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Abstract: The microseismic signals released by rock mass fracture can be captured via microseismic
monitoring to evaluate the development of geological disasters. This is crucial for underground
engineering construction, underground mining, and earthquake and geological disaster evaluation.
However, extracting information effectively is difficult due to the low signal-to-noise ratio of micro-
seismic signals caused by complex environmental factors. Therefore, denoising and detection (onset
time picking) are essential to processing microseismic signals and extracting source information.
To improve the efficiency and accuracy of microseismic signal processing, we propose a parallel
dual-tasking network, which is an advanced deep learning model that can simultaneously perform
microseismic denoising and detection tasks. The network, comprising one encoder and two parallel
decoders, is customised to extract input data features, and two outputs can be simultaneously gener-
ated to denoise and detect microseismic signals. The model exhibits excellent denoising and detection
performance for microseismic signals containing various types of noise. Compared with traditional
methods, the signal-to-noise ratio of the denoised signal is greatly improved, and the waveform
distortion of the denoised signal is small. Even when the signal-to-noise ratio is low, the proposed
model can maintain good onset time pickup performance. This method obviates the need for different
denoising methods for different types of noise and precludes setting thresholds artificially to improve
the denoising effect and detection accuracy. Moreover, the dual processing characteristics of the
model facilitate simultaneous denoising and detection, which improves the processing efficiency
of microseismic data and meets the demand for automatically processing massive microseismic
data. Therefore, this method has excellent data processing potential in exploration seismology, and
earthquake and disaster assessment.

Keywords: neural network; microseismicity; parallel processing; denoising and detection

1. Introduction

Engineering activities, such as deep underground mining and underground engi-
neering construction, disturb the rock mass and promote rock mass fracture [1–4]. The
vibrations caused by rock fracture can be assessed to determine the state of fractures in the
rock mass via microseismic monitoring, which is a crucial consideration in monitoring the
stability of tunnel surrounding rock, shale gas exploitation, and mining, among others [5,6].
However, due to the short duration, small energy release, and high acoustic frequency of
microseismic events, as well as the complexity of actual construction, microseismic signals
are often mixed with various noises, such as construction and traffic noise, resulting in the
collected microseismic signals having a very low signal-to-noise ratio (SNR) [7]. There-
fore, processing raw microseismic data is essential. Denoising and detecting microseismic
signals is essential to microseismic data processing. The former requires removing noise
and retaining the microseismic signal, whereas the latter refers to identifying valid micro-
seismic signal segments among various non-microseismic signals and noises. In contrast,
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onset time picking involves identifying the first signal fluctuation point of the detected
microseismic signal.

Many researchers have explored the denoising of microseismic signals. Wavelet
transform has good localization properties in both time and frequency domains. The signal
denoising method based on the principle of wavelet transform modulus maximum is
the most classical wavelet denoising method, which exhibits great promise in denoising
unstable signals. However, the wavelet analysis results greatly depend on the selection of
the wavelet basis function [8–10]. Empirical mode decomposition (EMD) is a time-frequency
analysis method applied to nonstationary and nonlinear signals. Its most significant feature
is its ability to overcome the lack of an adaptive basis function. However, EMD is also prone
to the aliasing of modal components [11–13]. Synchro-squeezing transform (SST) is a high-
resolution time-frequency analysis method that compresses the time-frequency distribution
of the wavelet transform in the frequency or scale direction. The time-frequency resolution
of SST can be considerably improved if noise interference is absent, but the presence of
noise can lead to severe time-frequency ambiguities [14,15]. Singular-value decomposition
is the decomposition of signals into different spaces. The characteristics of each signal
are reflected by the singular value, and that corresponding to noise is zeroed to achieve
denoising. This method is suitable for highly correlated effective signals. Very strong noise
in the microseismic signal or a very weak correlation in the effective signal will deteriorate
the denoising effect [16]. However, the application of these methods is limited by some
conditions, and a low SNR usually leads to a poor denoising effect.

