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Abstract: Change detection is employed to identify regions of change between two different time
phases. Presently, the CNN-based change detection algorithm is the mainstream direction of change
detection. However, there are two challenges in current change detection methods: (1) the intrascale
problem: CNN-based change detection algorithms, due to the local receptive field limitation, can
only fuse pairwise characteristics in a local range within a single scale, causing incomplete detection
of large-scale targets. (2) The interscale problem: Current algorithms generally fuse layer by layer
for interscale communication, with one-way flow of information and long propagation links, which
are prone to information loss, making it difficult to take into account both large targets and small
targets. To address the above issues, a hybrid transformer–CNN change detection network (TChange)
for very-high-spatial-resolution (VHR) remote sensing images is proposed. (1) Change multihead
self-attention (Change MSA) is built for global intrascale information exchange of spatial features
and channel characteristics. (2) An interscale transformer module (ISTM) is proposed to perform
direct interscale information exchange. To address the problem that the transformer tends to lose
high-frequency features, the use of deep edge supervision is proposed to replace the commonly
utilized depth supervision. TChange achieves state-of-the-art scores on the WUH-CD and LEVIR-
CD open-source datasets. Furthermore, to validate the effectiveness of Change MSA and the ISTM
proposed by TChange, we construct a change detection dataset, TZ-CD, that covers an area of 900 km2

and contains numerous large targets and weak change targets.

Keywords: deep learning; change detection; convolutional neural network; multihead attention; transformer

1. Introduction

Change detection (CD) captures the spatial changes between two multitemporal
satellite images due to manmade or natural phenomena [1]. Pixels in the same region but
acquired at different times are usually classified as changed or unchanged by comparing
the coregistered images [2]. The development of the CD algorithm is mainly divided
into two aspects. First, many researchers analyze the imaging mechanism and feature
design. Second, the resolution of satellite data is constantly improving, from a spatial
resolution of 79 m (Landsat-1 satellite) to today’s massive submeter satellite data, which
provides experimental scenarios and further development directions for research on change
detection algorithms.

Traditional CD algorithms achieve better detection results on low-resolution data
by manually and elaborately designing features and adjusting super parameters. At the
early stage of development, researchers are directly comparing and identifying changes in
Landsat images by image differentiation, imaging and regression analysis [3–5]. Based on
the method of feature space mapping, principal component analysis (PCA) [6] is utilized
to compress features to obtain the main features, and then changed regions are obtained
by the change vector analysis (CVA) [7] algorithm. However, the above methods have
high data requirements and require the same sensor and data with consistent radiation
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characteristics as much as possible [8]. With an increase in the number of satellites, the
use of classification-based CD methods has increased [9–11]. This method classifies first
and then detects changes, avoiding the problem of false changes caused by inconsistent
radiation. Therefore, the change problem is transformed into how to classify the surface
features with high quality.

With the development of satellite imaging and the launch of numerous land satellites,
high-resolution images have become increasingly accessible. In China, business depart-
ments use images with resolutions from 0.5 to 2 m for national land cover detection and
change monitoring. In the SpaceNet 7 challenge, the high-resolution data of SPOT are used
for competition, which has higher requirements for extracting change target technology.
The traditional CD algorithm based on manually designed features and many super param-
eters has poor performance because it is difficult to model semantics on high-resolution
images [12–14]. Thus, this algorithm is gradually replaced by a deep neural network that is
based on numerous data and samples.

Presently, algorithms based on convolutional neural networks (CNNs) have shown
excellent performance in a variety of change detection tasks. These networks extract multi-
layer pyramid features via encoders and fuse change features via decoders [15–26]. Based
on the encoding and decoding structure, numerous researchers have made different inno-
vative works according to the characteristics of different change detection tasks. Chen et al.
designed the encoder by residual connection and pretrained it using a large change de-
tection dataset [22]. Daudt et al. decoupled the dual-phase features and introduced the
twin encoder for independent feature extraction [15]. Some scholars have investigated the
fusion method of dual characteristics after the twin network has extracted features and
proposed more efficient data fusion methods that integrate prior knowledge of change
detection [15,19,21,22,27,28]. In addition, multiscale information exchange channels can
be added to the decoder, and change decoding can be better handled by adding depth
supervision [21]. In view of the lack of change samples, we proposed using segmen-
tation information to guide encoder learning [29,30] and set specific data enhancement
schemes for change detection tasks to greatly improve the utilization efficiency of sample
information [31].

However, the algorithm encounters some problems based on CNNs. (1) The receptive
field is limited. CNNs expand the receptive field via downsampling, which easily causes
information loss. (2) It is difficult to exchange information across scales. The multiscale
features of CNNs are usually sampled layer by layer [32] or directly concatenate [33]. The
information across scales and channels is combined, which makes it difficult to obtain
information and improve the accuracy. The final performance on the change detection task
is incomplete detection of large targets and easy loss of small targets.

Recently, the appearance of a transformer [34] provided a new feature extraction
method. Using a self-attention mechanism, each pixel can obtain global information. With
the application of a transformer to image segmentation [35–38] and detection [39] tasks,
the accuracy has been greatly improved. In the field of change detection, BIT [40] uses a
convolutional neural network to extract features and then constructs the encoder-decoder
of a transformer to obtain the features at different times. Although a transformer is utilized,
due to the inappropriate method of the transformer and CNN hybrid, its accuracy is inferior
to that of a CNN. In subsequent research, researchers used the transformer to fuse twin
network features under the overall architecture of a CNN network [21,23] and achieved
better accuracy than a pure CNN. DMATNnet [41] proposed a fuse the fine and coarse
features with dual-feature mixed attention base on transformer. It can not only extract more
specific regions of interest, but also overcome the misjudgment caused by oversampling,
and synchronize feature extraction and target information integration. SwinSUNet [42]
Unet builds encoders and decoders based on SWIN [36] to achieve leading results across
multiple data sets. Transformers can not only provide global feature modeling to obtain
remote semantic information but also build information exchange channels between two
features [23]. However, the original MSA disregards the biased induction characteristics of
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CNNs and the computational complexity of MSA when modeling. Network computing
is slow, and convergence is difficult when the dataset is small. Although the transformer
can provide a higher accuracy, there is a large demand for data, and the original multihead
self-attention (MSA) [43] involves extensive computation.

