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Abstract: A new concept of a space-based synchronized reference network is proposed with the
development of an optical frequency reference and laser inter-satellite link. To build such time
reference, three clock ensemble algorithms, namely the natural Kalman timescale (NKT) algorithm,
the reduced Kalman timescale (RKT) algorithm, and the two-stage Kalman timescale (TKT) algorithm
are considered. This study analyzes and compares the performance of these algorithms using BDS,
GPS, and Galileo satellite clock data from the GFZ GNSS clock corrections, which will be used in
constructing future space-based time references. The study shows that the NKT algorithm improves
frequency stability by 0.1–0.2 orders of magnitude in the short and medium term. When the satellite
clock is mostly a hydrogen clock, the RKT and NKT are close, and the short and medium-term
frequency stability slightly increases. In contrast, the TKT algorithm produces a timescale that
improves frequency stability by 1–3 orders of magnitude. A quadratic polynomial model predicts the
three timescales, with the results indicating that the short-term prediction accuracy of the satellite
clock is within 1ns, and the TKT algorithm’s prediction accuracy is 1–2 orders of magnitude higher
than that of the NKT and RKT algorithms. With the deployment of next-generation Low Earth Orbit
(LEO) satellites equipped with higher-precision clocks, the space-based time reference system will
achieve improved accuracy and greater potential for practical applications.

Keywords: clock ensemble algorithm; Kalman filter; LEO navigation augmentation; satellite clock
bias prediction

1. Introduction

Taking advantage of two rapidly developing technologies, e.g., optical frequency
references and inter-satellite laser links [1,2], a new concept of establishing a network of
space-based synchronized references has been widely discussed for future GNSS systems.
For instance, a future Galileo-like medium earth orbit (MEO) constellation, Kepler, has
been proposed by the German Aerospace Center (DLR), which could be characterized by
both MEO and LEO segments and the innovative key features of optical inter-satellite links
delivering highly precise range measurements and of optical frequency references enabling
a perfect time synchronization within the complete constellation [3–5].

With the help of space-based time-synchronized references, GNSS can attain many
benefits from the following aspects. Firstly, the broadcast of navigation signals could be
synchronized to a level far superior to modern GNSSs. Secondly, a significant reduction
or even the entire elimination of the satellite clock parameters could be achieved in the
estimation process [3,6]. Thirdly, a better separation of uncertainties in the spatial and
time domains could be obtained to enhance orbit determination. Moreover, a relativistic
navigation system could be realized so that the satellite orbits are determined through
the dissemination of each satellite’s proper time, and users estimate their own positions
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without the need to apply relativistic corrections. In addition, the synchronized signals
also have potential impacts on the monitoring of the Earth’s gravity field, the provision of
terrestrial reference frames, atmosphere sensing applications, and GNSS reflectometry [4].

In a space-based synchronized time reference, LEOs can be used as moving monitoring
stations to achieve global tracking coverage of the MEOs. Thus, high-stability atomic clocks
onboard and high precision time comparison between clocks is essential in the first place.
Based on the time offsets of every individual clock, a proper composite clock algorithm
is required to estimate a weighted average out of all ensemble clock readings, serving as
the newly established system time. With the appropriate adjustment, the system time can
keep coordinated with other standard time references similar to UTC or GNSS time. Finally,
similar to the GNSS system, the space-based system time can provide users with ordinary
time service and enable privileged users to build their time system by sharing detailed time
comparison information.

When building the terrestrial time scale, the commonly used composite clock algo-
rithms are the ALGOS algorithm (used by BIPM [7]) and the AT1 algorithm (used by the
National Institute of Standards and Technology (NIST) [8]). Alternatively, the Kalman filter
algorithm was developed in the 1980s [9,10], which allows for the addition or deletion
of clocks at any time and provides automatic error detection and correction. With the
continuous improvement of the algorithm, especially the reduction in the estimation error
matrix [11,12] and the improvement of the medium and short-term frequency stability of
the timescale [13], the Kalman filter algorithm has become mature and is widely used in
GNSS to satisfy the real-time requirement [14].

What algorithm should be used for the space-based synchronized reference is still
an important subject to be explored. In this work, we analyze the performance of three
algorithms, namely the Natural Kalman clock ensemble algorithm (NKT) [15], the Reduced
Kalman clock ensemble algorithm (RKT) [16], and the two-stage Kalman clock ensemble
algorithm (TKT) [17], in establishing space-based time system in detail. In addition, simu-
lation data have been used to compare and examine the timescale prediction accuracy of
these three algorithms.