Although the detection of microseismic signals was initially performed manually, this
method was gradually phased out due to its strong subjectivity, low efficiency, and other
problems. Some of the most commonly used methods for detecting microseismic signals
include short-term to long-term average (STA/LTA), higher-order statistics method, Akaike
information criterion (AIC), and polarization analysis. STA/LTA involves judging the onset
time by using the ratio of feature functions in long and short windows. Despite its fast
operation, this algorithm has high data requirements, which lead to a high misjudgment
rate [17–19]. The higher-order statistics method involves obtaining effective information
from higher-order statistics of non-Gaussian signals and automatically picking up the
onset time according to changes in the kurtosis or skewness curves in these higher-order
statistics. However, this method is greatly limited when the noise deviates from a Gaussian
distribution [20–22]. AIC is a seismic signal detection method that distinguishes effective
signals from noisy signals according to the assumption of an autoregressive model. Notably,
its accuracy is poor, and the misjudgment rate is high at low SNR [23–25]. Polarization
analysis involves calculating the polarization parameters of microseismic signal and noise
and determining the onset time by comparing the different parameters. However, making
an accurate judgment at low SNR is difficult. The complexity of the microseismic monitor-
ing environment leads to diverse microseismic signals. Moreover, the frequency and type
of noise in the microseismic signals vary, and the SNR distribution range is wide, leading
to poor versatility in these traditional detection methods. Furthermore, some methods
necessitate changing the threshold value repeatedly to improve their accuracy, with auto-
matic processing of the microseismic signals being beyond their capabilities. Therefore, a
high-precision method for automatically detecting microseismic is required.

With the rapid development of computer technology, deep learning has been widely
applied in various fields due to its powerful feature abstraction and nonlinear data-mapping
abilities [26]. The application of deep neural networks to microseismic signal denoising
has been widely studied. For example, a residual network and U-net were combined
to attenuate random noise in seismic data, and the denoising effect of this method was
superior to that of traditional denoising methods [27,28]. Deep neural networks were
also applied to the detection of earthquakes and microseismic events, including in seismic
signal detection and seismic phase extraction by using the codec network, with good results
being achieved [29,30]. Although deep learning technology can improve the denoising
and detection of microseismic signals, previous studies have either performed denoising
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and detection separately or performed denoising first before conducting detection rather
than performing both simultaneously, thereby limiting the efficiency of microseismic
data processing.

A deep-learning model that denoises and detects microseismic signals simultaneously
is herein proposed. The model has a dual-task structure comprising an encoder and
two decoders, which increases its data processing efficiency. A noisy signal in the time
domain is used as input, and the model outputs a mask for signal denoising and a label for
microseismic signal detection. The microseismic data of the Micangshan Tunnel and China
Grand Canyon Tunnel were collected for model training, verification of the denoising
and detection effect of the model in a real engineering environment, and comparison of
methods. The results demonstrate that the model can improve the SNR of the microseismic
signals with different types of noise and reduce the distortion while accurately detecting
the waveform. The accurate and efficient data processing capability of the model provides
strong support for the subsequent microseismic data analysis.

2. Materials and Methods
2.1. Theoretical Bases

We evaluate a parallel dual task network (PDTN) to simultaneously denoise and detect
microseismic signals. Model training, a supervised learning process, utilises noisy signals
as input vectors. As in practical situations, the noisy signal NS(t) is generated via the
superposition of microseismic signal MS(t) and noise N(t) as follows:

NS(t) = MS(t) + N(t), (1)

where t represents the sampling point. The microseismic signal MS(t) is a clean microseis-
mic signal (meaning it is free from any noise).

PDTN achieves denoising by removing the noise and ensuring that the predicted
microseismic signal MS(t) conforms to the clean microseismic signal MS(t). The predicted
microseismic signal MS(t) was computed as the product of the predicted mask MDn(t)
and noisy signal NS(t):

MS(t) = MDn(t) ∗ NS(t), (2)

where MDn(t) is the mapping of noisy signal NS(t) for predicting the microseismic
signal MS(t).