The development of the current change detection task is inseparable from the support
of many open datasets. The public dataset provides an open benchmark for algorithms so
that different algorithms can be compared on the same basis. WUH-CD [44] and LEVIR-
CD [45] provide extremely high-resolution building changes, and SECOND [46] provides
multicategory change labels. However, in the actual change detection scene, there are
numerous large targets, which have regions with weakened changes and regions with
obvious changes. Usually, people need to infer weak regions by regions with obvious
changes during detection. However, this scenario does not exist in the current public
dataset. Therefore, this paper constructs a change detection dataset with a large map,
which can complement the lack of change scenarios in the current public dataset.

In this paper, to solve the problem that it is difficult to completely detect large targets
and lose small targets in the current CNN, a Change MSA module is designed on the
intrascale by using the global modeling capability of a transformer. For the problem
that the original MSA involves extensive computation, a block MSA named S-MSA is
utilized. To solve the problem of change data fusion, the original MSA spatial dimension
construction tokens are replaced by the channel construction tokens, thus realizing the
direct global feature exchange of channel dimensions. To solve the problem of the large
data demand of the transformer, MSA and a feature fusion module (FFM) are combined
to enhance the local feature modeling of the transformer by using the biased induction
feature of convolution and to greatly reduce the computational requirements. Through the
multiscale characteristics of blocks, the module can efficiently model the characteristics of
different scales while maintaining low computational complexity. The characteristics of the
transformer and the twin characteristics extracted by the encoder are merged layer by layer
under the CNN decoder so that the network can simultaneously extract large and small
targets while maintaining the high precision of the original CNN and can use the regions
with obvious changes to enhance the characteristics of the regions with weak changes.

The contributions of this work are summarized as follows:

• We propose a hybrid transformer–CNN change detection network named TChange.
Under the condition of maintaining a low computational cost, the network can globally
and efficiently model the features within the scale and provide a direct information
exchange channel for features across scales.

• A novel MSA module named Change MSA is proposed to acquire global feature and
pairwise feature information within scales. In addition, a new feature fusion method,
which conducts MSA companies in the channel dimension rather than the spatial
dimension by channel crossing, is proposed for change detection tasks. The offset
induction of CNNs is used to enhance the local modeling ability of MSA.

• An interscale transformer module (ISTM) is proposed to build a multiscale feature
exchange channel.

• A new remote sensing change detection dataset named TZ-CD is constructed by taking
into account changed regions with various areas, which compensates for the lack of
scenarios in the current change detection public dataset.

2. Materials and Methods
2.1. Overview

TChange uses a transformer and CNN to build a model that can provide high-precision
pixel-level change area detection. The overall structure of TChange is shown in Figure 1.
First, the network extracts multilevel pyramid features via multiple feature extractors.
Second, to solve the problem of multiscale feature fusion, the common approach is to use a
sampled CNN to fuse layer by layer so that shallow features can obtain the information
of deep features. However, the flow of information is one-way, some small targets in
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the deep features easily lose information, and deep features have the problem of a local
receptive field. Therefore, this paper proposes an interscale information fusion module
based on a transformer. While preserving the layer-by-layer fusion decoding method, the
information of multiscale features is exchanged by the long-distance modeling capability of
the transformer. Last, because it is easy to lose high-frequency features in the transformer
and the decoding module is more complex, to enhance the learning ability of the model,
in-depth supervision is utilized to learn the edges of various sizes to ensure that the
high-precision edges are obtained while the changing target is detected.
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2.2. Encoder

TChange is aimed at high-resolution remote sensing images. The structure of TChange
includes a CNN–transformer hybrid decoder, so the computation is heavy. Therefore, to bal-
ance efficiency and accuracy, the lightweight and efficient b1is selected as the feature extrac-
tor to extract the multilayer pyramid features. The input of TChange is remote sensing im-
age data in different time phases: Xpost, Xpre ∈ RH×W×3. Multiscale features are aligned by
twin encoders that share weight, and two groups of multiscale features {p1, p2, p3, p4, p5}
and

{
p′1, p′2, p′3, p′4, p′5

}
, whose spatial scales are

{
h
2 ×

w
2 , h

4 ×
w
4 , h

8 ×
w
8 , h

16 ×
w
16 , h

32 ×
w
32

}
,

are output. TChange uses a universal encoder, which can directly use the ImageNet
pretrained model to obtain higher accuracy and faster training speed.

2.3. ChangMSA

In high-resolution remote sensing images, there are many large change targets, and
there are weak change features in each large change target. When people interpret visually,
they gradually index the areas with weak change according to the areas with obvious
change characteristics. Previously, some scholars applied the UNet network structure to
fuse features of different scales layer by layer to identify changes in weak areas by using
remote feature information. The rise of transformers provides a more efficient way to obtain
remote semantic information without downsampling. Therefore, this paper proposes an
MSA-based approach to discover changes and obtain remote semantic information.

To solve the problem of long-distance semantic acquisition and feature pair change
discovery, this paper designs an MSA module for change detection tasks based on MSA,
named Change MSA, which consists of three parts: (1) C-MSA for interchannel awareness,
(2) S-MSA for spatial long-distance semantic acquisition, and (3) FFM for convolutional
biased induction to enhance local feature learning.
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Before introducing our specific implementation, first, we describe the basic paradigm
of MSA in image segmentation. The input is x ∈ RH×W×C, which is reshaped to tokens
HW × C, where the dimension of each token is C. The tokens are linearly projected into
query Q ∈ RHW×C, key K ∈ RHW×C, and value V ∈ RHW×C. Second, the input is sent to
multiple heads for self-attention calculation, and each single head is calculated as follows:

A(Q, K, V) = so f tmax
(

Q·KT
√

d

)
·V (1)

KT is the transposition of K, and
√

d is the normalization factor to avoid large values
after the dot-product operation. If it is a multihead self-attention network, the number of
heads is N, and the dimensions of Q, K and V are divided into N parts and then output to
the channel dimension Concate. The computational cost of the original MSA is O

(
H2W2C

)
.

The original MSA is intended to obtain long-distance semantic information. However,
the change detection task requires not only spatial long-distance information but also the
information between two change features. Therefore, the Change MSA proposed in this
paper includes two parts, channel awareness and spatial awareness, which are detailed in
the following section.