2. Clock Ensemble Algorithm
2.1. Infrastructure and System Architecture of Space-Based Time Reference

A space-based timescale hinges upon the manufacture and measurement of high-
precision space atomic frequency standards (SAFS). As to the former aspect, besides three
classical options: the thermal Cs beam, the hydrogen maser (H-maser) (passive or active),
and the Rb atomic frequency standard (RAFS), there come several successors such as
mercury trapped-ion [18,19], and some other Cs beam or Rb vapor cell clocks with new
optical technologies [20–24]. The frequency stability of new generation clocks in both the
short and long term is higher than that of classic satellite clocks in half or even one order
of magnitude [1], and our approach to optical lattice clock, whose uncertainty is currently
known as the least on the ground [25].

As to the latter aspect, the measurement and synchronization of the space-borne
atomic clocks are carried out by orbit determination and time synchronization (ODTS)
technologies. Though GPS, Galileo, and BDS use different ODTS strategies, the basic means
are satellite-ground unidirectional and bidirectional time comparison techniques [26]. They
can lead to orbit precision of 5–30 cm for MEO in most GNSSs [27]. According to the
Multi-GNSS Experiment (MGEX) final products, the accuracy of satellite clock bias is about
0.3 ns for GPS and 0.6~1.2 ns for MEO in BDS [28,29]. Only using a satellite-ground link
makes the estimated parameters, such as the radial direction of the orbit, the clock bias, and
the antenna phase center offset, have strong degeneracy. Inter-satellite Link(ISL) can bring
great profit to break this degeneracy and improve the precision of orbit and clock bias [30].
BDS began to test ISL in Ka-band in 2016 and applied ISL to BDS-3 to promote global service
capability [31,32]. Thanks to ISL, the clock predicting error can be improved from 2~4 ns to
less than 1 ns [33]. Compared to the precision of time comparison of the clock ensemble on
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the ground, there remains a certain disparity. To compare time over a long distance, two-
way satellite time and frequency transfer (TWSTFT) and precise point positioning (PPP)
are advised by BIPM [34–36]. The stability of time comparison using PPP and TWSTFT
are 0.3 and 0.2 ns, respectively, and the accuracy with TWSTFT is 0.5~0.75 ns [35]. Optical
fiber brings the highest accuracy of time and frequency transferring, which is better than
0.1 ns [37,38]. Since laser inter-satellite link leads to higher time comparison accuracy, it
may push space-based timescale to catch up with ground-based timescale.

At present, the majority of LEO constellations are in the testing or basic setup stages.
Some of them aim to provide stable and reliable broadband Internet communication services
worldwide, and some of them aim to augment current GNSS. With high precision SAFS,
it also has the potential to expand into a navigation constellation, and its capability to
provide positioning, navigation, and timing services has been confirmed [39]. Especially
high-quality GNSS products can obtain from IGS or its analysis centers, and high-accuracy
services are provided by BDS and Galileo with B2b and E6-B signals, respectively [40–42].
LEO can achieve centimeter orbit precision by PPP technique with high accuracy carrier
phase bias correction [40].

Based on all the technical progress mentioned above, the idea of establishing a space-
based time system has been widely discussed. For instance, the Kepler system provides one
possible architecture, that is, six LEOs adding to the Galileo-like system, where the LEOs
serve as reference stations. With the continuous development of LEO satellite technology
and the GNSS system, it is expected that more space-based time systems will be proposed
in the future.

2.2. Natural Kalman Clock Ensemble Algorithm

Both the ALGOS algorithm and the AT1 algorithm mentioned above are weighted
average algorithms, the keys of which are weight and predicted value. Different weights
and predicted values will result in different algorithm performances and application
scenarios. Different from the weighted average algorithm, the Kalman algorithm proposed
by Barnes in 1982 focuses on estimation. The Kalman algorithm optimizes the variance
between the reference clock and the ideal clock and takes the estimated value as the
correction to generate the timescale [43,44].

