills. Most of the
changes in these areas are located near forests and agricultural lands [48,49]. The changes
are related to the expansion of urban areas horizontally due to the construction of tourism
facilities, countryside houses, and resorts.

This research uses Sentinel-2 satellite images captured on 2 July 2017, and 10 August
2021, and their corresponding ground truth produced by using Google Earth images taken
simultaneously. Change polygons are drawn employing ENVI and ArcGIS software. The
Sentinel-2 images include 13 bands in the short-wave infrared, near-infrared, and ultraviolet
parts of the spectrum, with resolutions ranging between 10 and 60 m (the multispectral
satellite images are processed from level-0 to level-2A by Payload Data Ground Segment
(PDGS). Only level-1C and level-2A products are released to users. In this study, we use
the user available products as dataset). Figure 1 illustrates the study area. This dataset will
be uploaded here: [http://rslab.ut.ac.ir, accessed on 20 February 2023].
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Figure 1. Map of study location in Iran (red), Sentinel-2 images of study location in 2017 (top) and
2021 (bottom).

2.2. Onera Sentinel-2 Satellite Change Detection (OSCD) Dataset

The second dataset adopted in this research is the OSCD dataset, which is a dataset
of urban changes that can help to demonstrate the performance of our proposed method
regarding complex urban changes. The OSCD dataset has been captured using Sentinel-2
images taken from places with various levels of urbanization in several other countries that
have experienced rapid urban development and growth. This dataset includes the data
of 24 important urban areas worldwide with ground truths. Figure 2 presents the RGB
images of the five cities of Rio, Montpellier, Rennes, Chongqing, and Beihai at two times
and their location in the world. The OSCD dataset is also available at https://rcdaudt.
github.io/oscd/, accessed on 6 June 2020. In Table 3, the descriptions of the two datasets
are illustrated.

Figure 2. Multi-temporal image datasets. (a) Rio, (b) Montpellier, (c) Rennes, (d) Chongqing, and
(e) Beihai.


https://rcdaudt.github.io/oscd/
https://rcdaudt.github.io/oscd/

Remote Sens. 2023, 15, 1232 7 of 21

Table 3. Information on datasets used in this study.

Datasets Time Bands Spectrum Range (um) Spatial Resolution (m)
Onera Sentinel-2 satellite images Timel 2015 Blue 0.45~0.52
Change Detection (OSCD) Green 0.52~0.59 10
Time2 2018 Red 0.63~0.69
North of Iran Sentinel-2 Timel 2017 Blue 0.45-0.52
Satellite images Green 0.52-0.59 10
8 Time2 2021 Red 0.63~0.69

3. Proposed Method

In this section, the proposed method is described in detail. As Figure 3 shows, the
general procedure of the proposed method includes three main steps: (1) pre-processing,
(2) data augmentation and train test split, and (3) encoder-decoder architecture. The main
steps will be described in the following sub-sections.

North of Iran dataset

'
'
'
'
'
'
'
'
'
'
200
i
(‘_ﬂl .
e
ESN
£
'
'
'
'
'
'
'
.
Pre-processing Pre-processing
Automatic data selecting
Train and
Validation data Test data
Data
Augmentation
S R 3
. .
. .
H .
' '
o '
% o Encoder-Decoder Training H
5 &gt :
9] '
gL 2 ! :
Hh O c : .
B L Fine-tuning Network H
Q @ [
s '
' < H
H Final evaluation of change H
'
: detection method i
' '
-

Accuracy Assessment

Final Binary Change
Detection map

Figure 3. Flowchart of the proposed method.
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3.1. Pre-Processing

In the pre-processing step, the RGB channels of two datasets are normalized using
Equation (1), then they are divided into 128 x 128 patches, and, finally, the patches which
contain the higher portion of the target in urban areas are chosen. Moreover, the ground
truth is converted into 128 x 128 patches so that it is suitable as an input of the STCD-
EffV2T Unet.

X — dmin
Clmax + dmin

In Equation (1), dpjn is the minimum gray value in each channel, dmax is the maximum
gray value in each channel, and x is the gray value of each pixel.