2.3.1. C-MSA

Change detection uses twin encoders to obtain multilevel pyramid features. In most
papers, the fusion method of features is concate and the change area is simply and roughly
obtained by the learning ability of deep learning. From the perspective of prior knowledge,
this paper designs a C-MSA based on the original MSA network.

As shown in Figure 2, the input data are pn ∈ RH×W×C, p′n ∈ RH×W×C. We suggest
that different channels represent the detection results of the same detector. With twin
encoders sharing weight, the same level is the result of the same detector. Therefore, all
channels are crossed to form feature xin ∈ RH×W×2C.

Xin = Concate
(

pn, p′n
)
, n ∈ [2, 3, 4, 5] (2)
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Figure 2. Details of the C-MSA structure. Each token is formed by flattening the spatial dimension.

Two channels are combined into a group to build C tokens:
[{

p1, p′1
}

, . . . , {pc, p′c}
]
.

Note that the subscripts at this time represent different token indices. Since C-MSA uses
the paired spatial regions as a token, each token is reshaped from H ∗W ∗ 2 to 2 ∗ H ∗W,
and its feature depth is 2HW. Compared with the token of the original MSA, as shown in
Figure 3, the original MSA uses the spatial feature as the token, and there are HW tokens
(Figure 3a). This paper uses the dual feature channel as the token, so there are C tokens
(Figure 3c).
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The dimension of each token is 2 HW, and then tokens are linearly projected into
query Q ∈ RHW×C, key K ∈ RHW×C, value V ∈ RHW×C.

Q = XWQ, K = XWK, V = XWV (3)

Next, we cut Q, K, and V into N pieces along the dimension direction and input N
heads, with Q = [Q1, . . . , QN ], K = [K1, . . . , KN ], V = [V1, . . . , VN ]. The dimension of each
head is C/N. Thus, the calculation of the jth head is expressed as follows:

Aj = so f tmax

(
KT

j ·Qj
√

d

)
, Hj = VJ ·Aj, j ∈ (1, N) (4)

C−MSA(Xin) = concate(H1, . . . , HN)W + fp(V) (5)

KT
j is the transposition of Kj,

√
d is a normalization factor to avoid large values after

the dot-product operation, and W ∈ R2C×2C, and fp(·) is a function for encoding the
channel position. The position encoding of the original MSA is used to encode spatial
information, while the C-MSA flattens the channel into a token, so its position encoding is
utilized to encode channel position information. Therefore, the final output of C-MSA is
XCOUT ∈ RH×W×2C.

Compared with the computational complexity O
(

H2W2C
)

of the original MSA, the
computational complexity of C-MSA is O

(
2HWC2). It can be seen that the calculation

amount of C-MSA linearly increases with the spatial resolution, while the original MSA
exponentially increases when carrying out large image detection of remote sensing images.

2.3.2. S-MSA

To ensure the edge texture of the target and realize the detection of small targets,
spatial MSA (S-MSA) is used in the 1/4 downsample features. The original MSA has
the problem of high computational complexity. Therefore, this paper uses SWIN [36] for
reference and adopts the sliding window method. The original MSA is based on a single
pixel, while S-MSA is based on the nonoverlapping window of M2, which reduces the
number of tokens from HW to HW

M2 . Tokens are shown in Figure 3b, which aggregates the
original yellow area into a token pixel by pixel. The subsequent S-MSA is calculated in the
same way as the original MSA.

The S-MSA computational cost is O
(
2M2HWC

)
. S-MSA also linearly increases the

amount of computation with the spatial resolution. Thus, TChang can use MSA to obtain
long-distance spatial information at a higher resolution.

2.3.3. FFM

The feature fusion module (FFM) is aimed at using offset induction of the convolutional
network to obtain local features, which is applied to strengthen the global feature modeling
of MSA. The process is described as follows: first, restore the output feature of MSA to
the spatial dimension X. Second, input a 3× 3 convolution to learn inductive biases, and
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then input the feature to the Layernrom and GELU activation layers. Last, obtain the final
output via a 3× 3 convolution layer.

FFM(X) = Conv3∗3(GELU(LN(Conv3∗3(X)))) (6)

2.3.4. Change MSA Summary

The structure of Change MSA is shown in Figure 4. The paired feature pairs pn/p′n , n ∈
[2, 3, 4, 5] are extracted using four groups of encoders. The features p and q in the channel
dimension are interleaved to obtain Xin.

Xcout = C−MSA(LN(Xin)) + Xin (7)

X f f m_0 = FFM(LN(Xcout)) + Xcout (8)

CMn = FFM
(

LN
(

S−MSA
(

X f f m0 + Pm

)
+
(

X f f m0 + Pm

)))
n ∈ [2, 3, 4, 5] (9)
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In the above formula, LN represents the layer norm, and Pm denotes the position
encodings, which are composed of convolution 1× 1. First, Xin is input via layer normal-
ization, C-MSA is input for channel feature coding, and then the output features and Xin
are added to obtain Xcout. X is input into the FFM to strengthen local features, S-MAS is
input, and the final output CMn n ∈ [2, 3, 4, 5] is obtained via the FFM module. Its spatial
scale is

{
h
2 ×

w
2 × 128, h

4 ×
w
4 × 128, h

8 ×
w
8 × 128, h

16 ×
w
16 × 128, h

32 ×
w
32 × 128

}
. It should

be noted that in order to balance precision and computation, TChange adds Change MSA
at the beginning of 1/4 scale.

2.4. The Inter-Scale Transformer Module

In change detection research, the transmission and fusion of feature information at
different scales greatly improve the detection accuracy. This paper proposes a scale feature
exchange mechanism based on a transformer, which is aimed at directly exchanging infor-
mation about features at different scales using the characteristics of the transformer. The
design of this module has two characteristics: (1) Building a characteristic communication
channel between two scales and (2) less computation.

Different from the original MSA, the proposed ISTM input is a multiscale feature. To
exchange information on different scale features, we flatten the feature maps on different
scales and then simultaneously concatenate them. Through the self-attention mechanism
of the transformer, each spatial feature can obtain global feature information. To further
optimize the calculation amount, we divide different scale features into blocks with the
same spatial dimension, as shown in Figure 5. The same block area with different scales
corresponds to the same area in the original data, so that the calculation amount and spatial
dimension can be linearly related while realizing channel exchange.
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The specific implementation is described as follows:
The input of this module is a multiscale feature map, CMn n ∈ [2, 3, 4, 5], which first

divides the features of different scales into N regions. The same regions of different scales
have different sizes, but they are features of different levels of the same region of the input
data. The features are flattened and then spliced to obtain the input Sj, j ∈ {1, N}.