Given that the effective signal segment of the noisy signal NS(t) contains noise su-
perposition, the predicted mask MDn(t) aims to achieve full-range denoising of the noisy
signal NS(t) instead of merely removing noises outside the effective signal segment. The
mask was calculated as follows:

MDn(t) =
|MS(t)|
|N(t)|

1 + |MS(t)|
|N(t)|

. (3)

The value of MDn(t) ranges from 0 to 1.
Generating the predicted mask MDn(t) follows a supervised learning process, and

PDTN generates a high-dimensional nonlinear feature map by extracting the features of
input noisy signals. Conforming the predicted microseismic signal MS(t) to the clean
microseismic signal MS(t) is tantamount to minimizing the error between the predicted
mask MDn(t) and the actual mask MDn(t):

L1 =
1
n

n

∑
i=1
|MDn(t)i −MDn(t)i|, (4)

where n is the number of samples.
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PDTN also aims to achieve high-precision microseismic signal detection. A binary
vector label LDt(t) is used for the detection. For LDt(t), the duration of microseismic signals
is set to 1 and 0 otherwise. The formula is as follows:

LDt(t) =
{

1 t ∈ Duration o f microseismic signal
0 t /∈ Duration o f microseismic signal

. (5)

Generating the predicted label LDt(t) follows a supervised learning process and in-
volves utilizing PDTN to generate a high-dimensional nonlinear feature map by extracting
the features of input noisy signals. The onset and end times are the first and last sampling
points with a value of 1 in label LDt(t), respectively. The error in microseismic signal
detection is calculated as follows:

L2 =
1
n

n

∑
i=1

(
LDt(t)i − LDt(t)i

)2
, (6)

where n is the number of samples. The total model loss is defined as the sum of L1 and
L2. The predicted mask MDn(t) and predicted label LDt(t) have the same size as the noisy
signal NS(t), which is the optimization target during PDTN training.

2.2. Network Architecture and Training

To realize simultaneous microseismic signal denoising and detection, we designed
PDTN as a dual-task model. PDTN has three parts, namely an encoder, data with advanced
features, and two decoders, as shown in Figure 1a. Encoder E extracted the features of
the input data X and generated data H with advanced features. Afterwards, two high-
dimensional nonlinear feature maps X1 and X2 were generated by using the parallel
decoders D1 and D2 as outputs, respectively, thus allowing PDTN to simultaneously
denoise and detect microseismic signals.

Figure 1b shows the PDTN structure. When using the microseismic signal with
noise as input, the size of (30,000, 1) should be reconstructed into (32,768, 1) by filling
0 to prevent dimension mismatch between upsampling and downsampling. A series of
coding operations were then performed, and the data were downsampled via a stride 2
convolution. Moreover, one convolution, one batch normalization, and one rectified linear
unit (ReLU) were used to increase model nonlinearity, realize information integration,
and improve the expression ability of the network. The features of the input data were
then extracted. Given the computing time of the convolution layer and ability of the
signal to accept nonlocal features, the kernel size of the convolution layer was set to
3. Data with advanced features were used to generate two high-dimensional nonlinear
feature maps using two identical decoders. The decoding process involves upsampling,
convolution, batch standardization, and using ReLU for mapping information to higher
dimensions. To improve the convergence of training and achieve good signal reconstruction,
the corresponding feature maps should be concatenated in the encoding and decoding
processes [31]. The sigmoid activation function was set in the penultimate layer of the
two decoders to generate the mask and label, and the predicted mask and predicted label
were then obtained by reconstructing (32,768, 1) into (30,000, 1). Table 1 presents some
network structures and parameters in the encoder. With the number of convolutions
increasing with stride 2, the output features were gradually compressed, and the network
depth gradually increased. To achieve optimal denoising and detection performance, the
Bayesian optimization method was applied to optimize the network depth hyperparameter
in the convolutional neural network. The Gaussian process regression for modelling the
objective function is called a proxy function, and EI is selected as a collection function for
selecting the next observation point. When the requirement of minimizing val_loss is met,
the regression parameter is output. The network val_loss is small for current sampling
times of 9–13. Downsampling times of 9, 10, 11, 12, and 13 were tested (Table 2) to verify
their influence on the model. The results demonstrate that PDTN yields the best detection
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performance in the verification set when the downsampling number is 9. Meanwhile,
when the downsampling number is 13, PDTN yields the best denoising performance in
the verification set. To consider both the PDTN denoising and detection performance, the
network corresponding to a downsampling number of 11, which had the smallest total loss
in the verification set, was considered as the research object.

Table 1. Partial network structure and parameters in encoder.