)

3.2. Train and Test Split and Augmentation

After pre-processing, the evaluation and training data are separated from the test data.
A total of 67% of all the data are considered as training and evaluation, and the remaining
33% are applied to testing. In the next step, augmentation is used for the training dataset,
as a result of which the neural network will resist the changes in the augmentation domain
and boost the network’s efficiency [50]. Figure 4 shows data augmentation for a single
image. The augmentation of this study includes rotation with three angles (+90°, —90°,
and 180°).

(a) (b) (c) (d)

Figure 4. Original image (a); data augmentation with —90° (b), +90° (c), and 180° (d).

In the North of Iran dataset, the training patches raise from 1545 to 4140 and in OSCD
they raise from 495 to 1980, in which surplus is the result of augmentation.

3.3. Encoder-Decoder Architecture

In this section, we describe the EfficientNetV2 T-Unet as an encoder-decoder archi-
tecture for binary change detection. EfficientNetV2 T is used as a feature extractor in the
encoder stage and the convolutional layers of the Unet network are used as decoders.

3.3.1. EfficientNet Encoder

The EfficientNet network families were proposed for the first time by [51]. In previous
studies, the EfficientNetV1 as an encoder and convolutional layers of Unet as a decoder were
used for semantic segmentation at environments [52], disease detection with CT scan and
colonoscopy images [53,54], surface defect detection [55], blood vessel segmentation [56],
and neuron instance segmentation [57]. In this study, we use the EfficientNetV2 as an
encoder, which was proposed for the first time by [47]. In the EfficientNetV2, a combination
of training-aware neural architecture reaches and scaling is used to optimize training
speed and parameter efficiency. The EfficientNetV2 has versions B0, B1, B2, B3,L, M, S,
and T. To obtain the maximum advantages of the EfficientNetV2 networks, we evaluate
them as encoders of our proposed method (the results are presented in Section 4). Since
EfficientNetV2 T comprises an efficient number of parameters and a high speed in the
training process, it is chosen as the encoder to extract features. In addition, it reached
better accuracy.
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The fundamental building blocks of EfficientNetV2 are the mobile inverted bottleneck
convolution (MBConv) [52] and fused mobile inverted bottleneck convolution (Fused-
MBConv) [47]. The structures of these two blocks are shown in Figure 5.

dhY dhY
N N
VS V
H,W,C H W, C
convlxl convlxl
SE SE
H, W, 4C H, W, 4C
depthwise
conv3x3
conv3x3
convlxl
H,W,C H W, C
MBConv Fused-MBConv

Figure 5. The structure of MBConv and Fused-MBConv blocks.

The EfficientNetV2 networks include seven blocks. In blocks 1-3, MBConv is replaced
with Fused-MBConv; however, in the EfficientNetV1, all blocks are MBConv. Fused-
MBConv improves training speed with a slight overhead on parameters and FLOPs. If,
in all blocks (1-7), MBConv is replaced with Fused-MBConyv, the training speed will
reduce and increase the FLOPs and model complexity. The network architecture of the
EfficientNetV2 T used in this study is illustrated in Figure 6.

3.3.2. Transfer Learning with Different Input Channels

Most models that are similar to EfficientNetV2 were trained by datasets such as
ImageNet and have three channels as input. For change detection, the pre-trained model
should be converted from three channels into six channels (three RGB Timel, three RGB
Time2). In previous studies, the three methods that were used are as follows:

(1) Expand the weight dimensions to account for additional channels and randomly
initialize the value.

(2) Similar to the first method; however, instead of using a random value for filling,
using the mean of other values.