Sj = Concate
(

f latten(CMj
2

)
, f latten(CMj

3), f latten(CMj
4), f latten(CMj

5)) (10)

where f latten(·) is a function that expands the spatial dimension of CMj
n and Concate is

used to concatenate all flattened features into one feature.
In Change MSA, the space dimension and channel dimension are fully transmitted by

self-attention, so the ISTM is mainly aimed at providing an information exchange channel
between two features of different sizes. To reduce the calculation, features have been
processed in blocks. The input token represents features of different scales in the same area
at the pixel level. We use the original MSA to exchange features; it is expressed as follows:

S′j = FFM
(

LN
(

MSA
(

LN
(
Sj
))

+ Sj
))

+
(

MSA
(

LN
(
Sj
))

+ Sj
)

(11)

where LN denotes the layer normalization and S′j is reshaped to the original spatial

dimension to obtain ˆCMj
n n ∈ [2, 3, 4, 5]. N regions are reassembled to obtain the output of

the ISTM as ˆCMn n ∈ [2, 3, 4, 5].

2.5. The CNN Decoder

The decoder consists of two parts: the fusion and segmentation block (SEB), which
provides fusion transformer and CNN features, and then fusion decoding layer by layer
via the SEB.

Fusion has 3 inputs, as shown in Figure 6a; the input of the CNN is pn/p′n ,
n ∈ [1, 2, 3, 4, 5], and the input of the transformer is ˆCMn n ∈ [2, 3, 4, 5]. Compared with
common feature fusion operations, such as Concate, this paper adds a priori knowledge of
changes to the change module while maintaining no loss of features so that a faster training
speed and higher accuracy can be obtained. The CNN input is described as follows:

Cn = Concate
(∣∣Pn − P′n

∣∣, Pn + P′n
)

n ∈ [1, 2, 3, 4, 5] (12)
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Concate(·) indicates that the features are concatenated in the channel dimension.
When n = 1, there is no input from the transformer, so the C1 results will be directly input
into the SEB module. The overall fusion module is expressed as

Fn =

{
Cn n = 1

Concate(Conv1∗1
( ˆCMn

)
, Conv1∗1(Cn)) n ∈ [2, 3, 4, 5]

(13)

Conv1∗1(·) represents the convolution operation with a convolution kernel of 1 * 1.
Features from the transformer and CNN are fused and complemented by fusion and input
into the SEB.

Segmentation block: Fn is set as the input to the upper sampling layer, and the spatial
dimension is expanded from H ×W to 2H × 2W. Fn is fused with the features of the
next scale and then combined with a set of Conv− bn− relu operations. After relu, we
use se attention [47] for spatial dimension feature fusion, which can better fuse the CNN
and transformer features. The output Sn n ∈ [1, 2, 3, 4, 5] funded by the SEB module is
obtained by a group of Conv− bn− relu. In special cases, when n = 5, because it is in the
highest dimension, there is no fusion with the upper layer features, so the Concate module
is canceled, and the upsampling results are directly input to Conv− bn− relu.

2.6. Output and Deep Edge Supervision

To obtain Fn, n ∈ {1, 5} from the decoder, in the TChange structure, we design two
output modules: the segmentation head and edge head.

Segmentation Head: The input is the result F1 of the last layer decoder. After con-
volving by Conv 3 * 3, the input is upsampled and activated via sigmoid to obtain the
0–1 probability map of the changed region, which is described as follows:

Pre1 = Sigmoid(Bilinear(Conv3∗3(F1))) (14)

Bilinear(·) is a function for sampling twice the linear interpolation.
Edge Head: Because the decoder is heavy and the transformer is prone to losing high-

frequency information, we adopt the method of deep supervision for each layer. Different
from the commonly employed depth supervision, we replace pixel-level supervision with
edge supervision to solve the problem that the transformer is prone to losing high-frequency
information. Unlike the segmentation head, the edge head needs to actively guide high-
frequency information. Therefore, we simultaneously perform average pooling and max
pooling operations on Fn n ∈ [2, 3, 4, 5]. Average pooling can be considered a balanced filter
to obtain the low-frequency information of the feature map, while max pooling obtains
the high-frequency information. The low-frequency and high-frequency information are
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decoupled via pooling and then via a 3 * 3 convolution layer. The 0–1 probability map
output is obtained using sigmoid.

Pren = Sigmoid(Conv3∗3([AvgPool(Fn), MaxPool(Fn)]) n ∈ [2, 3, 4, 5] (15)

Note that the edge head only decouples high-frequency and low-frequency informa-
tion to make it easier for the edge to learn.

In view of the small proportion of foreground categories in the prediction results, the
Dice function is added on the basis of the commonly employed binary cross-entropy to
optimize the foreground objectives. The weight of the two loss functions is 0.5:0.5.

3. Datasets

There are some publicly available datasets, but test scenarios where large-scale targets
and small targets coexist, such as long-distance road changes, are lacking. Therefore, to
address this particular lack of test scenarios, a new change detection dataset, TZ-CD, is
proposed in this paper, and TChange is experimentally validated in TZ-CD. To demonstrate
the generality of the algorithm in this paper, the LEVIR-CD [45] and WUH-CD [44] public
benchmark datasets and the current state-of-the-art change detection algorithms are selected
for comparison.

3.1. The Pubilc Dataset

The WUH-CD dataset is employed for the high-resolution building change detection
task with a spatial resolution of 0.3 m. The pretemporal data were acquired in 2012, the
post-temporal data were acquired in 2016, and the data size is 32,507 × 15,345, covering an
area of 20.5 km2. Because of the extremely high data resolution, the pixel size of its change
target is large, as shown in Figure 7b, and its coverage area in the buildings is relatively
low, which poses a higher challenge for the algorithm’s adaptability in large targets.
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The LEVIR-CD dataset is selected for the high-resolution building change detec-
tion task with a spatial resolution of 0.5 m and contains 637 pairs of data with a size of
1024 × 1024, of which 445 pairs are used for training, 64 pairs are utilized for validation,
and 128 pairs are employed for testing. Some data examples are shown in Figure 7a, where
the building targets are small and relatively dense.