The Kalman algorithm is based on a discrete and dynamic model of atomic clocks.
The Kalman filter is constructed by superimposing all the single clock models in the clock
group. The deviation between all clocks and reference clocks is the input, and the output is
estimations of all clock phases, frequency, or frequency drift. The satellite clock data used
in this paper are primarily hydrogen clocks and a few rubidium and cesium clocks. For
hydrogen clocks, the Random-run frequency modulation noise (RRFM) is not obvious, and
it is less affected by frequency drift [45,46]. According to this characteristic of the hydrogen
clock, and a few rubidium clocks and cesium clocks have little influence on the result of
the algorithm, this paper only considers phase and frequency in the Kalman filter, not
frequency drift. A clock group contains N clocks. All conform to the following model[

xi(t)
yi(t)

]
=

[
1 T
0 1

][
xi(t− 1)
yi(t− 1)

]
+

[
ξi(t)
ηi(t)

]
(1)

Qi =

[
Ei 0
0 Hi

]
(2)

where xi(t) represents the time deviations of all the clocks; yi(t) is the frequency deviation;
T is the time interval; Qi is the system noise matrix; ξi is white frequency modulation
(WFM), and the variance is Ei; ηi is the random walk frequency modulation (RWFM), and
the variance is Hi.

According to the Kalman filtering model, the equation of the clock group is written

X(t) = ΦX(t− 1) + W(t) (3)
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Z(t) = HX(t) + V(t) (4)

where

X(t) =



x1(t)
y1(t)
x2(t)
y2(t)

...
xN(t)
yN(t)



Φ =


1 T
0 1

. . .
1 T
0 1



W(t) =



ξ1(t)
η1(t)
ξ2(t)
η2(t)

...
ξN(t)
ηN(t)



H =


1 0 −1
1 0 0

0 0 0
0 −1 0

· · · 0 0
· · · 0 0

...
...

...
1 0 0

...
...

...
0 0 0

...
...

...
· · · −1 0


H is a matrix of±ones and zeroes such that each row takes the difference of two-phase

components of X. In Kalman filtering, every clock is identical. No matter which one is
selected as the reference clock, it will not affect the final result. In practice, the reference
clock may have missing observations. In the filtering process, the missing value is ignored
since each clock is equivalent, we can choose other clocks with observed values as reference
clocks, and then the processing continues. One convention in the H matrix is to use the
first clock as the reference clock. When there is a change in the reference clock, the position
of “1” in the H matrix must be adjusted accordingly.

The Kalman filter equations are described in the following
X̂t,t−1 = ΦXt−1,t−1
Pt,t−1 = ΦPt−1,t−1Φ′ + Q
K = Pt,t−1H′[HPt,t−1H′ + R]−1

X̂t,t = X̂t,t−1 + K
[
Z(t)− HX̂t,t−1

]
Pt,t = (I − KH)Pt,t−1

(5)

where P is the error variance matrix of X, Q is the noise matrix, K is the Kalman gain matrix,
and R is the measurement noise covariance matrix.

The value obtained by the Kalman filter is the time deviation between each clock and
TA (Atomic time. In this paper, it refers to the ideal timescale generated by the algorithm.).
Subtract this value from the time deviation of each clock to attain the “correction clock,” a
total of N correction clocks. Any correction clock can be defined as a timescale generated
by the algorithm. In fact, the value of a single timescale cannot be known, and what
can be known is the time deviation between the two timescales. Therefore, TA is usually
represented by the time deviation between it and the reference clock.
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2.3. Reduced Kalman Clock Ensemble Algorithm

The generated timescales for the NKT algorithm tend to optimize the long-term
stability of the corrected clocks, regardless of their short-term stability [47]. In Kalman
filter estimation, the diagonal phase variance entries of the error covariance matrix P
grow without bound [48]. If the phase error variance element of P is set to zero after each
measurement without disturbing the desired output of the Kalman filter, the P matrix can
be prevented from becoming out of control, thus giving a more stable calculation. This
operation is called x-reduction [16].

P is x-reduced, it is shown that

Pij =

[
0 0
0 p

(
yi, yj

)]
The reduced Kalman timescale, which is designed to minimize the mean squared

increments of the corrected clocks instead of their values at one time, produces good results
for stability over all available averaging times [48].

2.4. Two-Stage Kalman Clock Ensemble Algorithm

The NKT algorithm mainly optimizes the long-term stability of the time scale but
cannot effectively improve the short-term and medium stability. The TKT algorithm uses
the characteristics of the atomic clock model to filter out WFM by one-stage filtering and
improves the short and medium-term frequency stability of the time scale [49].

In the two-stage Kalman filter clock ensemble algorithm, the first filter is used to
estimate the two statuses of the clock. There are WFM and RWFM in the first status and
only RWFM in the second status. The second filter is similar to the natural Kalman filter,
except that there is only one status vector, the phase. It is used to generate the timescale,
and the input is the output of the first filter. In this way, the algorithm is equivalent to
weighting the time series containing only RWFM. The generated timescale only contains
RWFM, and the short and medium-term frequency stability is higher.