Type Kernel Size/Stride Output Shape

Lambda 32,768 × 1
Convolution 1 × 3/2 16,384 × 64

Batch Normalization 16,384 × 64
ReLU 16,384 × 64

Convolution 1 × 3/1 16,384 × 64
Batch Normalization 16,384 × 64

ReLU 16,384 × 64
Convolution 1 × 3/2 8192 × 128

Batch Normalization 8192 × 128
ReLU 8192 × 128

Convolution 1 × 3/1 8192 × 128
Batch Normalization 8192 × 128

ReLU 8192 × 128
Note. Output Shape is ‘feature × filters’.

Table 2. Performance of PDTN with different downsampling times for the verification set.

Number
Val_Loss Val_Accuracy

Denoising Detection Total Denoising Detection

9 0.0547 0.0338 0.0885 0.9606 0.9576
10 0.0540 0.0466 0.1006 0.9639 0.9319
11 0.0484 0.0397 0.0881 0.9626 0.9448
12 0.0504 0.0387 0.0892 0.9619 0.9467
13 0.0469 0.0419 0.0887 0.9667 0.9429

Note. Number represents the number of convolutions with stride 2 in the encoder. Val_loss and val_accuracy
are the loss and accuracy of the verification set, respectively. Total val_loss is equal to denoising val_loss plus
detection val_loss.

Figure 1c presents the flow chart of denoising and detection via PDTN. First, samples
of noisy signals in the time domain were taken as input, and PDTN then simultane-
ously generated the predicted mask MDn(t) and predicted label LDt(t). The predicted
microseismic signal MS(t) was obtained by multiplying the predicted mask MDn(t) by
noisy signal NS(t), and the predicted label LDt(t) denotes the predicted duration of the
microseismic signal.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

𝐿 = 1𝑛 |𝑀 (𝑡) 𝑀 (𝑡) |, (4)

where 𝑛 is the number of samples. 
PDTN also aims to achieve high-precision microseismic signal detection. A binary 

vector label 𝐿 (𝑡) is used for the detection. For 𝐿 (𝑡), the duration of microseismic sig-
nals is set to 1 and 0 otherwise. The formula is as follows: 𝐿 (𝑡) =  1 𝑡 ∈ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑖𝑠𝑚𝑖𝑐 𝑠𝑖𝑔𝑛𝑎𝑙0 𝑡 ∉ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑖𝑠𝑚𝑖𝑐 𝑠𝑖𝑔𝑛𝑎𝑙. (5)

Generating the predicted label 𝐿 (𝑡) follows a supervised learning process and in-
volves utilizing PDTN to generate a high-dimensional nonlinear feature map by extract-
ing the features of input noisy signals. The onset and end times are the first and last sam-
pling points with a value of 1 in label 𝐿 (𝑡), respectively. The error in microseismic signal 
detection is calculated as follows: 

𝐿 = 1𝑛 𝐿 (𝑡) 𝐿 (𝑡) , (6)

where n is the number of samples. The total model loss is defined as the sum of 𝐿  and 𝐿 . The predicted mask 𝑀 (𝑡) and predicted label 𝐿 (𝑡) have the same size as the 
noisy signal 𝑁𝑆(𝑡), which is the optimization target during PDTN training. 

2.2. Network Architecture and Training 
To realize simultaneous microseismic signal denoising and detection, we designed 

PDTN as a dual-task model. PDTN has three parts, namely an encoder, data with ad-
vanced features, and two decoders, as shown in Figure 1a. Encoder E extracted the fea-
tures of the input data X and generated data H with advanced features. Afterwards, two 
high-dimensional nonlinear feature maps 𝑋  and 𝑋  were generated by using the paral-
lel decoders D1 and D2 as outputs, respectively, thus allowing PDTN to simultaneously 
denoise and detect microseismic signals. 

 
(a) 

Figure 1. Cont.



Remote Sens. 2023, 15, 1215 6 of 19
Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

 
(b) 

 
(c) 

Figure 1. (a) Schematic of PDTN. (b) Structure diagram of PDTN. Encoder on the left; two decoders 
on the right; and denoising and detection networks on the top and bottom, respectively. The circles 
of different colors represent the neural network layer. The arrows represent operations performed 
between two adjacent layers. The dimensions of each layer are marked as ‘feature × filters’. The 
encoder performs 11 downsamplings and the two decoders perform 11 upsamplings. The total num-
ber of trainable parameters is 47,791,298. (c) Flow chart of PDTN for denoising and detection. 