(3) A second parallel network is created which has the same architecture as the pre-
trained network but has different input channels. This new parallel network performs
feature extraction on the remaining channels. Then, the output of this network is concate-
nated with the output of the original pre-trained network. In this method, the parallel
network learns the representation specific to additional channels, and we still take advan-
tage of using the pre-trained model as well.
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898351837 2
SRR -« - < < SIS 5
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64x64 I— 1 64x64
block3 conv2D N |
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input block4 concat | —| conv2D 128x128x1
128x128%6 transpose
1816 T 16x16
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concat
transpose
8x8 8x8

Concatenation
Down sample path

—————————————) Up sample path

Figure 6. Top: the structure of EfficientNetV2 T, which contains seven blocks (represented with a
different color); bottom: the structure of our proposed method using EfficientNetV2 T as an encoder
and the convolutional layers of Unet as a decoder. The encoder is concatenated with the decoder at
four different resolutions (Block2, Block3, Block4, and Blocks).

In this study, we tried all three methods. For some networks, such as EfficientNet and
Yolox, the second method has better performance; however, for DeepLabv3+ and VGG19,
the third method works properly. In this study, we use the “Semi-Transfer Learning”
technique in the sense that the encoder path (EfficientNet V2T) was pre-trained by the
ImageNet dataset, although the decoder path (convolutional layers of Unet) was not trained.

3.3.3. Unet Decoder

Unet is a U-shaped, fully convolutional neural network which was used for the first
time by Olaf and Ronneberger to segment medical images [58]. The Unet network includes
the encoder and decoder paths. The task of the encoder path is to detect the backgrounds
of images. The output of the encoder is smaller than the input; however, it is expanded
in the second path, called the decoder. The second path detects the exact position of
features by transpose convolution [59]. The decoder incorporates the high-level features
by a subsequence of transpose and concatenation with the corresponding feature maps
from the encoder path. The feature maps captured from the encoder path contain low-level
features. In contrast, these low-level features contain helpful information about complex



Remote Sens. 2023, 15, 1232

11 of 21

scenes with multiple objects and their relative configuration. They are combined with
intermediate high-level feature maps from Unet, the decoder path, and low-level feature
maps from EfficientNetV2. The network boosts context information on higher resolution
layers by using many feature channels in the up-sampling part [52].

Our proposed method uses EfficientNetV2 T as an encoder instead of a set of convolu-
tional layers and the decoder part is the convolutional layers of Unet. Figure 6 illustrates
the proposed architecture in detail.

3.3.4. Loss Function

We implement the focal binary loss function which is usually used for unbalanced bi-
nary classification [60]. The focal loss can significantly decrease the training and validation
loss during the training process. This loss function is defined using the following equation:

FL(p) = —«(1 —p)" log(p). )

In Equation (2), p € [0,1) is the model-estimated probability for the class with label 1
and (1 — p) for the class with label 0, and « and y are two hyperparameters for which «
shows a weight balancing factor for class 1 (default is 0.25 as mentioned in [60]) and vy is
a focusing parameter that is used to compute the focal factor (default is 2.0 as mentioned
in [60]). In this study, we consider « = 0.1 and y = 2.0 since the performance of the loss
function with o = 0.1 is better than the default value. Moreover, the Adam optimizer
with a learning rate of 1 x 107* and decay rate of 1 x 107 is considered to adjust
network parameters.

3.3.5. Accuracy Assessment

Accuracy assessment is a non-separable part of any remote sensing task. In this study,
the final results of the proposed method are compared with the ground truth and other
change detection networks quantitatively and qualitatively. The quantitative comparison is
based on the metrics which are described subsequently (Table 4).

Table 4. Information formulas for accuracy assessment metrics.

Metric Formula
Precision TPLJFFP
Fl-score mﬁ(%
(0)8) %
Accuracy %
Kappa Coefficient (KC) 2> (TPXTN—FNxFP)

(TP+FP) x (FP+TN) + (TP+EN) x (FN+TN)

3.3.6. Comparative Methods

To compare the efficiency and speed of our proposed method, we compare our method
with other EfficientNetV2 series including B0, B1, B2, B3, L, M, and S. Other EfficientNet
series have a different number of parameters; however, they have a nearly similar general
architecture. In addition, the following networks are used to confirm the efficiency of STCD-
EffV2T Unet. These approaches are YoloX [61], ResNest [62], VGG19 [63], DeepLabv3+ [64],
and U%Net [65], which are briefly described below:

e  YoloX [61]: the Yolo family networks are generally used for object detection. These
networks are fast and accurate, and trained on the COCO dataset. In this study, we
use YoloX series such as Nano, Tiny, S, and X, which are trained on the COCO dataset
as an encoder, and the convolutional layers of Unet as a decoder.