The principle is as follows.
In a clock group of N clocks, the i + 1 clock is subtracted from the first clock, and the

resulting time deviation is denoted Zi(t), with a total of N − 1 time deviation. Therefore,
there are N − 1 filters and N − 1 time deviation processed, respectively. According to the
atomic clock stochastic differential equation model shown below

X1(t) = x0 + y0·t + 1/2·d·t2 + σ1·W1(t)
+σ2·

∫ t
0 W2(s) ds

X2(t) = y0 + d·t + σ2·W2(t)
(6)

W1(t) and W2(t), respectively, represent two independent Wiener processes, and each
Wiener process follows a normal distribution whose mean is 0 and variance is time t. σ1
and σ2 are the diffusion coefficients of the two Wiener processes, respectively, which are
used to indicate the intensity of noise. The integral of W1(t) and W2(t) against time t is
WFM and RWFM, respectively [50].

Attain two status estimators, denoted as X̂1,i(t) and X̂2,i(t). When the Kalman filter is used
for status estimation, X̂1,i(t) contains WFM and RWFM, while X̂2,i(t) contains only RWFM.

Then, the time deviation is reconstructed, and for each estimate, let

∼
X1(t + 1) =

∼
X1(t) + X̂2(t)·T (7)

Taking the initial value of the
∼
X1(t) to be zero, Equation (7) can be rewritten as

∼
X1(t) =

t−1

∑
m=0

X̂2(m)·T (8)
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Therefore,
∼
X1(t) is reconstructed through the estimator X̂2(t) to obtain the recon-

structed time deviation. The WFM in the time deviation Z(t) is filtered out by the first
filter and the reconstruction of the time difference, and the reconstructed time deviation
containing only RWFM is obtained. Finally, the second filter is a single-status Kalman filter,
which is used to generate TA. Since each reconstructed clock only contains RWFM, TA only
contains RWFM.

3. Experimental Analysis

In practice, both the ISL data and the satellite clock offsets data (calculated with PPP or
ODTS technique) can be used for the establishment of a space-based timescale. Due to the
serious discontinuity of the publicly available ISL data, here we adopt the MGEX satellite
clock products to test the three clock ensemble algorithms mentioned in chapter 2. It is
worth noting that the performance of the next-generation optical frequency standard will
be better than the GNSS onboard clock. Therefore, the performance of all tested algorithms
in future practical applications should be better than the analysis results in this paper.

3.1. Observed Data

Observed data used in this paper are GFZ GNSS clock corrections (deviations of the
satellite clock with respect to the GPS time, download at ftp://ftp.gfz-potsdam.de/GNSS/
products/mgex/, accessed on 10 June 2021), the start and end time are from 10 June 2021
to 10 October 2021, and the sampling interval is 300 s.

For measured data, the reading of a single clock cannot be known, and all that can be
known is the time difference between two clocks. Therefore, we need to choose one clock
as the reference and compare it with other clocks. TA is represented by the time deviation
with the reference clock. In view of this, the specific time deviation of TA is still unknown.
Therefore, this paper divides these data into four groups to generate four TAs and subtract
them to eliminate the offsets caused by the unpredictability of a single clock.

In this experiment, 16 onboard clocks of BDS, GPS, and Galileo systems are included,
which are grouped as follows:

Group A: C25–C28 satellite onboard clocks of Beidou-3, all of which are hydrogen
clocks, take C28 as the reference clock and make the difference with other clocks to obtain
three groups of time deviation, denoted as A1, A2, and A3;

Group B: C29, C30, C34, and C35 satellite onboard clocks of Beidou-3, all of which are
hydrogen clocks, take C29 as the reference clock, and make the difference with other clocks
to obtain three groups of time deviation, denoted as B1, B2, and B3;

Group C: G08, G15, G19, and G22 satellite onboard clocks of GPS, in which G08 is a
cesium clock, and the others are rubidium clocks, take G19 as the reference clock and make
the difference with other clocks to obtain three groups of time deviation, denoted as C1, C2,
and C3;

Group D: E02, E05, E13, and E19 satellite onboard clocks of Galileo, in which E19 is a
rubidium clock, and the others are hydrogen clocks, take E02 as the reference clock and
make the difference with other clocks to obtain three groups of time deviation, denoted as
D1, D2, and D3.