Figure 1b shows the PDTN structure. When using the microseismic signal with noise 
as input, the size of (30,000, 1) should be reconstructed into (32,768, 1) by filling 0 to pre-
vent dimension mismatch between upsampling and downsampling. A series of coding 
operations were then performed, and the data were downsampled via a stride 2 convolu-
tion. Moreover, one convolution, one batch normalization, and one rectified linear unit 
(ReLU) were used to increase model nonlinearity, realize information integration, and im-
prove the expression ability of the network. The features of the input data were then 

Figure 1. (a) Schematic of PDTN. (b) Structure diagram of PDTN. Encoder on the left; two decoders
on the right; and denoising and detection networks on the top and bottom, respectively. The circles
of different colors represent the neural network layer. The arrows represent operations performed
between two adjacent layers. The dimensions of each layer are marked as ‘feature × filters’. The
encoder performs 11 downsamplings and the two decoders perform 11 upsamplings. The total
number of trainable parameters is 47,791,298. (c) Flow chart of PDTN for denoising and detection.

PDTN can automatically learn features from semi-synthetic noisy signals by using one
encoder and two identical decoders. Unlike traditional methods, this model does not need
to set thresholds to improve its denoising and detection accuracy. A noisy signal input can
simultaneously generate two outputs, namely the mask and label, and realize the denoising
and detection of microseismic signals, thus improving the efficiency of microseismic signal
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processing. PDTN can also denoise and detect noisy signals directly in the time domain
without signal conversion.

In this paper, the amplitude of all microseismic signals was expressed in terms of
acceleration with a response frequency ranging from 50 Hz to 5 kHz. The data acquisition
station had a sampling frequency of 20 kHz and a sampling window of 1.5 s for all signals.
The data acquisition station had a sampling frequency of 20 kHz and a sampling window
of 1.5 s for all signals. Clean microseismic signals are necessary for neural network training,
but the field data all contain some noise. We obtain clean microseismic signals in the
following way. First, we manually detect the microseismic signal to determine the effective
microseismic signal range. The peak amplitude within the effective microseismic signal
range is taken as the peak amplitude of the microseismic signal, and the peak amplitude
outside the effective microseismic signal range is taken as the peak amplitude of the noise.
Then, the approximate SNR can be calculated. The SNR was calculated as follows [32]:

SNR = 20 ∗ log10

(
SA
NA

)
, (7)

where SA and NA denote the peak amplitudes of the microseismic signal and noise. The
SNR can reflect the quality of the signal. We select microseismic signals with SNR greater
than 30 dB, which are rarely disturbed by noise. We set all the values outside the effective
microseismic signal range of these signals to 0 and retain the values within the effective
microseismic signal range so that approximate clean microseismic signals can be obtained.
The collected dataset contained 9507 microseismic signals and 16,861 noises, randomly
divided into training (80%), verification (10%), and test sets (10%). The noise samples
were randomly selected and superimposed with the selected microseismic signals to obtain
noisy signals with different SNRs as inputs. During training, the Adam optimiser was used
to minimise the loss function and update the weight parameters. The learning rate was
initially set to 0.0001. After 10 epochs, if the model no longer exhibits improvements, the
model should be retrained by multiplying the original learning rate by 0.9. If the loss does
not drop after 300 epochs, then training should be stopped.

3. Results
3.1. Test Results

The performance of the PDTN model in the test set is visualised in Figure 2a–g to
intuitively convey the denoising and detection performance.
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Figure 2. Visualization of denoising and detection performance of PDTN in the test set. (a–g) Each
figure consists of four figures: from top to bottom, respectively, noisy signal, denoised signal,
predicted noise, and manual and predicted durations.