e ResNest [62]: this network, named the split-attention network, includes four series:
ResNest50, ResNest101, ResNest200, and ResNest269. The number of parameters
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increases according to the number of these networks. In this study, we use ResNest50,
ResNest101, and ResNest200, which were trained by the ImageNet dataset as the
encoder part and convolutional layers of Unet as the decoder part.

e  VGGI19 [63]: this network is one of the most famous networks for many remote sensing
tasks. In this study, we use VGG19 which was pre-trained by ImageNet as an encoder
path and convolutional layers of Unet as a decoder path.

e DeepLabV3+ [64]: the last modification of the DeepLab network is DeepLabV3+,
uploaded at http://keras.io. This network is used for multiclass segmentation. In
the architecture of the DeepLabV3+ network, the ResNet50 is the backbone which
is pre-trained by ImageNet. In this study, we use DeepLabV3+ for binary change
detection, and we change the input channels into six channels and share the weight
with the third method in Section 3.3.4.

e  U2Net [65]: this network is one of the newest Unet network forms proposed for salient
object detection. U?Net is a two-level nested U-structure. In the structure of this
network, different residual U blocks are used. We compare the performance of this
approach with our proposed method.

4. Experimental Results

In this study, the STCD-EffV2T Unet is implemented using the RGB channels of two
datasets. The system configuration used for this study is Intel (R) core (TM)i7-7800X CPU
3.5 GHz, 32.0 GB installed RAM, and NVIDIA GeForce GTX 1050Ti. All networks are
trained using the TensorFlow 2.10.0 platform and python 3.8.

One of the main goals of this study is to develop a fast network. Our proposed method
can generate an accurate binary change detection map in a reasonable time. The comparison
between training time and several other parameters of this method with other methods is
shown in Table 5. The metrics’ results, introduced in Section 3.3.5, are also demonstrated.

Table 5. Quantitative evaluation of the results captured for two datasets.

Time of

o s o } o o Kappa g Parameters
Method Accuracy (%)  Precision (%)  F1-Score (%) 10U (%) Coefficient (KC) Trau?mg (Million)
(h min s)
STCD-EffV2T Unet
(proposed method) 97.66 99.61 98.79 97.60 0.67 2h10min 34s 6.6 M
North of Iran dataset
STCD-EffV2T Unet
(proposed method) 97.32 98.44 97.05 96.34 0.59 5min0s 6.6 M
OSCD
EffV2 BO Unet 97.45 99.60 98.68 97.40 0.59 1h15min26s 43M
EffV2 B1 Unet 97.54 99.29 98.72 97.48 0.63 1 h 50 min 30 s 48M
EffV2 B2 Unet 97.31 98.98 98.60 97.25 0.63 1h56min3s 52M
EffV2 B3 Unet 97.23 98.89 98.56 97.16 0.62 2h5min32s 6.2M
EffV2 L Unet 97.17 99.03 98.53 97.10 0.60 3h30min45s 26.0 M
EffV2 M Unet 97.03 99.14 98.46 96.97 0.56 3h 38 min 56 s 13.7M
EffV2 S Unet 97.23 99.30 98.56 97.17 0.58 2h38min44s 8.8M
YoloXNano Unet 97.20 99.00 98.54 97.13 0.60 1h17min3s 21M
YoloXTiny Unet 97.37 99.04 98.66 97.24 0.61 1h15min22s 29M
YoloXX Unet 97.17 99.07 98.45 97.13 0.51 3h 53 min 46 s 204 M
YoloXS Unet 97.38 99.08 98.65 97.34 0.55 1h 18 min41s 35M

VGG19 Unet 97.04 99.07 98.62 97.24 0.58 1h28 min34s 182M
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Table 5. Cont.