3.2. Accuracy Evaluation of Observation Data

There are many methods to characterize the frequency stability of atomic clocks. In
this paper, Allan variance is used to describe frequency stability [51]. The overlapping
Allan deviation of the four groups is shown in Figure 1. In the figure, the blue circle and
green square are groups A and B, respectively, representing the frequency stability of the
BDS. The pink triangle is group C, representing the frequency stability of the GPS. The red
diamond is group D, representing the frequency stability of the Galileo system. The dotted
line shows the overlapping Allan deviation of the time deviation for each group. The Allan
deviation of each group with a sampling interval of 86,400 s is given in Table 1.

ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
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Figure 1. Allan deviations of observation data.

Table 1. Allan deviation of each group. The average interval is 86,400 s.

Group Time Deviation Allan Deviation (τ = 1 Day)

A
A1 7.9560 × 10−15

A2 6.9398 × 10−15

A3 7.1120 × 10−15

B
B1 1.1840 × 10−14

B2 1.5846 × 10−14

B3 1.2103 × 10−14

C
C1 6.6612 × 10−14

C2 1.0659 × 10−14

C3 1.1856 × 10−14

D
D1 6.0926 × 10−15

D2 6.4042 × 10−15

D3 6.9688 × 10−15

In Figure 1 and Table 1, C1 is obtained from G19–G08, and G08 is a cesium clock. Its
short-term frequency stability is the worst, but its long-term frequency stability is good.
When the sampling interval is less than one day, it can be seen that the three times deviation
in group D has the best frequency stability, followed by group A, group B, and group
C. It can be seen that Galileo’s onboard clock is better than BDS, and BDS is better than
GPS. In addition, when the average interval is 1000 s, except in group C, the frequency
stability of satellite clocks is mainly around 4 × 10−14 to 1 × 10−13. When the average
interval is 10,000 s, the frequency stability can reach about 2 × 10−14 to 1 × 10−13. The
frequency stability of C2 and C3 in group C was close to that of the other groups, while
C1 was around 2 × 10−13. When the average interval is 10,000 s, the frequency stability
of other clocks basically reaches the minimum value except for C1, all of which are in the
order of 1 × 10−15. As the average time interval increases, the frequency stability of other
satellite clocks progressively deteriorates, whereas the frequency stability of C1 continues
to improve, reaching the level of 1 × 10−15. As mentioned above, hydrogen clocks have
good short-term stability, while cesium clocks have good long-term stability.
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3.3. Frequency Stability of the Timescales Generated by the Three Algorithms

Unlike the simulation test, we cannot find the true value of TA to compare. Thus, the
timescales of group A are subtracted from the other three groups to eliminate the offsets
and analyze their frequency stability. For the NKT algorithm, the timescale is generated by
three sets of time deviations in each group according to different weights. The weight is
proportional to the inverse of the Allan deviation with a sampling interval of 86,400 s. The
four timescales and their differences are shown in Figure 2. In the figure, the dotted line
represents the four timescales, and the solid line represents the difference in the timescale.
Allan deviation of 86,400 s sampling interval for each timescale and timescale difference is
given in Table 2.
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algorithm, and the dotted line shows the difference in timescales.

Table 2. Allan deviation of each group (NKT). The average interval is 300 s and 86,400 s.

Time Series Allan Deviation
(τ = 300 s)

Allan Deviation
(τ = 86,400 s)

TA_A 7.88 × 10−14 5.93 × 10−15

TA_B 1.21 × 10−13 9.10 × 10−15

TA_C 3.87 × 10−13 1.13 × 10−14

TA_D 3.57 × 10−14 5.31 × 10−15

TA_A-TA_B 1.47 × 10−13 1.09 × 10−14

TA_A-TA_C 3.94 × 10−13 1.24 × 10−14

TA_A-TA_D 8.72 × 10−14 8.40 × 10−15

Groups A and B are composed of BDS onboard clocks, group C is composed of GPS
onboard clocks, and group D is composed of Galileo system onboard clocks. In Figure 2,
TA_A-TA_B represents the frequency stability of the BDS timescale, which is 1.47 × 10−13

at 300 s intervals and 1.09 × 10−14 at 86,400 s intervals; TA_A-TA_C indicates the frequency
stability of the GPS timescale, which is 3.94 × 10−13 at 300 s intervals and 1.24 × 10−14 at
86,400 s intervals; TA_A-TA_D indicates the frequency stability of the Galileo timescale,
which is 8.72 × 10−14 at 300 s intervals and 8.40 × 10−15 at 86,400 s intervals. In the NKT
algorithm, the short-term frequency stability of the Galileo system’s timescale is better
than that of BDS, and BDS is slightly better than GPS. In addition, in the graph of Allan
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deviation, the part of the curve with slope −1 represents WFM, and the part with slope
1 represents RWFM. In Figure 2, we can see the obvious slopes of 1 and −1, indicating that
the generated time scale still has WFM and RWFM.