The noise carried by the noisy signals in Figure 2a,c was a mix of cyclic and other noises,
whereas it comprised cyclic noises of different frequencies in Figure 2b,d. Figure 2a–d show
the actual effects of different noises on the PDTN model and validate its effectiveness in
denoising different noisy signals. Noticeably, considerable improvements in SNR were
achieved. The noise of the noisy signal in Figure 2e was composed of different kinds of
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noise whose amplitudes vary greatly. The maximum amplitude of the noise was close to
that of the microseismic signal, which results in a low SNR of the microseismic signal. This
kind of noise is difficult to be separated, but the PDTN model can still effectively denoise
this complex mixed noise and improve the SNR. The noises in Figure 2a–e were all non-
Gaussian noises. We further tested the processing effect of PDTN on microseismic signals
with Gaussian noise. The noise carried by the noisy signals in Figure 2f was Gaussian
noise. PDTN accurately detected the microseismic signal with Gaussian noise, and the
SNR of the signal was significantly improved after denoising. The proposed model not
only successfully separated the noisy signals from the denoised signals and prediction
noises, but also reduced the leakage of microseismic signals after denoising. The predicted
noise had a slight waveform distortion in the microseismic signal range. We have avoided
intercepting two or more microseismic events into the same sampling window when
intercepting the sampling window. Nevertheless, we show the situation in Figure 2g. The
noisy signal in Figure 2g contained two microseismic waveforms, making denoising and
detection more difficult. As shown in Figure 2g, the PDTN model can successfully separate
the noisy signal into denoised signal and predicted noise, even though it contains two
microseismic waveforms. The SNR of two microseismic signals was greatly improved.
However, the PDTN model only accurately detected one waveform with a larger amplitude,
ignoring the microseismic signal with a smaller amplitude.

Manually marking the signal duration yields subjective end times due to the presence
of noise. To standardize the manual duration and minimize the influence of subjective
factors on the model performance evaluation, the distance between the onset time and
end time in the manual duration was set to eight times the distance between the onset
time and maximum amplitude point [33]. Thus, most of the microseismic signals can be
well covered. The results reveal that the noisy signals are precisely detected by the PDTN
regardless of their type when there is one microseismic waveform in the sampling window.
When there are two or more microseismic waveforms in the sampling window, PDTN can
only accurately detect the one with the largest amplitude. This is because when we train
the neural network, the noise signals all contain a microseismic waveform.

To determine the waveform distortion after PDTN denoising, 2172 noise samples,
comprising cyclic and mixed noises from the China Grand Canyon Tunnel, were collected
and tested. Figure 3a shows the maximum amplitude difference between the actual and
predicted noises. The maximum amplitude difference in more than 61% of the samples
was less than 0.1 m/s2, and the average maximum amplitude difference was 0.186 m/s2.
Figure 3b compares the waveforms of the denoised and clean microseismic signals. The
waveform of the denoised microseismic signal after local amplification was very similar to
that of the clean microseismic signal, and the distortion was small. Therefore, using PDTN
for denoising produces only slight waveform distortions.
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3.2. Application in Real Projects

The data used in model training and testing contained noise and clean microseismic
signals, and the PDTN model achieved excellent denoising and detection results. To verify
the denoising and detection performance of the PDTN model under actual conditions,
it was used to detect and denoise 2207 noisy signals collected from the Grand Canyon
Tunnel in Sichuan, China. The verification results are shown in Figure 4a. The SNR of the
microseismic signals was significantly improved after denoising, whereas the detection
accuracy of the microseismic signals was high. Notably, determining the onset time
of microseismic signals is critical to locating microseismic events. Figure 4b shows the
distribution of the onset time differences of 2207 noisy signals captured manually and
using the PDTN model. The PDTN average time pickup error of the microseismic signals
was 1.6 ms, and 88.58% of the pickup errors of noisy microseismic signals were less than
1.5 ms. Figure 4c shows the SNR distribution before and after denoising. The average SNR
of the microseismic signals increased by 7.28 dB, and the maximum SNR increased by
39.55 dB. The SNR of 2207 microseismic signals with noise was distributed between 0 dB
and 34 dB, which were then divided into 17 intervals to study the relationship between
SNR and pickup error. Figure 4d shows that a higher SNR corresponds to a smaller pickup
error. Specifically, an SNR greater than 20 dB corresponds to a pickup error of less than
1.5 ms. Even at a very low SNR, the maximum pick error was less than 3 ms. Therefore, the
PDTN model maintains a good onset time pickup performance even at low SNR. Although
the PDTN was trained on semisynthetic microseismic signal sets, it is applicable to real
microseismic signals.
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4. Discussion

To compare the denoising and detection performance of PDTN with those of traditional
methods, a clean microseismic signal was superimposed on a clean noise to generate a
noisy signal, and the amplitude of noise was scaled and contracted to generate a noisy
signal with different SNRs (Figure 5). The SNR distribution of these noisy signals ranged
from 1.61 dB to 31.52 dB. We compared the denoising performance of PDTN, high-pass
filter, and feed-forward denoising convolutional neural networks (DnCNN) by taking
these noisy signals as input. The onset time picking effects of PDTN and STA/LTA were
also compared.