3.2. The TZ-CD Dataset

The current commonly employed change detection dataset has a single data scale
and scene. Thus, this paper proposes a new set of change detection data with a resolution
of 1 m, covering an area of 900 km2 and a size of 31,307 × 40,620, whose coverage area
comprises the largest change detection dataset.

The dataset labeling includes categories for building change and push-fill change,
and its precise labeling, with the presence of many small targets and large targets and
containing areas of stronger change and areas of weaker change in the same target, presents
new challenges to current change detection algorithms.

We divided this dataset into 3 regions, as shown in Figure 8, where the yellow region
is used for testing, the red region is used for validation, and the other regions are used
for training.
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As shown in Figure 9, some of the data from TZ-CD are plotted. As shown in the first
column, a large area of vegetation changes to push-fill, while the second column contains
four similar areas of change, three of which have more pronounced changes and the fourth
has weaker changes. However, the changes in the other three areas can be inferred from
their sending changes. The third column contains weaker road changes. The fourth column
contains building changes. The fifth column contains the changes in smaller targets. The
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examples show that the change scenarios are rich and cover a vast area compared to other
publicly available datasets.
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4. Experiments
4.1. Evaluation

LEVIR-CD, WHU-CD and TZ-CD are binary category datasets. We use the evaluation
metrics precision, recall, F1-score and intersection over union (IOU), which are commonly
employed for semantic segmentation. The values of precision, recall, F1-score and IoU
range from 0 to 1. There are differences in the calculation of different assessment metrics,
and multiple dimensions of metrics reflect the differences in the testing results in a more
scientific way. The metrics are calculated as follows:

IoU =
TP

TP + FP + FN
(16)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(17)

precision =
TP

TP + FP
(18)

recall =
TP

TP + FN
(19)

TP denotes true positives, FP denotes false positives, and FN denotes false negatives.

4.2. Implementation Details

In data preprocessing, LEVIR-CD provides a cropped completed dataset with a size
of 1024 × 1024. For WUH-CD and TZ-CD, the data are cropped to 1024× 1024 with a
0.1 overlap rate. The data are normalized from 0–255 to 0–1 during training and prediction.
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In the training phase, the Adam [48] optimizer is selected with a ploy learning rate,
300 epochs, starting learning rate of 0.001, and ending learning rate of 0. Data enhancement
includes flipping, scaling (0.8–1.2), cropping, rotation, HSV change, RGB enhancement,
color jitter, and Gaussian noise.

In the prediction stage, LEVIR-CD uses 1024× 1024 images for prediction and eval-
uation. WUH-CD and TZ-CD use large images for prediction and accuracy evaluation.
Large image prediction uses sliding windows, the sliding window size is 1024, and the
overlap rate is 0.1. To prevent edge semantic missing data, each sliding frame is filled with
256 images, which are cropped to a 1536 * 1536 area, and the prediction result is the middle
1024× 1024 area.

TChange is based on the ptyroch [49] framework and runs on cuda11.1, with all
experiments completed on a single RTX 3090.

4.3. Ablation Studies

To demonstrate the contributions of Change MSA, the ISTM and deep edge super-
vision, we carry out ablation studies on the TZ-CD dataset. The baseline models for
comparison are TChange to remove the Change MSA, the ISTM and deep edge supervision
proposed in this paper. All models use an encoder of efficientnet-b1 [50], and the training
strategy is the same.

Ablation Studies on Change MSA: Change MSA provides global feature swapping
and interchannel feature swapping, containing C-MSA, S-MSA, and FFM, whose ablation
experiments are shown in Table 1. When C-MSA is used alone, its accuracy appears to de-
crease compared to the base, and when combined with the FFM, its IoU accuracy increases
by 2.5% compared to the base, which can indicate that using the bias induction property of
convolution to enhance the transformer’s local feature modeling is necessary. When S-MSA
is added for spatial global modeling, its IoU accuracy continues to grow by 1.2%.

Table 1. Ablation studies on Change MSA. Results on the TZ-CD dataset.

Methods Precision Recall F1 IoU

base 80.81 81.73 81.27 68.45
Base + C-MSA 75.74 82.76 79.10 65.42

Base + C-MSA + FFM 85.72 80.52 83.05 71.01
Base + Change MSA 84.79 83.05 83.91 72.27

Change MSA: C-MSA + FFM + S-MSA + FFM.

Ablation Studies on the ISTM: The ISTM provides interchannel communication, and
since it needs to perform channel dimensional agreement between two different scales, the
ablation experiments of the ISTM are performed based on Base + Change MSA. The results
are shown in Table 2, which shows that the ISTM provides 1% IoU growth.

Table 2. Ablation studies on the ISTM. Results on the TZ-CD dataset.

ISTM Precision Recall F1 IoU

No 84.79 83.05 83.91 72.27
Yes 84.46 84.64 84.55 73.23

Ablation Studies on Deep Edge Supervision: Deep supervision is a common super-
vision scheme, and in the field of change detection, some researchers use pixel-level truth
labels for deep supervision [22]. Unlike previous deep supervision, the supervised labels
employed in this paper are edge labels instead of pixel-level change region labels because
the transformer tends to extract low-frequency information and disregard high-frequency
information, while the CNN tends to disregard high-frequency information. The ablation
experiments also prove the effectiveness of this design, as shown in Table 3. Base is a
pure CNN network, while TChange is a hybrid transformer–CNN network. It can be seen
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that the Base network achieves higher performance when pixel-level labels are used for
supervision than when edge labels are used for supervision.

Table 3. Ablation studies on deep edge supervision. Results on the TZ-CD dataset.

Methods Precision Recall F1 IoU

Base 80.81 81.73 81.27 68.45
Base + deep supervision 86.37 77.49 81.69 69.04

Base + deep edge supervision 81.24 81.97 81.60 68.92
TChange 84.46 84.64 84.55 73.23

TChange + deep supervision 91.18 80.00 85.21 74.23
TChange + deep edge supervision 90.42 81.11 85.51 74.70

4.4. Comparative Method

For the LEVIR-CD, WUH-CD and TZ-CD datasets, we compare our method with
several state-of-the-art CD methods.