For the RKT algorithm, x-reduction is performed in Kalman filtering and then obtains
reduced timescale by calculating the weight of each group of clock deviation. The weights
are also proportional to the inverse of the Allan deviation with a sampling interval of
86,400 s. The four timescales and their differences are shown in Figure 3, and Allan
deviation of 86400s sampling interval for each timescale and timescale difference is given
in Table 3.
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Table 3. Allan deviation of each group (RKT).

Time Series Allan Deviation
(τ = 300 s)

Allan Deviation
(τ = 86,400 s)

TA_A 7.50 × 10−14 5.93 × 10−15

TA_B 1.10 × 10−13 9.10 × 10−15

TA_C 3.06 × 10−13 1.12 × 10−14

TA_D 2.68 × 10−14 5.27 × 10−15

TA_A-TA_B 1.35 × 10−13 1.08 × 10−14

TA_A-TA_C 3.15 × 10−13 1.24 × 10−14

TA_A-TA_D 8.02 × 10−14 8.37 × 10−15

In Figure 3, the reduced Kalman timescale contrasts little with the natural Kalman
timescale. As shown in Table 3, for short-term (τ = 300 s) frequency stability, RKT has a
small edge over NKT, with an increased range of about 0.01~0.1 orders of magnitude. For
medium and long-term (τ = 86,400 s) frequency stability, the results of the two algorithms
are nearly identical. This is because, for a clock set composed of clocks with good short-term
stability and clocks with good long-term stability, the natural Kalman algorithm always
tends to optimize the long-term stability without considering the short-term stability.
The reduced Kalman algorithm, on the other hand, can synthesize the performance of
clocks with varying performance to produce a result with greater stability over the entire
sampling time range. However, in this experiment, the clock is primarily hydrogen clocks,
and no clock with good short-term stability is available for optimization. As a result, when
compared to the natural Kalman algorithm, the reduced Kalman algorithm only slightly
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improves short-term stability while having little effect on medium and long-term stability.
In addition, as mentioned above, the obvious slopes of 1 and −1 can be seen in Figure 3,
indicating that the generated timescales still have WFM and RWFM.

For the TKT algorithm, the four groups of time deviation need to be reconstructed
using the first-stage filtering to obtain the reconstructed time deviation and then generate
timescales according to different weights. The weights are also proportional to the inverse
of the Allan deviation with a sampling interval of 86,400 s. The overlapping Allan deviation
of the reconstructed time deviation is shown in Figure 4. The 86,400 s frequency stability
of the reconstructed time deviation and the unreconstructed time deviation is given in
Figure 5, and the values are shown in the table below. In the figure, blue represents the Allan
deviation of the unreconstructed time deviation, and red represents the Allan deviation
of the reconstructed time deviation. The sampling interval is 86,400 s. It can be seen that
the short-term frequency stability of the reconstructed time deviation has been greatly
improved, and the Allan deviation with a sampling interval of 86,400 s is improved by 0.1
to 1 order of magnitude.
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The timescale generated by the TKT algorithm is shown in Figure 6. In the figure, the
dotted line represents the four timescales, and the solid line represents the difference in the
timescale. Allan deviation of 86,400 s sampling interval for each timescale and timescale
difference is given in Figure 7.
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In Figures 6 and 7, the frequency stability of the timescale generated by the TKT
algorithm is greatly improved, which is about 0.5~1 orders of magnitude higher than that
of the NKT algorithm and RKT algorithm. The timescale frequency stability generated by
the Galileo system and the BDS onboard clock is similar, which is slightly better than GPS.
Meanwhile, the curve in Figure 6 has only the part with slope −1, and the part with slope
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1 disappears and becomes a continuation of the part with slope −1. This means that the
generated time scale is only RWFM, without WFM. This is consistent with the algorithm
introduction in Section 2.4.