Considering the frequency distribution of the clean microseismic signal and clean
noise, the cutoff frequency of the high-pass filter was set to 80 Hz to achieve the best
denoising effect. For STA/LTA, the optimal threshold was selected to achieve the most
accurate onset time pickup. Figure 6a shows the SNR curve after denoising using PDTN
and the high-pass filter. Figure 6a shows the SNR curve after denoising using PDTN,
high-pass filter, and DnCNN. The average SNR of the noisy signals was 6.55 dB. The
average SNR of the signals denoised using the high-pass filter, DnCNN, and PDTN was
15.02 dB, 12.54 dB, and 25.51 dB, respectively. Compared with the DnCNN, the PDTN
improved the SNR by 12.97 dB on average and achieved better denoising effect in the entire
SNR range. Compared with the high-pass filter, the PDTN improved the SNR by 10.49 dB
on average and achieved better denoising effect in the entire SNR range. The correlation
coefficient can indicate the correlation among signals. The closer the correlation coefficient
is to 1, the greater the similarity between two signals. The correlation coefficients between
the clean microseismic signal and the signal denoised using PDTN, high-pass filter, and
DnCNN were calculated to determine the influence of their denoising performance on
the waveform. The correlation coefficient was expressed as a Pearson product–moment
correlation coefficient [34]. Figure 6b shows the correlation coefficient curve. For the high-
SNR case, the correlation coefficients of the microseismic signal after denoising using PDTN
and the high-pass filter both approached 1. However, for the low-SNR case, the correlation
coefficients of the microseismic signal denoised using PDTN were much higher than those
obtained after denoising using the high-pass filter. This suggests that the microseismic
signal can maintain high fidelity after PDTN denoising under a low SNR and that the
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waveform is closer to the clean microseismic signal. The correlation coefficients of the
microseismic signal denoised by DnCNN were far worse than those denoised using PDTN
under any SNR condition, indicating that DnCNN denoising significantly distorts the
waveform. PDTN and STA/LTA were then used to extract the onset time of the noisy
signals, and the error curve is shown in Figure 6c. When the SNR was less than 12 dB, the
STA/LTA pickup error sharply increased, indicating that this algorithm is not suitable for
low-SNR conditions. However, when the SNR was greater than 10 dB, the mean onset time
error of PDTN was only 0.13 ms. Although the pickup accuracy decreases with the SNR of
noisy signals, the maximum PDTN pickup error remained within 3.2 ms. Therefore, PDTN
outperformed STA/LTA under both low- and high-SNR conditions. The average onset
time error of PDTN was 1.41 ms, whereas that of STA/LTA was 4.65 ms, suggesting that
the pickup accuracy of PDTN was much higher than that of STA/LTA.
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Figure 6. Contrast diagram of PDTN, DnCNN, high-pass filter, and STA/LTA denoising and onset
time picking effect. (a) SNR curves of noisy signals and signals denoised using PDTN, DnCNN,
and high-pass filtering. (b) The correlation coefficients between the clean microseismic signal and
the signal denoised using the high-pass filter, DnCNN, and PDTN. (c) The onset time error of noisy
signals detected using PDTN and STA/LTA.
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We used Precision, Recall, and F1-score parameters to further compare and evaluate
model performance.

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1− score = 2 × Precision × Recall
Precision + Recall

, (10)

where TP, FP, and FN represent true positive, false positive, and false negative, respectively.
Precision is the ratio of TP and total of predicted positives. Recall is the ratio of TP and
total of all actual positives. F1-score is the harmonic mean of Precision and Recall. Since
the sampling frequency is 20 kHz, a pick is considered a true positive when the onset time
error is less than 2.5 ms. The two confusion matrices obtained according to PDTN and
STA/LTA pickup results are shown in Tables 3 and 4. Precision, Recall, and F1-score of
the two methods can be calculated from Tables 3 and 4, as shown in Table 5. Results in
Table 5 show that the Precision and F1-score of PDTN are higher than those of STA/LTA,
suggesting that the pickup accuracy of PDTN was much higher than that of STA/LTA.