1. FC-EF, FC-conc and FC-diff [15]: FC-EF follows the semantic segmentation scheme.
First, the pre-image and post-image are overlapped. Second, the images are input to
the encoder for encoding. Third, the segmentation result is obtained by the decoder.
FC-conc replaces the single encoder in FC-EF with a twin encoder, the pairwise
features are merged by a simple concatenation operation, and then the region change
result is decoded by the decoder. FC-diff replaces the concatenate operator with diff
for the pairwise feature fusion part based on FC-EF.

2. BiDataNet [51]: BiDataNet is a single encoder change detection segmentation scheme
that combines LSTM and UNet for better encoding of long-range information and
communication of features between two different time phases.

3. CDNet [52]: CDNet is a single encoder change detection network. This network is
mainly utilized for road change detection, so its convolution size is modified from the
commonly employed 3 * 3 to 7 * 7 to expand the receptive field.

4. Unet++_MSOF [53]: Unet++_MSOF adds lateral connections to the regular Unet’s short-
cut connections to provide more communication channels with different scale features.

5. DDCNN [18]: DDCNN proposes a dense attention method consisting of several
upsampling attention units to model the internal correlation between high-level
features and low-level features.

6. BIT [40]: BIT is the first change detection network with a transformer. First, the
convolutional neural network provides multiscale features. Second, 2 features are
obtained by the transformer decoder. Last, the change region is obtained based on the
difference in the features.

7. DMATNet [41]: DMATNet is a dual-feature mixed attention-based transformer net-
work. First, the twin encoder is used for feature extraction, Then, fuse the fine and
coarse features with dual-feature mixed attention (DFMA) module.

4.5. Results on the LEVIR-CD

The experimental results of TChange in LEVIR-CD are shown in Table 4. TChange
improves the f1 accuracy by nearly 3% compared to the transformer-based BIT model, and
the intersection of the leading CNN models also improves the IoU accuracy by 2%. In
Figure 10, the results of four sets of experiments are plotted. Each result contains the three
leading models in LEVIR-CD, Unet++_MSOF, DDCNN, and TChange. The visualization
results show that TChange has much lower error detection than Unet++_MSOF due to the
enhanced relationship among the data by Change MSA. Additionally, the completeness
of the results at the edges is significantly improved due to the deep supervision of the
edges. UNet++_MSOF and DDCNN have higher precision but lower recall, which is more
consistent with the reflection in the visualization that they have fewer missed detections
and more false detections.
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Table 4. Results on the LEVIR-CD dataset.

Methods Precision Recall F1 IoU

FC-EF [15] 79.20 81.72 80.44 67.27
FC-conc [15] 91.46 88.05 89.72 81.36
FC-diff [15] 89.92 89.00 89.45 80.92

BiDataNet [51] 92.50 87.14 89.74 81.39
CDNet [52] 90.73 86.82 88.73 79.75

Unet++_MSOF [53] 92.18 87.84 89.96 81.75
DDCNN [18] 91.85 88.69 90.24 82.21

BIT [40] 89.24 89.37 89.31 80.68
DMATNet [41] 91.56 89.98 90.75 84.13

TChange 93.47 91.94 92.27 85.65
Color description: best, 2nd best, and 3rd best.
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4.6. Results on the WUH-CD

The experimental results of TChange in LEVIR-CD are shown in Table 5. With in-
creasing resolution, the importance of multiple scales becomes increasingly obvious. Both
BiDataNet and DDCNN construct more direct exchange channels for multiscale features,
and their accuracy has more obvious advantages in the WUH-CD dataset where large
targets are dominant. For the TChange proposed in this paper, due to stronger in-scale
global feature modeling and the use of advanced transformer for interchannel information
exchange, its F1 accuracy i improves 1.1% compared to the state-of-the-art algorithm. The
visualization results in Figure 11 also show that TChange achieves complete detection of
large targets and distinct edges.
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Table 5. Results on the WUH-CD dataset.

Methods Precision Recall F1 IoU

FC-EF [15] 85.27 75.11 79.87 66.49
FC-conc [15] 92.67 55.59 69.49 53.25
FC-diff [15] 88.76 66.40 75.97 61.25

BiDataNet [51] 93.44 87.66 90.46 82.58
CDNet [52] 87.64 81.43 84.42 73.04

Unet++_MSOF [53] 93.03 86.29 89.53 81.05
DDCNN [18] 96.11 89.73 92.81 86.59

BIT [40] 86.64 81.48 83.98 72.39
DMATNet [41] 83.87 82.24 85.70 74.98

TChange 94.70 93.22 93.96 88.60
Color description: best, 2nd best, and 3rd best.
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4.7. Results on the TZ-CD

The experimental results of TChange in TZ-CD are shown in Table 6. In the TZ-CD
dataset presented in this paper, the proposed TChange model has an advantage over other
models due to the many large targets included, and its F1 accuracy is 3% greater than the
current leading models. In Figure 12, the results of TChange on the full map of the TZ-CD
test set are shown. Three areas are intercepted in the full map for display. In the first set
of predicted data, a slender change is completely detected, while in the second set, there
is a pooling area, resulting in a weak change. TChange is able to completely identify and
extract the change area. In the third set, due to the combination of the transformer and
CNN, TChange is able to perform a more complete extraction for oversized targets.
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Table 6. Results on the TZ-CD dataset.

Methods Precision Recall F1 IoU

FC-EF [15] 47.66 82.29 60.36 43.23
FC-conc [15] 78.79 74.16 76.41 61.82
FC-diff [15] 57.78 90.81 70.62 54.59

BiDataNet [51] 67.93 86.40 76.06 61.37
CDNet [52] 73.62 75.69 74.64 59.55

Unet++_MSOF
[53] 79.90 80.11 80.00 66.68

DDCNN [18] 89.00 76.90 82.50 70.21
BIT [40] 73.58 82.04 77.58 63.37

TChange 90.42 81.11 85.51 74.70
Color description: best, 2nd best, and 3rd best.
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results. (g) DDCNN results. (h) TChange results.
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4.8. Efficiency Comparison Experiments

There is a constraint relationship between the accuracy efficiency of the deep learning
model, so in this study, based on the WUH-CD dataset, efficiency comparison experi-
ments are conducted using a single 3090 graphics card, and the results are shown in
Table 7. The accuracy achieved by the network proposed in this paper is obviously superior
at the same scale.