In addition, for the current three kinds of onboard clocks, no matter which clock
ensemble algorithm is chosen, as expected, the hydrogen clock is more stable than the
rubidium clock, and the rubidium clock is more stable than the cesium clock. Therefore,
hydrogen clocks are a better choice when higher frequency stability is needed to establish
space-based time references.

The frequency stability of the timescale is an approach to the value of commonly used
timescales on the ground [52,53].

For the NKT algorithm, the generated timescale fully considers the short-term stability
performance of each satellite clock. The clock with better short-term stability will have
more weight. For all three systems, Galileo’s satellite clock is more stable in the short term,
and the resulting timescale is more stable.

For the RKT algorithm, as mentioned above, since this experiment is primarily a
hydrogen clock, there is no clock with better short-term stability to produce better short-
term stability for the generated timescale. The result is nearly identical to that of the NKT
algorithm.

For the TKT algorithm, because the first-stage filtering filters out high-frequency
noise, the weight of each clock is determined by its long-term stability. Considering that the
stability of hydrogen clocks is higher than rubidium clocks. Therefore, for the three systems,
the satellite clocks of the BDS and Galileo systems are mainly composed of hydrogen masers,
the stability of the generated timescales is similar, and they are all better than the GPS,
mainly composed of rubidium clocks.

4. Satellite Clock Bias Prediction

The timescale is expressed as the bias of the satellite clock phase and the timescale
itself. The prediction of the clock bias is often used in real-time scenarios. Thus, we tested
the prediction accuracy of the three kinds of timescale generated by the NKT, the RKT, and
the TKT algorithms as their evaluation criteria.

4.1. Prediction Models

Many prediction models of clock deviation have been developed with similar accuracy,
e.g., the quadratic polynomial model, the gray model, and the Kalman filter model. Their
accuracy is of a similar magnitude, and the quadratic polynomial model shows to be simpler
in the calculation, more stable in practice, and more accurate in short-term prediction [54].
For the above reasons, we select this model to predict clock bias in our subsequent analysis.

The quadratic polynomial model fits the phase, frequency, and frequency drift parame-
ters according to the physical characteristics of the satellite clock, and the fitting expression
is as follows [55]:

y(t) = a0 + a1(ti − t0) + a2(ti − t0)
2 + ∆i (9)

where y(t) is the clock observation, a0, a1, a2 are three parameters of the satellite clock
model, phase, frequency, and frequency drift, t0 is the reference epoch of the satellite clock
model, ti denotes the observation epoch. ∆i is the residual of the prediction model.

As the most commonly used prediction model, the quadratic polynomial model is
suitable for the rubidium atomic frequency standard, while for hydrogen and cesium
frequency standards, the first-order polynomial model is a more appropriate choice. As a
result, we use the first-order polynomial model for hydrogen and cesium clocks and the
quadratic polynomial model for rubidium clocks.

4.2. Satellite Clock Bias Prediction

In this paper, we fit the clock bias data sets, i.e., the bias between the satellite clock
phase and the timescale, every hour with a moving window in the length of 12 h, and
predict for the next 12 h at every fitting. The clock bias in the prediction arc is treated as a
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true value. We calculate the residual root mean square (RMS) to evaluate the prediction
accuracy. The clock bias calculated with three clock ensemble algorithms is analyzed.

Take time clock data from 10 June 2021 as an example. Figure 8 displays the deviations
in residuals between each satellite’s prediction results and the true values. The solid line
in the figure represents the hydrogen clock and the cesium clock, which are fitted by a
first-order polynomial model. The dotted line represents the rubidium clock, which is fitted
by a quadratic polynomial model.
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The prediction residual, shown in Figure 8, with durations ranging from 1 h to 12 h
of the NKT algorithm and RKT algorithm, is within 0.4 ns~1 ns, and the general trend is
rather consistent. The prediction residual of the TKT algorithm increases linearly from
0.01 ns to 0.3 ns. In terms of orders of magnitude, the prediction accuracy of the TKT
algorithm is about 1–2 orders of magnitude higher than that of the NKT algorithm and
RKT algorithm, and the shorter the prediction duration, the greater the difference in the
prediction accuracy.

To focus on the different prediction periods, we calculated the RMS of the prediction
residuals of each satellite clock of three timescales with 1, 6, and 12 h and depicted their
statistical results in Figure 9. In the histogram, from left to right, each cluster represents the
RMS of 1, 6, and 12 h prediction residuals of the NKT algorithm, RKT algorithm, and TKT
algorithm, respectively. The specific values are listed in the table below the figure. To make
the TKT prediction result distinguishable, the figure adapts the upper limit of the y-axis to
fit the magnitude of other satellite clocks, which makes the RMS of G08 not fully exhibited.