M o .. o o o Kappa Tirpe. of Parameters
ethod Accuracy (%)  Precision (%)  F1-Score (%) 10U (%) Coefficient (KC) Tran}mg (Million)
(h min s)
ResNest50 Unet 97.05 99.05 98.47 97.15 0.62 3h2l min26s 16.5M
ResNest101 Unet 97.27 99.09 98.58 97.21 0.61 3h41min0s 348 M
ResNest200 Unet 95.57 97.15 97.67 95.46 0.50 9h 36 min 34 s 56.8 M
DeepLabV3+ 92.82 95.03 96.21 92.70 0.29 2h30min2s 17.0M
U2Net 97.37 99.03 98.60 97.30 0.60 6h2min18s 440M

Table 5 shows that the STCD-EffV2T Unet achieves an accuracy of 97.66% and KC
achieves an accuracy of 0.67 after 100 epochs, which are the best results among other
networks. Despite some exceptions, the training time increases by increasing the number
of parameters. YoloXNano Unet, YoloXTiny Unet, and EffV2 B0 Unet have the shortest
training time and their parameters are less than 5 M. However, the final change detection
results show that these networks cannot overcome the complexity of the study areas. The
precession, KC, and other metrics show that the performance of the STCD-EffV2T Unet is
better than these three networks. In Table 5, we see that, when the number of the parameters
exceeds eight million, the training of all the networks becomes time-consuming, whereas the
final change detection map will not improve. The networks such as EffV2L Unet, EffV2M
Unet, YoloXX Unet, U?Net, and ResNest family networks are time-consuming in terms of
their training process, and the parameters and complexity of these networks are surplus
for our binary change detection task. Among the YoloX series, YoloXNano, YoloXTiny, and
YoloXS, which have the lowest training time, cannot detect binary changes. YoloXX has
more than 20 million parameters; however, its performance is not satisfactory. Among
the EffV2 family networks, the STCD-EffV2T Unet compromises between the number of
parameters and the binary change detection accuracy. The EffV2 BO, EffV2 B1, EffV2 B2,
and EffV2 B3 have fewer parameters than STCD-EffV2T Unet, and, therefore, cannot reach
an accurate binary change map, whereas EffV2 L, M, and S have more parameters than
STCD-EffV2T Unet; therefore, they are time-consuming and cannot reach an accurate final
change map. Moreover, U?net and DeepLabV3+ are not as accurate as STCD-EffV2T Unet.

5. Discussion

The quantitative, qualitative, and visual analyses demonstrate that the STCD-EffV2T
Unet works effectively in detecting changes in the urban areas of our datasets. The north
of Iran dataset includes three parts: (1) coastal areas, which are near water and wetland,
(2) urban areas which are covered with vegetation and surrounded by forest and agricul-
tural land, and (3) urban areas which are located in foothills. In Figure 7, samples of these
areas are considered in order to demonstrate the results. In Figure 7a,b, two coastal areas
are considered. Detecting changes near water or the coast has always been challenging;
however, our proposed method can dominate this challenge and detect these changes.
Most of the changes in coastal areas are sparse and small; therefore, detecting them is
difficult. However, our proposed method can detect them properly and preserve the edges
almost correctly. Figure 7c—e shows the results of three urban area samples covered with
vegetation or surrounded by forest or agricultural land. These kinds of areas cover most of
the north of Iran; in fact, the majority of the changes took place in these areas. The changes
in these urban areas are vast and most of them are the constructions of truism facilities and
countryside houses on the border of urban areas; this trend has grown seriously in recent
years. The changes in these areas are dense and our proposed method can detect most of
them and properly preserve the edges. In Figure 7a,e (Timel) there are some clouds in
images; however, our proposed method, without any pre-processing, can detect changes.
In Figure 7f, the result of urban areas which are located on the foothills is shown. The urban
areas on the foothills form a minority of the study areas and the changes in this area are
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sparse. Most of this urban area is located in the mountain’s shadow; therefore, dividing
between shadow and changes is hard. However, our proposed method can defeat this
challenge and detect the changes and preserve the edges properly.