Table 7. Efficiency comparison in the WHU-CD dataset.

Methods Params (Mb) Inference Time (s)

FC-EF [15] 5.2 21
FC-conc [15] 5.9 21
FC-diff [15] 5.2 21

BiDataNet [51] 7.8 26
CDNet [52] 34.3 27

Unet++_MSOF [53] 178.2 44
DDCNN [18] 121.2 46

BIT [40] 132.9 63
TChange 166.2 70

5. Conclusions

In this paper, we propose a hybrid transformer–CNN network (TChange) for the high-
resolution change detection task, which can efficiently extract multiscale features by using
lightweight efficient b1 in the encoder part. For the problem that large targets are prone
to voids, Change MSA is proposed to acquire long-range information in both the channel
dimension and spatial dimension. To address the problem of easily missed detection for
both large targets and small targets, we propose IMST based on the transformer to construct
direct communication channels between two scales. In the CNN decoder, the features from
the transformer are simultaneously input, and the multiscale features extracted by the
encoder are fused to obtain the final change region. For the problem that the transformer
tends to lose high-frequency features, the use of deep edge supervision is proposed to
replace the commonly employed depth supervision.

To verify the effectiveness of the proposed algorithm, a large-scale change building
dataset, TZ-CD, is constructed. The dataset contains both very large targets and weak
feature targets, which are lacking in the public dataset, so that the performance of the
algorithm can be more comprehensively measured. TChange achieves state-of-the-art
results in both the two open-source datasets and TZ-CD.

Although TChange has improved its accuracy compared with the previous network
and performed well in the public dataset, the current change detection algorithm, as
exposed by the TZ-CD dataset, still cannot achieve complete extraction when the task is
more complex. Moreover, the dataset used in this paper has basically the same distribution
between the training set and the test set, and the experimental environment is more ideal. It
can be expected that when domain differences appear, the accuracy differences between two
different models will be further widened, and more problems will be exposed. Therefore,
in subsequent work, we will test the performance of the algorithm for complex tasks and
domain differences and then identify and solve any problems.

Author Contributions: Conceptualization, Y.D. and Y.M.; methodology, Y.D., Y.M. and J.C. (Jingbo
Chen); validation, Y.D., D.L. and A.Y.; data curation, J.C. (Jing Chen); writing—original draft prepa-
ration, Y.D.; writing—review and editing, Y.M. and J.C. (Jingbo Chen); All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (under grant
number: 2021YFB3900503) and the National Natural Science Foundation of China (under grant
number: 61901471).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 1219 19 of 20

References
1. Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inf. 2019, 12, 143–160.

[CrossRef]
2. Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003.

[CrossRef]
3. Howarth, P.J.; Wickware, G.M. Procedures for change detection using Landsat digital data. Int. J. Remote Sens. 1981, 2, 277–291.

[CrossRef]
4. Ludeke, A.K.; Maggio, R.C.; Reid, L.M. An analysis of anthropogenic deforestation using logistic regression and GIS. J. Environ.

Manag. 1990, 31, 247–259. [CrossRef]
5. Coppin, P.R.; Bauer, M.E. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens. Rev. 1996, 13,

207–234. [CrossRef]
6. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
7. Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat; IEEE: Piscataway, NJ, USA, 1980; p. 385.
8. Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis.

Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [CrossRef]
9. Miller, A.B.; Bryant, E.S.; Birnie, R.W. An analysis of land cover changes in the Northern Forest of New England using

multitemporal Landsat MSS data. Int. J. Remote Sens. 1998, 19, 245–265. [CrossRef]
10. Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota)

Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [CrossRef]
11. Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape

metrics. Comput. Environ. Urban Syst. 2006, 30, 861–879. [CrossRef]
12. Cheng, H.; Wu, H.; Zheng, J.; Qi, K.; Liu, W. A hierarchical self-attention augmented Laplacian pyramid expanding network for

change detection in high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2021, 182, 52–66. [CrossRef]
13. Zhang, Y.; Fu, L.; Li, Y.; Zhang, Y. Hdfnet: Hierarchical dynamic fusion network for change detection in optical aerial images.

Remote Sens. 2021, 13, 1440. [CrossRef]
14. Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-layer convolutional neural network for change

detection in optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [CrossRef]
15. Daudt, R.C.; Le Saux, B.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection; IEEE: Piscataway, NJ, USA, 2018; pp.

4063–4067.
16. Chen, H.; Wu, C.; Du, B.; Zhang, L. Deep Siamese Multi-Scale Convolutional Network for Change Detection in Multi-Temporal VHR

Images; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.
17. Hou, B.; Liu, Q.; Wang, H.; Wang, Y. From W-Net to CDGAN: Bitemporal change detection via deep learning techniques. IEEE

Trans. Geosci. Remote Sens. 2019, 58, 1790–1802. [CrossRef]
18. Peng, X.; Zhong, R.; Li, Z.; Li, Q. Optical remote sensing image change detection based on attention mechanism and image

difference. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7296–7307. [CrossRef]
19. Diakogiannis, F.I.; Waldner, F.; Caccetta, P. Looking for change? Roll the dice and demand attention. Remote Sens. 2021, 13, 3707.

[CrossRef]
20. Hou, X.; Bai, Y.; Li, Y.; Shang, C.; Shen, Q. High-resolution triplet network with dynamic multiscale feature for change detection

on satellite images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 103–115. [CrossRef]
21. Chen, P.; Li, C.; Zhang, B.; Chen, Z.; Yang, X.; Lu, K.; Zhuang, L. A Region-Based Feature Fusion Network for VHR Image Change

Detection. Remote Sens. 2022, 14, 5577. [CrossRef]
22. Chen, P.; Zhang, B.; Hong, D.; Chen, Z.; Yang, X.; Li, B. FCCDN: Feature constraint network for VHR image change detection.