The RMS of the prediction residual of the NKT algorithm is very close to that of the
RKT algorithm, both of which are much larger than that of the TKT algorithm, no matter
how long the prediction duration is. For the 16 satellites, the RMS of the prediction residual
of the Galileo system is smaller than that of the BDS, and the BDS is smaller than that of the
GPS. To generate a timescale, the satellite clock we used in GPS is a rubidium clock, which
leads to inferior accuracy and stability to the hydrogen clock. This makes it intelligible why
the prediction accuracy of the timescale generated with GPS satellite clocks is the worst. Yet
it cannot explain the disparity between Galileo and BDS. Since they both employ hydrogen
maser frequency standards that are approximate in accuracy and stability, there must be
other factors polluting the satellite clock bias data. The clock bias series of GFZ is calculated
with the methods of orbit determination and time synchronization (ODTS). As one of
the estimated parameters, the clock bias has strong correlations with other parameters,
such as orbit elements. Thus, the estimated error of clock bias not only comes from the
measurement noise of the clock bias itself but also blends with the orbit error. It implies
that the orbital dynamics modeling error for the Galileo system is smaller than that of BDS.
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Although both systems consist mainly of hydrogen clocks, Galileo’s prediction accuracy is
still better than BDS’s.
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In addition, we compared the RMS of the residual of the three algorithms. With
the extension of the prediction duration, the RMS of the prediction residual of the NKT
algorithm and RKT algorithm will raise, but the growth trend is relatively slow and
occasionally will decrease. The RMS of the TKT algorithm will also increase, and the
growth trend is conspicuous with a large range. This is consistent with the result shown
in Figure 8. It is implicit that the prediction accuracy of the TKT algorithm has strong
relevance with time, while that of the NKT algorithm and RKT algorithm remains rather
stable. If the prediction period is one day or longer, the prediction residual of the TKT
algorithm will gradually be larger than that of the other two algorithms, and the prediction
accuracy will become worse. Thus, the timescale generated by the TKT algorithm is not
recommended in the use of prediction longer than one day.

TKT can effectively suppress timescale low-frequency noise, and this advantage can
benefit users. According to our comparison of the prediction results, for the prediction of a
single frequency reference, the TKT prediction results are higher than the NKT and RKT.
It indicates that the TKT algorithm reduces the influence of low-frequency noise of other
frequency standards on the modeling of this frequency standard. Therefore, when users
use the satellite clock difference model based on this scale to correct their ranging, they
only receive low-frequency errors of a single satellite clock and eliminate the pollution of
low-frequency errors of other satellites.

5. Conclusions

The LEO constellation provides several advantages in satellite navigation, such as
strong signals on the ground and rapidly changing geometric positions. These benefits
complement other GNSS constellations, such as MEO and HEO, and enhance the accuracy,
integrity, continuity, and availability of GNSS. As a result, the LEO constellation has become
a research focus in the satellite navigation field.

This paper presents a novel concept of establishing a network of space-based syn-
chronized references for time synchronization. We discuss the infrastructure and system
architecture needed to establish the time reference, taking advantage of the development of
optical frequency reference and inter-satellite laser link technology. The study evaluates
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the performance of three Kalman clock ensemble algorithms, the natural Kalman clock
ensemble algorithm, the reduced Kalman clock ensemble algorithm, and the two-stage
Kalman clock ensemble algorithm, using the GFZ GNSS clock corrections. The results
show that the accuracy of NKT and RKT are close when the satellite clock type is the same,
although TKT has higher short and medium-term stability. Given the need for higher sta-
bility on timescales, hydrogen clocks outperform rubidium and cesium clocks for onboard
satellites. Furthermore, a polynomial model is applied to predict the timescale generated by
each algorithm. For prediction durations of less than one day, the TKT algorithm exhibits
prediction residuals that are 1–2 orders of magnitude lower than those of NKT and RKT
algorithms. Finally, the prediction accuracy of Galileo is found to be superior to that of
BDS, while BDS is superior to GPS.

Subsequently, our goal is to acquire clock data from LEO satellites and integrate
them with data from medium and high-orbit satellite clocks to produce space-based time
references. This approach will result in a more stable timescale that can be employed in a
wider array of circumstances.
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