Table 3. The confusion matrix obtained according to PDTN pickup results.

Predict
Actual

Positive Negative

Positive 94 5
Negative 0 0

Table 4. The confusion matrix obtained according to STA/LTA pickup results.

Predict
Actual

Positive Negative

Positive 19 80
Negative 0 0

Table 5. The comparison of onset time picking between PDTN and STA/LTA.

Methods Precision Recall F1-Score

PDTN 0.949 1 0.974
STA/LTA 0.192 1 0.322

Under different SNR conditions, PDTN achieved a much better denoising effect and
onset time pickup accuracy compared with the high-pass filter, DnCNN, and STA/LTA.
It also avoids the complicated step of utilizing different denoising methods for different
types of noises and does not require an artificial threshold to improve its denoising effect
and detection accuracy.

Denoising and detection networks were constructed to compare the efficiency differ-
ence between simultaneous denoising and detection using PDTN and those using separate
denoising and detection. The denoising network and the detection network have the same
structure, as shown in Figure 7, which comprises an encoder and a decoder. Ninety-nine
semi-synthetic noise microseismic signals were used as model inputs. The results revealed
that the denoising network required 13.69 s, the detection network required 15.12 s, and the
total time was 28.81 s. PDTN required 19.65 s, which means that simultaneous denoising
and detection using PDTN saved 9.16 s compared with separate denoising and detection.
A dual-tasking network consisting of an encoder and two parallel decoders for denoising
and detection has fewer parameters than two single-tasking networks because it shares
one encoder. Fewer parameters make the dual-tasking network more efficient in testing
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than the two single-tasking networks. This advantage is amplified when dealing with
large amounts of microseismic data. Therefore, PDTN can efficiently denoise and detect
microseismic signals simultaneously.
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Figure 7. Structure diagram of denoising and detection models for model efficiency comparison. The
circles of different colors represent the neural network layer. The arrows represent operations per-
formed between two adjacent layers. The dimensions of each layer are marked as ‘feature × filters’.

Accurate mask prediction is required to realize the denoising function of the model.
However, the mask cannot reflect the clean microseismic signal and noise superposition
cancelling the positive and negative amplitudes. Therefore, prediction noise will inevitably
appear as waveform distortion in the microseismic signal range, which is a disadvantage
associated with masks. Expanding microseismic datasets in the future, especially clean
microseismic signal datasets, will facilitate relevant deep learning methods that directly
output predicted denoising waveforms, which would effectively improve the shortcomings
of this method. When there are two or more microseismic waveforms in the sampling
window, PDTN can only accurately detect the one with the largest amplitude. This is the
deficiency of the model and the direction of further improvement of the model.

5. Conclusions

The proposed PDTN model is a deep learning model that can efficiently and auto-
matically detect microseismic data. This model has a dual-task structure comprising an
encoder and two parallel decoders. Two outputs are simultaneously generated to facilitate
the simultaneous denoising and detection of microseismic signals in the time domain.

1. This model exhibits excellent denoising abilities, which can improve the SNR of
microseismic signals containing different types of noise. Compared with the high-
pass filter, the SNR is improved by 10.49 dB on average after denoising using PDTN.
Compared with DnCNN, the SNR is improved by 12.97 dB on average after denoising
using PDTN. The correlation coefficient between the signal denoised using PDTN and
the original microseismic signal is higher in all SNR conditions, indicating that the
denoised waveform distortion by PDTN is smaller.
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2. The model exhibits good detection ability: it accurately detects noisy microseismic
signals with different SNRs. Compared with STA/LTA, the initial time error of this
method is reduced by 3.24 ms, and its error remains below 3.2 ms at the low SNR.

3. Denoising and detection efficiency using PDTN is higher than that for separate de-
noising and detection. When using 99 microseismic signals as input, the results reveal
that the simultaneous denoising and detection using PDTN save 9.16 s compared with
separate denoising and detection.

4. PDTN can denoise and detect various noisy microseismic signals without requiring
parameter adjustment for different signals. PDTN meets the demand for automatically
processing massive microseismic data, and this method has great potential in data
processing for exploration seismology, and earthquake and disaster assessment.
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