ISPRS J. Photogramm. Remote Sens. 2022, 187, 101. [CrossRef]
23. Mao, Z.; Tong, X.; Luo, Z.; Zhang, H. MFATNet: Multi-Scale Feature Aggregation via Transformer for Remote Sensing Image

Change Detection. Remote Sens. 2022, 14, 5379. [CrossRef]
24. Zhang, J.; Pan, B.; Zhang, Y.; Liu, Z.; Zheng, X. Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale

Attention. Remote Sens. 2022, 14, 5405. [CrossRef]
25. Zhao, M.; Jha, A.; Liu, Q.; Millis, B.A.; Mahadevan-Jansen, A.; Lu, L.; Landman, B.A.; Tyska, M.J.; Huo, Y. Faster Mean-shift:

GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 2021, 71, 102048.
[CrossRef]

26. Yao, T.; Qu, C.; Liu, Q.; Deng, R.; Tian, Y.; Xu, J.; Jha, A.; Bao, S.; Zhao, M.; Fogo, A.B. Compound Figure Separation of Biomedical
Images with Side Loss; Springer: Berlin/Heidelberg, Germany, 2021; pp. 173–183.

27. Fang, S.; Li, K.; Li, Z. Changer: Feature Interaction is What You Need for Change Detection. arXiv 2022, arXiv:2209.08290.
28. Feng, S.; Fan, Y.; Tang, Y.; Cheng, H.; Zhao, C.; Zhu, Y.; Cheng, C. A Change Detection Method Based on Multi-Scale Adaptive

Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images. Remote Sens.
2022, 14, 5368. [CrossRef]

29. Zheng, Z.; Ma, A.; Zhang, L.; Zhong, Y. Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing
Imagery; IEEE: Piscataway, NJ, USA, 2021; pp. 15193–15202.

http://doi.org/10.1007/s12145-019-00380-5
http://doi.org/10.1080/01431168908903939
http://doi.org/10.1080/01431168108948362
http://doi.org/10.1016/S0301-4797(05)80038-6
http://doi.org/10.1080/02757259609532305
http://doi.org/10.1016/0169-7439(87)80084-9
http://doi.org/10.14358/PERS.69.4.369
http://doi.org/10.1080/014311698216233
http://doi.org/10.1016/j.rse.2005.08.006
http://doi.org/10.1016/j.compenvurbsys.2005.09.002
http://doi.org/10.1016/j.isprsjprs.2021.10.001
http://doi.org/10.3390/rs13081440
http://doi.org/10.1016/j.isprsjprs.2021.03.005
http://doi.org/10.1109/TGRS.2019.2948659
http://doi.org/10.1109/TGRS.2020.3033009
http://doi.org/10.3390/rs13183707
http://doi.org/10.1016/j.isprsjprs.2021.05.001
http://doi.org/10.3390/rs14215577
http://doi.org/10.3390/rs15010101
http://doi.org/10.3390/rs14215379
http://doi.org/10.3390/rs14215405
http://doi.org/10.1016/j.media.2021.102048
http://doi.org/10.3390/rs14215368


Remote Sens. 2023, 15, 1219 20 of 20

30. Deng, Y.; Chen, J.; Yi, S.; Yue, A.; Meng, Y.; Chen, J.; Zhang, Y. Feature Guided Multitask Change Detection Network. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9667. [CrossRef]

31. Chen, H.; Li, W.; Shi, Z. Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. IEEE
Trans. Geosci. Remote Sens. 2021, 60, 1–16. [CrossRef]

32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention 2015, Munich, Germany, 5–9 October 2015; pp. 234–241.

33. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 5693–5703.

34. Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image Transformer. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064.

35. Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-Attention Mask Transformer for Universal Image Segmentation;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 1290–1299.

36. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted
Windows; ICCV: Santiago, Chile, 2021; pp. 10012–10022.

37. Li, F.; Zhang, H.; Liu, S.; Zhang, L.; Ni, L.M.; Shum, H.-Y. Mask DINO: Towards A Unified Transformer-based Framework for
Object Detection and Segmentation. arXiv 2022, arXiv:2206.02777.

38. Wu, Y.; Liao, K.; Chen, J.; Wang, J.; Chen, D.Z.; Gao, H.; Wu, J. D-former: A u-shaped dilated transformer for 3d medical image
segmentation. Neural Computing and Applications Neural Comput. Appl. 2022, 35, 1931–1944. [CrossRef]

39. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

40. Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14.
[CrossRef]

41. Song, X.; Hua, Z.; Li, J. Remote Sensing Image Change Detection Transformer Network Based on Dual-Feature Mixed Attention.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

42. Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure transformer network for remote sensing image change detection. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

43. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

44. Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery
data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [CrossRef]

45. Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

46. Yang, K.; Xia, G.-S.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric siamese networks for semantic change detection
in aerial images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [CrossRef]

47. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

48. Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. In Proceedings of the ICLR 2018 Conference, Vancouver,
BC, Canada, 30 April–3 May 2018.

49. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.

50. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114.

51. Papadomanolaki, M.; Verma, S.; Vakalopoulou, M.; Gupta, S.; Karantzalos, K. Detecting urban changes with recurrent neural
networks from multitemporal Sentinel-2 data. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and
Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 214–217.

52. Sakurada, K.; Okatani, T. Change Detection from a Street Image Pair using CNN Features and Superpixel Segmentation. In
Proceedings of the Procedings of the British Machine Vision Conference 2015, Swansea, UK, 7–10 September 2015; British Machine
Vision Association and Society for Pattern Recognition: Durham, UK, 2015; pp. 1–12.

53. Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote
Sens. 2019, 11, 1382. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSTARS.2022.3215773
http://doi.org/10.1109/TGRS.2021.3066802
http://doi.org/10.1007/s00521-022-07859-1
http://doi.org/10.1109/TGRS.2020.3034752
http://doi.org/10.1109/TGRS.2022.3209972
http://doi.org/10.1109/TGRS.2022.3160007
http://doi.org/10.1109/TGRS.2018.2858817
http://doi.org/10.3390/rs12101662
http://doi.org/10.1109/TGRS.2021.3113912
http://doi.org/10.3390/rs11111382

	Introduction 
	Materials and Methods 
	Overview 
	Encoder 
	ChangMSA 
	C-MSA 
	S-MSA 
	FFM 
	Change MSA Summary 

	The Inter-Scale Transformer Module 
	The CNN Decoder 
	Output and Deep Edge Supervision 

	Datasets 
	The Pubilc Dataset 
	The TZ-CD Dataset 

	Experiments 
	Evaluation 
	Implementation Details 
	Ablation Studies 
	Comparative Method 
	Results on the LEVIR-CD 
	Results on the WUH-CD 
	Results on the TZ-CD 
	Efficiency Comparison Experiments 

	Conclusions 
	References