We also show the performance of STCD-EffV2T Unet on OSCD. The results of our
proposed method for five cities of OSCD are shown in Figure 8. Although this network is
slightly ill-suited to the detection of continued changes and those in edge or border areas
(e.g., continuous changes in Montpellier City), it has considerable accuracy in tracking
changes. As demonstrated by Figure 8, the network has effectively detected many tiny
changes in Beihai and Rennes, where there have been many tiny changes in the ground
truth. As shown in Figure 8, the proposed method also performed relatively well in
detecting changes in coastal and port cities such as Rio.

Figure 9 compares the performance of STCD-EffV2T Unet with other EffV2 networks.
It shows five coastal ports (a—e), five urban areas covered or surrounded by forest or
agricultural land (f-), and two urban areas located on foothills (k and 1). These 12 areas
are in the north of Iran. Among the EffV2 series, EffV2B3 and EffV2B2 can detect changes
nearly properly; however, the STCD-EffV2T Unet can detect changes more accurately. As
shown by Figure 9, the STCD-EffV2T Unet can preserve the edges and shapes of changes.
There is the highest similarity between STCD-EffV2T Unet results and the ground truth.

Figure 7. Cont.
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Figure 7. Proposed method results for coastal areas (a,b), urban areas surrounded by forest or
agricultural land (c-e) and urban areas located on foothills (f) (top row contains Time 1 (2017)
and Time 2 (2021) images, respectively; bottom row contains ground truth and proposed method
results, respectively).

Figure 8. Cont.
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Figure 8. Results of the proposed method in the cities of Rio (a), Montpellier (b), Rennes
(c), Chonggqing (d), and Beihai (e) (from left to right: Time 1 image, Time 2 image, ground truth, and
proposed method results).

Figure 9. Cont.
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Figure 9. Results of coastal areas (a—e), results of areas located near the forest and agricultural land
(f—j), and results of areas which are located on the foothills (k,1).

Figure 10 compares the performance of STCD-EffV2T Unet with the other networks,
including the YoloX series, ResNest series, VGG19, U?%Net, and DeepLabV3+. In Figure 10,
the same study areas are selected which were used in Figure 9. YoloXNano and YoloXTiny
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have better performance among other methods; however, the STCD-EffV2T Unet is superior.
The other methods are not only time-consuming, as reported in Section 4 (experimental
results), but also cannot reach the best performance.
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Figure 10. Results of coastal areas (a—e), results of areas located near the forest and agricultural land
(f—j), and results of areas which are located on the foothills (k,1).

6. Conclusions

In this study, we developed the STCD-EffV2T Unet network architecture, which
benefits from the advantages of transfer learning for urban change detection with the
northern area of Iran and the OSCD dataset. In our method, the RGB channels of two
datasets were assigned as input of the STCD-EffV2T Unet network. The STCD-EffV2T
Unet network can detect changes effectively in complex urban areas by unique feature
extraction through the EfficientNetV2, pre-trained by the ImageNet dataset in the encoding
path and convolutional layers of Unet as a decoding path. Taking into account the training
speed of the STCD-EffV2T Unet network, it can produce an accurate binary change map in
a reasonable time. It also can serve as a valuable network for generating maps of urban
northern areas of Iran and updating the RS and GIS databases. In addition to the speed
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improvement, it achieves a 97.66% and 98.79% accuracy and Fl-score, respectively. The
STCD-EffV2T Unet successfully detected the diversity changes in northern Iran’s urban
areas, including port cities and the coastal regions, urban areas adjacent to the forests and
agricultural lands, and urban areas located on foothills. In this study, we applied the focal
loss function, which is particularly useful for simultaneously detecting small and dense
changes and also preserving the edges. In future studies, researchers can develop and
use STCD-EffV2T Unet to analyze other urban areas with different challenges or three-
dimensional changes. It may also be worthwhile to design other deep learning method
architectures, such as encoder-decoder networks, for binary change detection.
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